文档视界 最新最全的文档下载
当前位置:文档视界 › 第二十九章投影与视图全章测试

第二十九章投影与视图全章测试

第二十九章投影与视图全章测试
第二十九章投影与视图全章测试

第二十九章投影与视图全章测试

一、选择题

1.平行投影中的光线是( )

A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )

A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )

4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )

第4题图

A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )

第5题图

A.a>c B.b>c

C.4a2+b2=c2D.a2+b2=c2

6.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形

露在外面的面积超过7,则正方体的个数至少是( )

A.2 B.3

C.4 D.5

二、填空题

7.一个圆柱的俯视图是______,左视图是______.

8.如果某物体的三视图如图所示,那么该物体的形状是______.

第8题图

9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.

第9题图

10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.

三、解答题

11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)

12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.

13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.

14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).

15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.

答案与提示

第二十九章 投影与视图全章测试

1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:

12.如图:

13.如图:

14.体积为π×102×32+30×25×40≈40 048(cm 3).

15.第一种:高为a ,表面积为;π22

1b ab S += 第二种:高为b ,表面积为?+=π

22

2a ab S

人教版九年级数学下册 第29章 投影与视图 单元检测试卷(解析版)

期末复习:人教版九年级数学下册 第29章投影与视图单元检测试卷 一、单选题(共10题;共30分) 1. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为() A. 1.5 B. 2 C. 2.5 D. 3 【答案】D 【解析】 试题分析:半径为6的半圆的弧长是6π,根据圆锥的底面周长等于侧面展开图的扇形弧长,得到圆锥的底面周长是π,根据弧长公式有2πr=6π,解得:r=3,即这个圆锥的底面半径是3. 故选D. 考点:圆锥的计算. 2. 由五个相同的立方体搭成的几何体如图所示,则它的左视图是( ) A. B. C. D. 【答案】D 【解析】 【分析】 找到从左面看所得到的图形即可,注意所有看到的棱都应表现在左视图中. 【详解】解:从左面看第一层是三个正方形,第二层是左边一个正方形. 故选D. 【点睛】本题考查了简单组合体的三视图的知识,解题的关键是了解左视图是由左视方向看到的平面图形,属于基础题,难度不大.

3. 如图,下列几何体是由4个相同的小正方体组合而成的,从左面看得到的平面图形是下列选项中的() A. B. C. D. 【答案】D 【解析】 从左面看这个几何体有一列,二层,所以从左面看得到的平面图形是D,故选D. 4. 已知某几何体的一个视图(如图),则此几何体是() A. 正三棱柱 B. 三棱锥 C. 圆锥 D. 圆柱 【答案】C 【解析】 俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆锥. 故选C. 5. 如图是由6个大小相同的小正方体组成的几何体,它的主视图是() A. B. C. D. 【答案】C 【解析】

北师大版-数学-九年级上册--第四章 视图与投影 单元综合

第四章视图与投影 一、选择题 1.如图4-107所示的是小玲在九月初九“重阳节”送给她外婆的礼盒,图中所示礼盒的主视图是如图4-108所示的( ) 2.如图4-109所示的三个图形是某几何体的三种视图,则该几何体是( ) A.正方体B.圆柱C.圆锥D.球 3.下面四个几何体中,主视图、左视图、俯视图是全等图形的几何体是( ) A.圆柱B.正方体C.三棱柱D.圆锥 4.如图4-110所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地面上的影子( ) A.逐渐变短B.逐渐变长 C.先变短后变长D.先变长后变短 5.桌面上放着1个长方体和1个圆柱体,按如图4-111所示的方式摆放在一起,其左视图是图4-112中的( ) 6.如图4-113所示,圆柱的左视图是图4-114中的( ) 7.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是图4-115中的( )

8.如图4-116所示的是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是 ( ) A .7个 B .8个 C .9个 D .10个 9.如图4-117所示,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( ) A .4π B .π42 C .π22 D .2 π 二、填空题 10.某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时.与他相邻的一棵小树的影长为3.6米,则这棵树的高度为 米. 11.一个几何体的三视图如图4-118所示,则这个几何体是 (写出名称).

