文档视界 最新最全的文档下载
当前位置:文档视界 › 利用对数平均不等式巧解一类数学压轴题

利用对数平均不等式巧解一类数学压轴题

利用对数平均不等式巧解一类数学压轴题
利用对数平均不等式巧解一类数学压轴题

龙源期刊网 https://www.docsj.com/doc/551941229.html,

利用对数平均不等式巧解一类数学压轴题

作者:行凯歌

来源:《新高考·高一数学》2018年第05期

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

对数平均数

高考又见对数平均数 在历年的高考压轴题中我们总是能见到对数平均数的影子。2018年高考理科数学全国Ⅰ卷的压轴题最后一问,实际上就是对数平均数不等式的应用。加强对对数平均数的理解,无疑能对我们解决压轴题有很大的帮助。 对于a>b>0,我们把 b a b a ln ln --称作a 与 b 的对数平均数,并且有: 算术平均数>对数平均数>几何平均数,即: 2b a +>b a b a ln ln -->a b 证明方法Ⅰ(几何证明):如图,分别过A(a,0)、B(b,0)、C( 2b a +,0)、D(ab ,0)作x 轴的垂线,与函数y=x 1 交于F 、G 、E 、H 四点,过E 作函数的切线,分别与BG 、AF 交于M 、N 两点。 比较曲边四边形GBAF 的面积S 1与梯形MBAN 的面积S 2,得S 1>S 2,其中: S 1=?a b dx x 1 =ln a-ln b ,

S 2= 2AN BM +?AB=CE ?AB=b a +2 ?(a-b) ∴ ln a-ln b>b a +2 ?(a-b) 即:2b a +>b a b a ln ln --……① 比较梯形GBDH 的面积S 3与曲边四边形GBDH 的面积S 4,得S 3>S 4,其中: S 3=21 (GB+HD)?BD=21(b 1+ab 1)(ab -b)=ab b a 2- S 4=?ab b dx x 1=ln ab -ln b= 2ln ln b a +-ln b=2 ln ln b a - ∴ ab b a 2->2ln ln b a - 即: b a b a ln ln -->a b ……② 综合①②,得:2b a +>b a b a ln ln -->a b (a>b>0) 证明方法Ⅱ(函数证明): 令f(x)= 2ln x +1 2 +x -1 (x>1),则有: f`(x)=x 21 -2 )1(1+x =22)1(24)1(+-+x x x x =22)1(2)1(+-x x x >0 ∴ f(x)>f(1)=0,即: 2ln x +1 2 +x -1>0, 令x=b a ,代入整理得: 2ln ln b a ->b a b a +- 即:2b a +>b a b a ln ln --……① 令g(x)=x-2?ln x-x 1 (x>1),则有: g`(x)=1-x 2+21x =22 )1(x x ->0 ∴ g(x)>g(1)=0,即x-2?ln x-x 1 >0, 令x= b a ,代入整理得:ab b a ->ln a-ln b

高考数列与不等式压轴题(难题)

高考数列与不等式压轴题 1. 已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。 1) 求数列{}n a 的通项公式; 2) 求证: 12321 1111 ...ln 2n n n n a a a a ++++++++<. 3) 当01λ<<时,设1 ()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ?????? 的前n 项和为n T ,求证: 91 43 n n T n -> +。 2. (2013?蓟县一模)已知数列{}n a 中,11a =,*12311 23()2 n n n a a a na a n N +++++???+= ∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2 {}n n a 的前n 项和n T ; 3) 若存在* n N ∈,使得(1)n a n λ≥+成立,求实数λ的取值范围. 3. (2010?无锡模拟)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列. 1) 证明:数列{}n a 成等比数列的充要条件是13a =; 2) 设*5(1)()n n n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围. 4. 已知数列{}n a 中,2 2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项. 1) 求数列{}n a 的通项公式; 2) 设数列{}n b 是首项为1,公比为2 3 - 的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ?<恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 5. 已知数列{}n a 满足11a =,2*123()1 n n n n a a m a n N a +++=∈+。 1) 若恒有1n n a a +≥,求m 的取值范围. 2) 在31m -≤<时,证明: 121111 11112 n n a a a ++???+≥-+++ 3) 设正项数列{}n a 的通项n a 满足条件:*() 10()n n n a na n N +-=∈,求证:1 02 n a ≤≤ 。

对数平均不等式学生

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x =>的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二) ()0ln ln b a b a b a ->>-的应用 例 2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+.

(三) ()02ln ln a b b a b a b a +->>>-的应用 例3. 设数列{}n a 的通项111123n a n =++++L ,证明:()ln 21n a n <+. (四) ()2011ln ln b a b a b a a b ->>>-+的应用 例4. (2010年湖北)已知函数()()0b f x ax c a x =++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)用a 表示出,b c ;(2)(略) (3)证明:()() ()1111ln 11.2321n n n n n ++++>++?+L (五) )0ln ln b a b a b a ->>>-的应用 例5. (2014福建预赛)已知1()ln(1)311f x a x x x =++ +-+. (1)(略) (2)求证:()222223411ln 21411421431414 n n n +++++>+?-?-?-?-L 对一切正整数n 均成立. 强化训练 1. (2012年天津)已知函数()()()ln 0f x x x a a =-+>的最小值为0. (1)(2)(略)(3)证明:()()12ln 212*.21 n i n n N i =-+<∈-∑ 2.(2013年新课标Ⅰ)已知函数()()()1ln 11x x f x x x λ+=+-+.

8-高考压轴题-不等式证明方法

高考压轴题-不等式证明方法 郑紫灵 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题。其中用的最多的是放缩法,而放缩法有四个最基本的 1.先求和再放缩。 (1)直接用等差或等比的求和公式求和 例1.求证1111 1 (2242) n -+ +++<()*n N ∈ 证明:111-111121...= =21-2124221-2 n n n -?? ???????++++

对数平均数的不等式链的几何解释及应用

对数平均数的不等式链的几何解释及应用 中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是: 设,0,,a b a b >≠则2ln ln a b a b ab a b +->>-,其中ln ln a b a b --被称之为对数平均数. 童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地 探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解. 1 对数平均数的不等关系的几何解释 反比例函数()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,,T ab ab ?? ???作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形, 所以 ()12 ln ln ,b a dx b a b a x a b =->-+ò ① 又1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形, ()11 ln ln 22ABQP b a S = -=曲边梯形, () 11111 222AUTP ABCD b a S ab a S a ab ab 骣-÷?=+ -=?÷?÷?桫梯形梯形,

根据右图可知,AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b a b a ab --<, ② 另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln ,2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+, 即()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 2 不等式链的应用 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. 2.1 ()0ln ln b a b a a b a -> >>-的应用 例1(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++ 与()n f n -的大小,并加以证明. 解析(3)因为()1x g x x = +, 所以()()()121111223123 1n g g g n n n n ??+++= +++=-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++ 与()n f n -的大小,即只需比较 1 1 3121++++n 与()ln 1n +的大小即可. 根据0b a >>时,ln ln b a b b a ->-,即()1ln ln , b a b a b -<- 令,1,a n b n = =+则 ()1 ln 1ln ,1 n n n <+-+ 所以1ln 2ln1ln 22<-=,1ln 3ln 23<-,1 , ln(1)ln 1 n n n <+-+ ,

七年级下册数学不等式类压轴题

不等式类压轴题 1.不等式组的所有整数解的和是( ) A .﹣3 B .﹣2 C .0 D .﹣5 2.若关于x 的不等式mx ﹣n >0的解集是x <,则关于x 的不等式(m+n )x >n ﹣m 的解集是( ) A .x <﹣ B .x >﹣ C .x < D .x > 3.若关于x 的不等式mx ﹣n >0的解集是x <,则关于x 的不等式(n ﹣m )x >(m+n )的解集是( ) A .x <﹣ B .x >﹣ C .x < D .x > 4.如果关于x 的不等式07)(>-+-n m x n m 的解集为1

7.已知同时满足不等式x -2>6和3x +2>4x -a 的x 的取值中有且只有四个整数,则a 的取值范围是_________ 8.若关于x 的一元一次不等式组 有解,则m 的取值范围为( ) A . B .m ≤ C . D .m ≤ 9.不等式组???≤-->-21a x a x 的解集中,任一个x 的值均在3≤x <7的范围内,求a 的 取值范围为: . 10.若均为非负整数,则M=5x+4y+2z 的取值范围是( ) A .100≤M ≤110 B .110≤M ≤120 C .120≤M ≤130 D .130≤M ≤140 11.已知x+y+z=0,且x >y >z ,则的取值范围是 .