九年级数学第29章投影与视图导学案

29.1投影(第一课时) 【学习目标】 (一)知识技能:1、了解投影的有关概念,能根据光线的方向辨认物体的投影。 2、了解平行投影和中心投影的区别。 3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 (二)数学思考:在探究物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念。 (三)解决问题:通过对物体投影的学习,使学生学会关注生活中有关投影的数学问题,提高 数学的应用意识。 (四)情感态度:通过学习,培养学生积极主动参与数学活动的意识,增强学好数学的信心。 【学习重点】 了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 【情境引入】 活动1 设问:你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师 展示实物及图片,学生观察、思考,感知物体与投影之间的关系。 学生讨论、发表观点;教师归纳。 总结出投影、投影线、投影面的概念。 总结:一般地,用光线照射物体,在 上,得到的 叫做物体的投影, 叫做投影线,投影所在的 叫做投影面。 【自主探究】 活动2 教师给学生展示一组阳光下的投影图片,设问:下列投影中,投影线、投影面分别是什么?这 些投影线有何共同特征?学生观察、思考、归纳,教师指导。 归纳总结:由 形成的投影叫做平行投影。

试举出平行投影在生活中的应用实例。。 活动3 出示一组灯光下的投影,学生观察投影线、投影面分别是什么?这些投影线有何共同特征?学生分析、回答。 归纳总结:由发出的光线形成的投影叫做中心投影。 试举出中心投影在生活中的应用实例。。 活动4 出示教材101页练习:将物体与它们的投影用线连接起来。 【合作探究】 活动5: 问题1 联系:。 区别:。 问题2 图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?学生观察、思考、互相交流。 联系:图中的投影都是投影。区别: 总结出正投影的概念:。

(完整版)第29章《投影与视图》单元测试题(及答案)

第29章 投影与视图 单元测试题 一、选择题:(每小题3分,共60分) 1.小明从正面观察下图所示的两个物体,看到的是( ) 2.下面是空心圆柱在指定方向上的视图,正确的是( ) 3.如图是某物体的三视图,则该物体形状可能是( ) (A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体 4.下图中几何体的主视图是( ) 5.如图所示,左面水杯的杯口与投影面平行,投影线的 方向如箭头所示,它的正投影图是( ) 6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( ) (A )Q (B )R (C )S (D )T 7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) (A )相等 (B )长的较长 (C )短的较长 (D )不能确定 8.正方形在太阳光的投影下得到的几何图形一定是( ) (A )正方形 (B )平行四边形或一条线段 (C )矩形 (D )菱形 9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) (A )平行 (B )相交 (C )垂直 (D )无法确定 10.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( ) (A )16 m (B )18 m (C )20 m (D )22 m 11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( ) (A )上午8时 (B )上午9时30分 (C )上午10时 (D )上午12时 (B ) (A ) (C ) (D ) 正面 主视图 左视图 (第3题) (B ) (A ) (C ) (D ) (B ) (A ) (C ) (D ) 图① (第6(B ) (A ) (C ) (D )

北师大版九年级上册数学第四章视图与投影练习题及答案全套

一、回忆主视图、左视图、俯视图的概念. 二、下列各物体从不同的角度观看,它们的形状可能各不相同,请试着从不同的角度想像它们的形状 . 三、试从下列各图中找出第二题中各物体的主视图(不考虑大小) . 四、从下列各图中找出第二题中各物体的左视图(不考虑大小) . 五、试从下列各图中找出第二题中各物体的俯视图(不考虑大小) . 六、试在教室中观察找到3个物体,并想像它们的三种视图各是什么样子. §4.1.1 视图与投影

一、请说出画物体的视图对,看得见的轮廓线通常画成什么线,看不见的轮廓线通常画成什么线. 二、观察以下各物体: (1)右图为小刚画出的图(a )的主视图,你认为他画的对吗?如果不同意,请指出错误之处,并将其他各图中物体的主视图画出来. (2)左下图是小亮画出的图(b )的左视图,你同意吗?如果不同意请指出错误并画出图(a )至图(f )的左视图 . (3)右上图是小敏画出的图(e )的俯视图,你同意吗,如果不同意,请指出错在哪里,并将图(a )至图(f )的俯视图画出来. 三、指出下列各物体的主视图、左视图、右视图的错误,并修改. 四、画出下图中的物体的三种视图. §4.1.2 视图与投影