对数平均数的不等式链的几何解释及应用

对数平均数的不等式链的几何解释及应用 [文档副标题] [日期] [公司名称] [公司地址]

对数平均数的不等式链的几何解释及应用 中学数学教育专家安振平先生在剖析2014年陕西高考数学试题时指出,其压轴题的理论背景是: 设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b --被称之为对数平均数. 童永奇老师构造函数,借助于导数证明了对数平均数的上述不等式,难度较大,为此,我作了深入地 探讨,给出对数平均数的不等关系的几何解释,形象直观,易于理解. 1 对数平均数的不等关系的几何解释 反比例函数()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x ||||轴, () ,0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???, ,T 作()f x 在点2,2a b K a b +?? ?+??处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为ABNM ABQP ABFE S S S 矩形曲边梯形梯形, 所以 1 2ln ln ,b a dx b a b a x a b ① 又1ln ln ab AUTP a S dx ab a x 曲边梯形, 1 1 ln ln 2 2 ABQP b a S 曲边梯形, 1111 222 AUTP ABCD S ab a S a ab ab 梯形梯形,

根据右图可知, AUTP AUTP S S 曲边梯形梯形 ,所以ln ln b a ab , ② 另外,ABQX ABYP ABQP ABQP S S S S 矩形矩形曲边梯形梯形,可得: 11111ln ln ,2b a b a b a b a b a b a ③ 综上,结合重要不等式可知: 211111ln ln 2b a b a b a b a b a b a b a b a ab , 即20112 ln ln a b b a b ab a b a b a a b . ④ 2 不等式链的应用 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. 2.1 0ln ln b a b a a b a 的应用 例1,,(2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n ++ +与()n f n -的大小,并加以证明. 解析,,(3)因为()1x g x x =+, 所以()()()121111223 123 1n g g g n n n n ?? ++ += +++ =-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n +++与()n f n -的大小,即只需比较 1 13121++++n 与()ln 1n +的大小即可. 根据0b a 时, ln ln b a b b a ,即1ln ln , b a b a b 令,1,a n b n 则 1 ln 1 ln ,1 n n n 所以 1ln 2ln1ln 22<-=,1 ln 3ln 23 <-,1 , ln(1)ln 1 n n n <+-+,

对数平均不等式 - 学生

对 数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b a b +->>-ln ln a b a b -- 为对数平均数. 2.几何解释: 反比例函数()()10f x x x = >的图象,如图所示,AP BC TU KV ||||||,MN CD x |||| 轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,,T 作()f x 在点2,2a b K a b +?? ?+??处的切线分别与 ,AP BQ 交于,E F ,根据左图可知, 变形公式: )0.()(2ln ln >≥+-≥-b a b a b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a ->>>-的应用 例1 (2014年陕西)设函数 )1ln()(x x f +=,()()g x xf x '=,其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n +++L 与()n f n -的大小,并加以证明. . (二)()0ln ln b a b a b a ->>-的应用 例2 设数列{} n a 的通项n a =,其前n 项的和为n S ,证明:()ln 1n S n <+. (三) ()02ln ln a b b a b a b a +->>>-的应用

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

(完整版)极值点偏移问题专题——对数平均不等式

极值点偏移——对数平均不等式(本质回归) 笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数,,且,定义为,的对数平均值,且 ,即几何平均数<对数平均数<算术平均数,简记为. 先给出对数平均不等式的多种证法. 证法1(对称化构造) 设 ,则, ,构造函数,则.由得,且在上,在上,为的极大值点.对数平 ,等价于,这是两个常规的极值点偏移问题,留给读者尝试. 证法2(比值代换) 令,则 ,构造函数可证. 证法3(主元法) 不妨设 , 1 1 1ln 2e e 2ln b a b a a a b b ab ab b a b a b a b a b b b a a a ---??-+?? < <<<<< ? ?+ -?? ??a b a b ≠ln ln a b a b --a b ln ln 2 a b a b a b -+< -()()(),,,G a b L a b A a b <<0 ln ln a b R a b -= >-ln ln k a k b a b -=-ln ln k a a k b b -=-()ln f x k x x =-()()f a f b =()1k f x x '= -()0f k '=()f x ()0,k Z (),k +∞]x k =()f x 2a b k +<< 2 2a b k ab k +>??()()11ln ln 2ln 2 b t b t a b a b a b t -+-+<