一、下图中,是木杆和旗杆竖在操场上,其中木杆在阳光下的影子已画出 . (1)用线段表示这一时刻旗杆在阳光下的影子. (2)比较旗杆与木杆影子的长短. (3)图中是否出现了相似三角形? (4)为了出现这样的相似三角形,木杆不可以放在图中的哪些位置? 二、下图是我国北方某地一棵树在一天不同时刻拍下的五张图片,仔细观察后回答下列问题 . (1)说出这五张图片所对应时间的先后顺序. (2)根据生活经验,谈谈由早到晚该地物体影子的长短变化规律. 三、三角板在阳光下的影子一定是三角形吗?根据物体的影子来判断其形状可以吗? 四、以下是我国北方某地一物体在阳光下,分上、中、下午不同时刻产生的影子 . (1)观察到以上各图片的人是站在物体的南侧还是北侧? (2)分别说出三张图片对应的时间是上午、中午,还是下午. (3)为防止阳光照射,你在上、中、下午分别应站在A 、B 、C 哪个区域? 视图与投影

投影与视图基础测试题附答案

投影与视图基础测试题附答案 一、选择题 1.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下() A.小明的影子比小强的影子长B.小明的影子比小强的影子短 C.小明的影子和小强的影子一样长D.两人的影子长度不确定 【答案】D 【解析】 【分析】 在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可. 【详解】 在同一路灯下由于位置不同,影长也不同,所以无法判断谁的影子长. 故选D. 【点睛】 本题综合考查了平行投影和中心投影的特点和规律.平行投影的特点是:在同一时刻,不同物体的物高和影长成比例.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短. 2.如图是一个由5个完全相同的小正方体组成的几何图形,则它的主视图为() A.B.C.D. 【答案】A 【解析】 【分析】 根据从正面看得到的图形是主视图,可得答案. 【详解】 从正面看第一层是三个小正方形,第二层右边一个小正方形, 故选A. 【点睛】 本题考查了简单组合体的三视图,解题的关键是掌握三视图的原理. 3.下面四个几何体中,俯视图是圆的几何体共有( )

A.1个B.2个C.3个D.4个 【答案】B 【解析】 题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B. 4.下列几何体中,主视图与俯视图不相同的是() A.B.C.D. 【答案】B 【解析】 分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析. 详解:四棱锥的主视图与俯视图不同. 故选B. 点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中. 5.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是() A.3个或4个B.4个或5个C.5个或6个D.6个或7个 【答案】B 【解析】 【分析】 根据给出的几何体的视图,通过动手操作,观察可得答案,也可以根据画三视图的方法,发挥空间想象能力,直接想象出其小正方体的个数. 【详解】 解:综合三视图,第一行第1列有1个,第一行第2列没有; 第二行第1列没有,第二行第2列和第三行第2列有3个或4个,

第四章视图与投影思考与总结教案

第四章视图与投影思考 与总结教案 标准化管理部编码-[99968T-6889628-J68568-1689N]

2009—2010学年上学期九年级数学科教案 主备人:荆丽丽 第四章思考与总结 一.教学方法:议+讲+练 二.出示学习目标. 1.经历活动,培养数学思考能力,发展学生的空间概念. 2.通过回顾,复习,能够简单判断物体的视图,能根据三种视图描述基本几何体或实物原型. 3.会画圆柱,圆锥,球的三种视图. 4.通过复习,体会中心投影的含义及简单应用.初步学会物体与其投影之间的相互转化. 5.通过复习,更深刻体会视图,视线,盲区的含义及其在生活中的应用.二回顾交流,系统复习。 本单元以开展实践活动为主线,促进学生空间想象力的形成。通过实物合理的象形的抽象,想象物体的形状,生活中物体的形状各异,但都不是鬼子的几何模型,必须首先对几何模型进行合理的想象,画出三视图。 画直三棱柱和四棱柱的视图时,注意分析几何体中各个角之间的位置关系,弄清视图中实线和虚线的区别。 注意识别,体会视点,视线,盲区在生活中的应用。

三.知识结构 结合实例视图———圆柱、圆锥、球、直三棱 柱、直四棱柱等几何体的视图 视图与投影-————[ 平行投影 投影———[ 中心投影———灯光与影 子、视 点、视线 和盲 区 四.创设情境,实践体会.(自学课本137内容) 1.制作视图方面内容,让学生感悟三视图的内涵. 2.制作直三棱柱、直四棱柱的立体几何画面,配合实物,再次感悟三 种视图的画法. 3.选取太阳光与影子内容的生活情境中的画面,了解平行投影的含义. 4.制作灯光与影子课件,体会灯光下物体的影子在生活中的应用,丰 富想象力. 5.制作画面,体现视点、视线、盲区在生活中的应用. 五.随堂练习,巩固深化.练习一.某时间小强在阳光下的影子,你能 画出此时圆柱A的影子吗当什么时刻时,看不到圆柱A的影子与同伴交流.