对数平均数不等式链的几何证明及变式探究

对数平均数不等式链的几何证明及变式探究 中学数学教育专家安振平在剖析2013年陕西高考数学压轴题时指出,其理论背景是: 设0b a >>,则211 2ln ln a b b a b ab a b a a b +-> >>> >-+,其中 ln ln a b a b --被称为“对数 平均数”. 安振平老师通过构造函数,借助导数,证明了上述对数平均数不等式链,难度较大.基于此,笔者进行了深入的探讨,给出对数平均数不等式链的几何证明,形象直观,易于理解. 1 对数平均数不等式链的几何证明 如图,先画反比例函数()()1 0f x x x = >的图象,再画其他的辅助线,其中AP BC TU KV ||||||,MN CD x ||||轴,(),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,T ab ab ?? ? ? ?.设函数()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与直线,AP BQ 交于点,E F ,则根据左图可知: 因为ABNM ABQP ABFE S S S >=矩形曲边梯形梯形, 所以 ()12 ln ln b a dx b a b a x a b =->-+ò . ① 因为1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形()11ln ln 22ABQP b a S =-=曲边梯形, () 11111 222AUTP ABCD b a S ab a S a ab ab 骣-÷?=+ -=?÷?÷?桫梯形梯形,

而根据右图可知:AUTP AUTP S S <曲边梯形梯形,所以ln ln b a b a ab --<. ② 另外,根据ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln 2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 . ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+, 即()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 2 对数平均数不等式链的变式探究 近年来,以对数平均数不等式链为落点的压轴试题层出不穷,如2010年湖北卷、2012年天津、2013年新课标Ⅰ、2014年陕西卷、2014福建预赛、2014年绵阳一、三诊、2015合肥最后一卷等等,因此关注对数平均数不等式链的变式探究是十分必要的. 为了行文叙述的方便,将对数平均数不等式链中的不等式 2ln ln a b b a b a +->-,记为①式;将ln ln b a ab b a -> -,记为②式;将2 11 ln ln b a b b a a b -> >-+,记为③式. 变式探究1:取12,a x b x ==,则由①知: 1221 21 2ln ln +-> -x x x x x x .于是,可编制如下试题:已知210>>x x ,求证:212112 2()ln ln --> +x x x x x x . 变式探究2:取12,a x b x ==,则由②知: 21 1221 ln ln ->-x x x x x x .于是,可编制如下试题:已知 210>>x x ,求证:21 2112 ln ln --< x x x x x x . 变式探究3:取12,a x b x ==,则由③知:2122112 2 11 ln ln -> > -+x x x x x x x .于是,可编制如下试题:已知210>>x x ,求证:22 12121212 1ln ln 2--<-< x x x x x x x x .

极值点偏移问题专题(五)——对数平均不等式(本质回归)

极值点偏移(5)——对数平均不等式(本质回归)笔者曾在王挽澜先生的著作《建立不等式的方法》中看到这样一个不等式链: 1 1 1 ln 2 e e 2 ln b a b a a a b b ab ab b a b a b a b a b b b a a a - - - ?? -+ ?? <<<<<< ? ? +- ???? , 不曾想,其中一部分竟可用来解极值点偏移问题. 对数平均不等式:对于正数a,b,且a b≠,定义 ln ln a b a b - - 为a,b的对数平均值,且 ln ln2 a b a b a b -+ << - ,即几何平均数<对数平均数<算术平均数,简记为 ()()() ,,, G a b L a b A a b <<. 先给出对数平均不等式的多种证法. 证法1(对称化构造)设0 ln ln a b R a b - => - ,则l n l n k a k b a b -=-, ln ln k a a k b b -=-,构造函数()ln f x k x x =-,则()() f a f b =.由()1 k f x x '=-得 ()0 f k '=,且() f x在() 0,k 上,在() ,k+∞ 上,x k =为() f x的极大值点.对数 平均不等式即 2 a b k + <,等价于 2 2 a b k ab k +> ? ?< ? ,这是两个常规的极值点偏移问题, 留给读者尝试. 证法2(比值代换)令1 a t b => ,则 ()() 11 ln ln2ln2 b t b t a b a b a b t -+ -+ <