九年级数学第二十九章投影与视图综合测试名校习题(含答案) (192)

九年级数学第二十九章投影与视图综合测试名校习题(含答 案) 在圆柱、正三棱锥、正方体、球四个几何体中,其主视图与左视图不相同的几何体是() A.B.C.D. 【答案】B 【解析】 【分析】 根据主视图是从正面看到的图形,可得主视图,从左面看到的图形是左视图,可得答案. 【详解】 解:A、主视图、左视图都是矩形,故A错误; B、底面是正三角形的正三棱锥的左视图与主视图都是等腰三角形,但是底边不相等,符合题意. C、主视图、左视图都是正方形,故C错误; D、主视图、左视图都是圆,故D错误; 故选B. 【点睛】 本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左面看得到的图形是左视图. 37.如图,矩形ABCD中,对角线AC、BD交于点O,如果OB=4,∠AOB

=60°,那么矩形ABCD的面积等于() A.8 B.16 C.D. 【答案】D 【分析】 由矩形的性质得出OA=BO,证△AOB是等边三角形,得出AB=OB=4,由勾股定理求出AD,即可求出矩形的面积. 【详解】 △四边形ABCD是矩形 △△BAD=90°,AO=CO=1 2 AC,BO=DO=1 2 BD,AC=BD=2OB=8, △OA=OB=4, △△AOB=60°, △△AOB是等边三角形, △AB=OB=4, △ == △矩形ABCD的面积=AB×AD=4× 故选:D. 【点睛】 本题考查了矩形的性质,等边三角形的判定和性质,勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明△AOB为等边三角形是解题的关键.38.一个几何体的三视图如图所示,则这个几何体是()

A.圆柱B.圆锥C.长方体D.正方体 【答案】A 【解析】 【分析】 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】 由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱. 故选:A. 【点睛】 本题是一道由三视图判断几何体形状的题目,解题的关键是掌握常见几何体的三视图; 39.如图,水平放置的空心圆柱体的主视图为() A.B.C.D. 【答案】C 【分析】 根据主视图是从前面看到的图形解答即可.

九年级上册第四章视图与投影测试题

北师大新版九年级上册《第6章投影与视图》2015年单元测试 一、选择题(每题3分,共36分) 1在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是() 2.下列命题正确的是() A .三视图是中心投影 B.小华观察牡丹花,牡丹花就是视点 C.球的三视图均是半径相等的圆 D .阳光从矩形窗子里照射到地面上得到的光区仍是矩形 3.—天下午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛, 如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是() 4.如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行 5.在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是 A.乙照片是参加100m的 B.甲照片是参加100m的 C.乙照片是参加400m的D .无法判断甲、乙两张照片 排列正确的是( ⑴ A . (1) (2) (3)

6 ?在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖 当时所处的 时间是 ( ) A .上午 B .中午 C .下午 D .无法确定 7.下列说法正确的是( ) A .物体在阳光下的投影只与物体的高度有关 B. 小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长 C. 物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化 D .物体在阳光照射下,影子的长度和方向都是固定不变的 8如图,桌面上放着 1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图 是( ) 9. 如图,用一个平面去截长方体,则截面形状为 ( )

第29章 投影与视图全章教案

第二十九章投影与视图 29.1投影(1) (一)创设情境 你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。 (二)你知道吗 北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻. 问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。 一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面. 有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影. 由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.

时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗? (四)应用新知:

图4-17).很明显,图(1)

29.2 投影(二) 是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别? 解:结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,

1画出如图摆放的正方体在投影面P上的正投影. 课堂练习: P4 3 4 作业:习题29.1 1、2、5

初中数学投影与视图经典测试题附答案

初中数学投影与视图经典测试题附答案 一、选择题 1.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为() A.60πcm2B.65πcm2C.90πcm2D.130πcm2 【答案】B 【解析】 【分析】 先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算. 【详解】 解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm, 所以圆锥的母线长=22 51213 +=(cm) 所以这个圆锥的侧面积=1 251365 2 ππ ??= g(cm2), 故选:B. 【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图. 2.一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为() A.48 B.57 C.66 D.48236

【答案】C 【解析】 【分析】 先根据三视图画出长方体,再根据三视图得出32,4AB CD CE ===,然后根据正方形的性质求出,AC BC 的长,最后根据长方体的表面积公式即可得. 【详解】 由题意,画出长方体如图所示: 由三视图可知,32,4AB CD CE ===,四边形ACBD 是正方形 AC BC ∴= 22218AC BC AB +==Q 3AC BC ∴== 则这个长方体的表面积为24233434184866AC BC AC CE ?+?=??+??=+= 故选:C . 【点睛】 本题考查了正方形的性质、三视图的定义、长方体的表面积公式等知识点,掌握理解三视图的相关概念是解题关键. 3.如图,由6个小正方体搭建而成的几何体的俯视图是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架. 【详解】 解:根据三视图的概念,俯视图是

九年级上第四章视图与投影检测题12--九年级数学试题(北师大版)

1 第四章视图与投影检测题 一、选择题:(每小题5分,共25分) 1.下列命题正确的是 ( ) A 三视图是中心投影 B 小华观察牡丹话,牡丹花就是视点 C 球的三视图均是半径相等的圆 D 阳光从矩形窗子里照射到地面上得到的光区仍是矩形 2.平行投影中的光线是 ( ) A 平行的 B 聚成一点的 C 不平行的 D 向四面八方发散的 3.在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是 ( ) A 两根都垂直于地面 B 两根平行斜插在地上 C 两根竿子不平行 D 一根到在地上 4.有一实物如图,那么它的主视图 ( ) A B C D 5.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( ) 二.填空题:(每小题5分,共25分) 6.在平行投影中,两人的高度和他们的影子 ; 7.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说: “广场上的大灯泡一定位于两人 ”; 8.圆柱的左视图是 ,俯视图是 ; 9.如图,一几何体的三视图如右: 那么这个几何体是 ; 10.一个四棱锥的俯视图是 ; 二.解答题:(每踢10分,共50分) 11.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域。 A B C D 俯视图左视图主视图

2 12.画出下面实物的三视图: 13.李栓身高88.1m ,王鹏身高60.1m ,他们在同一时刻站在阳光下,李栓的影子长为 20.1m ,求王鹏的影长。 14.立体图形的三视图如下,请你画出它的立体图形: 15.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12 时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?(结果精确到1米.732.13≈,414.12≈) 墙大 王俯视图左视图主视图 1(26)题

九年级数学第29章投影与视图导学案 1)

九年级数学第29章投影与视图导学案(1) 26.1投影(1) 【学习目标】 1、了解投影的有关概念,能根据光线的方向辨认物体的投影。 2、了解平行投影和中心投影的区别。 3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 【学习重点】 了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】一、了解感知活动1 你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。 学生讨论、发表观点;教师归纳。总结出投影、投影线、投影面的概念。 总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。活动2

观察投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征?归纳总结:由形成的投影叫做平行投影。 试举出平行投影在生活中的应用实例。。活动3 出示一组灯光下的投影,观察投影线、投影面分别是什么?这些投影线有何共同特征?归纳总结:由发出的光线形成的投影叫做中心投影。 试举出中心投影在生活中的应用实例。。活动4 出示练习:将物体与它们的投影用线连接起来。 二、深入学习问题1 出示两幅图,观察中心投影与平行投影的区别与联系。 联 系:。区别:。 问题2 图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别?联系:图中的投影都是投影。 区别:总结出正投影的概念:。 三、迁移运用

第四章 视图与投影

第八章 视图与投影 一、选择题 1.【05资阳】 图1所示的几何体的右视图是 2.【05浙江】如右图,由三个小立方体搭成的几何体的俯视图是 3. 【05南京】下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 A 、球 B 、圆柱 C 、三棱柱 D 、圆锥 4.【05南通海门】 “圆柱与球的组合体”如右图所示,则它的三视图是 A . B . C . D . 5.【05泰州】如图所示的正四棱锥的俯视图是 6.【05无锡】一空间几何体的三视图如图所示,则这个几何体是 A 、圆柱 B 、圆锥 C 、球 D 、长方体 7.【05枣庄课改】一个几何体由一些小正方体摆成,其主(正)视图与左视图如图所示.其俯视图不可能是( ) 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 俯视图 主视图 左视图 . . 4题) A D (第6题)

8.【05佛山】小明从正面观察下图所示的两个物体,看到的是( )。 A B C D 9.【05深圳】我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的 左面看这个几何体的左视图是 A B C D 10.【05河北课改】图1中几何体的主视图是( ) 11.【05遂宁课改】下列两个图是由几个相同的小长方体堆成的物体视图,那么堆成这个物 体的小长方体最多有( )个 (正视图) (俯视图) A 、5 B 、6 C 、4 D 、3 二、填空题 1. 【05内江】桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由 个这样的正方体组成。

第29章《投影与视图》达标测试卷(含答案)

第二十九章达标测试卷 一、选择题(每题3分,共30分) 1.下列几何体中,主视图和左视图都为矩形的是() 2.如图是一个长方体包装盒,则它的平面展开图可能是()

3.如图所示的几何体的俯视图是() 4.在一个晴朗的上午,乐乐拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投

影不可能 ...是() 5.用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是() 6.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是() A.主视图的面积为5 B.左视图的面积为3 C.俯视图的面积为3 D.三种视图的面积都是4 7.如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为() A.2 cm3B.4 cm3 C.6 cm3D.8 cm3

(第7题) (第8题) (第9题) (第10题) 8.一幢4层楼房只有一个房间亮着灯,一棵小树和一根电线杆在窗口灯光下的影子如图所示,则亮着灯的房间是() A.1号房间B.2号房间 C.3号房间D.4号房间 9.如图是某几何体的三视图,根据图中数据,可得该几何体的体积为() A.9πB.40πC.20πD.16π 10.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则组成这个几何体的小立方体的个数可能是() A.5或6 B.5或7 C.4,5或6 D.5,6或7 二、填空题(每题3分,共24分) 11.工人师傅要制造某一工件,他想知道工件的高,他需要看三视图中的__________或__________. 12.如图,将△ABC绕AB边所在直线旋转一周所得的几何体的主视图是图中的__________(填序号).

投影与视图练习题(二)(及答案)

投影与视图 练习题(二) 一、细心填一填(每题3分,共36分) 1.举两个俯视图为圆的几何体的例子 , 。 2.如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 。 3.请将六棱柱的三视图名称填在相应的横线上. 4.一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有__________个碟子。 5.当你走向路灯时,你的影子在你的 ,并且影子越来越 。 6.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得ED =2米,DB =4米,CD =1.5米,则电线杆AB 长= 7.小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说:“广场上的大灯泡一定位于两人 ”; 8.皮影戏中的皮影是由 投影得到的. 9.下列个物体中: (1) (2) (3) (4) 是一样物体的是______________ (填相同图形的序号 ) 俯视图 主视图 左视图 主视图

10.如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,已知房子上的监视器高3m ,广告牌高为1.5m ,广告牌距离房子5m ,则盲区的长度为 ________ 11.一个画家由14个边长为1m 的正方形,他在地面上把他们摆成如图的形式,然后把露出表面的部分都涂上颜色,那么被涂上颜色的总面积为__________ 12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由 个这样的正方体组成。 二、精心选一选(每题2分,共24分) 13.小明从正面观察下图所示的两个物体,看到的是 ( ) 14.在同一时刻,阳光下,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为 ( ) A 、 16m B 、 18m C 、 20m D 、 22m B A C D

九年级上册第四章视图与投影单元测试及答案

九年级(上)第四章视图与投影单元测试 班级 姓名 一、选择题(每小题3分,共30分) 1、下列物体中,主视图和俯视图都是如右图所示图形的立体图形是( ) A ①② B ② C ①②③ D ①②③④ 2、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ) ≌ A B C D 3、右图是由一些相同的小正方体构成的几何体的三视 图,则构成这个几何体的小正方体的个数是( ) A.5 B.6 C.7 D.8 4、小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) A.相交 B.平行 C.垂直 D.无法确定 5、在一个晴朗的好天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是( ) A.上午 B.中午 C.下午 D.无法确定 6、小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( ) A.上午12时 B.上午10时 C.上午9时30分 D.上午8时 7、对同一建筑物,相同时刻在太阳光下的影子冬天比夏天( ) A.短 B.长 C.看具体时间 D.无法比较 8、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( ) A.①②③④ B.④①③② C.④②③① D.④③②① 9、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是( ) A.变长 B.变短 C.先变长后变短 D.先变短后变长 10、如图所示,在房子外的屋檐E 处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在( ) A.△ACE B.△BFD C.四边形BCED D.△ABD (第10题图) (第12题图) (第13题图) 程 前 你 祝 似 锦

第29章《投影与视图》单元测试题(及答案)

投影与视图 单元测试题 一、选择题:(每小题3分,共60分) 1.小明从正面观察下图所示的两个物体,看到的是( ) 2.下面是空心圆柱在指定方向上的视图,正确的是( ) 3.如图是某物体的三视图,则该物体形状可能是( ) (A )长方体 (B )圆锥体 (C )立方体 (D )圆柱体 4.下图中几何体的主视图是( ) 5.如图所示,左面水杯的杯口与投影面平行,投影线的 方向如箭头所示,它的正投影图是( ) 6.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( ) (A )Q (B )R (C )S (D )T 7.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( ) (A )相等 (B )长的较长 (C )短的较长 (D )不能确定 8.正方形在太阳光的投影下得到的几何图形一定是( ) (A )正方形 (B )平行四边形或一条线段 (C )矩形 (D )菱形 9.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( ) (A )平行 (B )相交 (C )垂直 (D )无法确定 10.在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为( ) (A )16 m (B )18 m (C )20 m (D )22 m 11.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( ) (A )上午8时 (B )上午9时30分 (C )上午10时 (D )上午12时 (B ) (A ) (C ) (D ) 正面 主视图 左视图 (第3题) (B ) (A ) (C ) (D ) (B ) (A ) (C ) (D ) 图① (第6(B ) (A ) (C ) (D )

第四章,视图与投影复习

- 1 - 第四章 视图与投影 一.知识要点 A )三视图 ? 主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图 ? 画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等. ? 虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线. 例1:举例说明如何画直三棱柱,直四棱柱的三种视图。 B )投影 ? 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象. ? 太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 ? 在同一时刻,物体高度与影子长度成比例. ? 物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影. ? 探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称 为中心投影 ? 皮影和手影都是在灯光照射下形成的影子.它们是中心投影。 例:已知两棵小树在同一时刻的影子,你如何确定影子是在太阳光线下还是在灯光的光线下形成的。 C )视点、视线、盲区的定义以及在生活中的应用。 . 眼睛所在的位置称为视点,. 由视点发出的光线称为视线,. 眼睛看不到的地方称为盲区 小练习:1.正方体在太阳关下投影,下列图形可以作为正方体影子的是【 】 A 、(1 ) (2 ) B 、(1 ) (3 )C 、(2) (3 ) D 、(1) 2.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为【 】 A.上午12时 B.上午10时 C.上午9时30分 D.上午8时 3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是【 】 A. 变长 B.变短 C. 先变长后变短 D.先变短后变长 4.平行投影中的光线是【 】 A 、平行的 B 、聚成一点的 C 、不平行的 D 、向四面八方发散的 5.右图是由一些相同的小正方体构成的几何体的三视图,则构成这个几何体的小正方体的个数是【 】 A.5 B.6 C.7 D.8 6、对同一建筑物,相同时刻在太阳光下的影子冬天比夏天【 】

九年级数学第29章投影与视图导学案 (1)

26.1投影(1) 【学习目标】 1、了解投影的有关概念,能根据光线的方向辨认物体的投影。 2、了解平行投影和中心投影的区别。 3、了解物体正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 【学习重点】 了解正投影的含义,能根据正投影的性质画出简单平面图形的正投影。 【学习难点】 归纳正投影的性质,正确画出简单平面图形的正投影。 【学习准备】手电筒、三角尺、作图工具等。 【学习过程】 一、了解感知 活动1 你注意观察过周围物体在日光或灯光下的影子吗?影子与物体有着怎样的联系呢?教师展示实物及图片,学生观察、思考,感知物体与投影之间的关系。 学生讨论、发表观点;教师归纳。 总结出投影、投影线、投影面的概念。 总结:一般地,用光线照射物体,在上,得到的叫做物体的投影,叫做投影线,投影所在的叫做投影面。 活动2 观察投影图片,设问:下列投影中,投影线、投影面分别是什么?这些投影线有何共同特征? 归纳总结:由形成的投影叫做平行投影。 试举出平行投影在生活中的应用实例。。 活动3 出示一组灯光下的投影,观察投影线、投影面分别是什么?这些投影线有何共同特征? 归纳总结:由发出的光线形成的投影叫做中心投影。 试举出中心投影在生活中的应用实例。。 活动4 出示练习:将物体与它们的投影用线连接起来。 二、深入学习 问题1 联系:。 区别:。

问题2 图中三角板的投影各是什么投影?它们的投影线与投影面的位置关系有什么区别? 联系:图中的投影都是投影。 区别: 三、迁移运用 1.物体在光线照射下,在地面或墙壁上留下的影子叫做它的_________. 2.手电筒、路灯的光线可以看成是从_________发出的,它们所形成的投影是_________投影,而太阳光线所形成的投影是_________投影. 3.将一个三角形放在太阳光下,它所形成的投影的形状是__________________. 4.小明从正面观察下图所示的两个物体,看到的是( ) 5.物体的影子在正北方,则太阳在物体的( ) A.正北B.正南C.正西D.正东 6.小明在操场上练习双杠时,发现两横杠在地上的影子( ) A.相交B.平行C.垂直D.无法确定 7.晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( ) A.先变短后变长B.先变长后变短C.逐渐变短D.逐渐变长 8.下面是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是( ) A.③④②①B.②④③①C.③④①②D.③①②④ 我的收获:

第四章视图与投影回顾与思考学案

4.1视图 主备人:王军 审核人: 姓名 班级 学习目标:1.会画圆柱、圆锥、球、简单直棱柱的三种视图,体会这几种几何体与其视图之间的相互转化 2.了解平行投影的含义,能够确定物体在太阳光下的影子,了解平行投影与三视图之间的关系。 3.了解中心投影的含义,初步进行中心投影条件下物体与其投影之间的相互转化。 4.通过实例了解视点、实现、盲区的含义,体会在现实生活中的应用 重点:简单几何体三种视图的画法以及平行投影中心投影的应用。 难点:利用本章知识灵活解决问题 预习导学:一、知识建构: 位置 三种视图 大小 虚实 视图与投影 平行投影是由 光线形成的 中心投影是由 发出的光线形成的 投影 太阳光线形成的投影是 灯光形成的投影是 由 发出的线称为视线, 称为盲区。 合作探求:问题一、几何体的三视图 例1.画出下图所示的三视图。 跟踪练习:画出下图所示的三视图 问题二、投影 例2:画出DE 在阳光下的影子 A E D C B 跟踪练习:例2中AB 和DE 是直立在地面上的两根立柱.AB =5m,某一时刻AB 在太阳光下...的投影B C =3m.在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,计算DE 的长。

A E D C B 问题三、应用 例三:某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面城60角,房屋向南的窗户AB 高1.6米,现要在窗子外面的上方安装一个水平遮阳蓬AC(如图所示). (1)当遮阳蓬AC 的宽度在什么范围时,太阳光线能射入室内? (2)当遮阳蓬AC 的宽度在什么范围时,太阳光线不能射入室内? 跟踪练习:如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的应高为2米,求旗杆的高度。 当堂检测:(必做题)1.小明从正面观察下图所示的两个物体,看到的是 ( ) 2.小亮在上午8时、9时30分、10时、12时四次到阳光下观察向日葵的头茎随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( ) A .上午12时 B .上午10时 C .上午9时30分 D .上午8时 3.小明希望测量出电线杆AB 的高度,于是在阳光明媚的一天,他在电线杆旁的点D 处立一标杆CD ,使标杆的影子DE 与电线杆的影子BE 部分重叠(即点E 、C 、A 在一直线上),量得ED =2米,DB =4米,CD =1.5米,求电线杆AB 的长 B A C D 正面

相关文档
相关文档 最新文档