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

二元一次方程组及不等式典型压轴题

二元一次方程组及不等式难题 一.选择题(共11小题) 1.(2006?大兴安岭)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买() A.11支B.9支C.7支D.4支2.(2004?苏州)某县响应国家“退耕还林”号召,将一部分耕地改为林地,改还后,林地面积和耕地面积共有180km2,耕地面积是林地面积的25%,设改还后耕地面积为xkm2,林地面积为ykm2,则下列方程组中正确的是() A.B. C.D. 3.(2013?潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[]=1,[3]=3,[﹣]=﹣3,若[]=5,则x的取值可以是() A.40B.45C.51D.56 4.(2015?大庆校级模拟)若max{S1,S2,…,S n}表示实数S1,S2,…,S n中的最大者.设A=(a1,a2,a3),b=,记A?B=max{a1b1,a2b2,a3b3},设A=(x﹣1,x+1,1),, 若A?B=x﹣1,则x的取值范围为() A.B.C.D. 5.(2013?攀枝花模拟)现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,若2※3+m※1=6,则不等式<m的解集是() A.x<﹣2B.x<﹣1C.x<0D.x>2 6.(2012?河池)若a>b>0,则下列不等式不一定成立的是() A.a c>bc B.a+c>b+c C.D.a b>b2 7.(2012?常州)已知a、b、c、d都是正实数,且<,给出下列四个不等式: ①<;②<;③;④< 其中不等式正确的是() A.①③B.①④C.②④D.②③8.(2012?恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高() A.40%B.%C.%D.30%

压轴题经典的不等式专题

经典的不等式专题 1、 证明:2221111+ ...223n +++< ; 2、 若:332a b +=,求证:2a b +≤ ; 3、 若:n N + ∈,求证: 1111...12122n n n ≤+++<++; 4、 若:,0a b >,且3ab a b =++,求:a b +的取值范围 ; 5、 若:,,a b c 是ABC ?的三边,求证:111a b c a b c +>+++ ; 6、 当2n ≥时,求证:222111111 (12) 123n n n - <+++<-+ ; 7、 若x R ∈ ,求y =的值域 ; 8、 求函数2cos y θ θ=-的最大值和最小值 ; 9、 若,,0a b c >,求证: 2229a b b c c a a b c ++>+++++ ; 10、 若,,a b c R ∈,且22225a b c ++=,试求:22a b c -+的取值范围 ; 11、 若,,a b c R ∈,且226a b c --=,求222a b c ++的最小值 ; 12、 若,,a b c R ∈,且222 (1)(2)(3)11654 a b c -+-++=,求a b c ++的最大值和最小值; 13、 若,,0a b c >,,,0x y z >,且满足22225a b c ++=,222 36x y z ++=, 30ax by cz ++=,求:a b c x y z ++++的值 ; 14、 求证:21 15 3n k k =<∑ ;(这回比较紧) 15、 当2n ≥时,求证: 12(1)3n n <+< ; 16、 求证: 113135135...(21)...224246246 (2) n n ???????-++++

专题06 超越不等式(方程)型-2021年高考数学复习压轴题解法分析与强化训练附真题及解析

专题06 超越不等式(方程)型 [真题再现] 例1 (2020·南京三模·20改编)已知函数2e ()x f x x ax a =-+(a ∈R),其中e 为自然对数的底数,若函数()f x 的定义域为R ,且(2)()f f a >,求a 的取值范围. 例2 (2016·宿迁三校学情调研·14)已知函数f (x )=x -1-(e -1)ln x ,其中e 为自然对 数的底,则满足f (e x )<0的x 的取值范围为 . 例3 (2020·扬州五月测试·20改编)不等式1ln 0x x x --≤的解集是 . 例4 340x +=的根是 . [强化训练] 1. (2020·北京·6)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A. (1,1)- B. (,1)(1,)-∞-+∞ C. (0,1) D. (,0)(1,)-∞?+∞ 2. 关于的不等式的解集为___________. 3. 方程e eln e 0x x x +-=的根是___________. 4.已知α、β分别是方程510x x ++= 、10x + =的根,则α+β的值是 . 5.已知实数x 、y 满足( 1x y =,则2234662020x xy y x y ----+的值是 . x 2ln 10x x +-≥

解析: 专题06 超越不等式(方程)型 [真题再现] 例1 【答案】(2,4) 【解析】由函数f (x )的定义域为R ,得x 2-ax +a ≠0恒成立, 所以a 2-4a <0,解得0<a <4. 方法1(讨论单调性) 由f (x )=e x x 2-ax +a ,得f'(x )=e x (x -a )(x -2)(x 2-ax +a )2 . ①当a =2时,f (2)=f (a ),不符题意. ②当0<a <2时, 因为当a <x <2时,f ′(x )<0,所以f (x )在(a ,2)上单调递减, 所以f (a )>f (2),不符题意. ③当2<a <4时, 因为当2<x <a 时,f ′(x )<0,所以f (x )在(2,a )上单调递减, 所以f (a )<f (2),满足题意. 综上,a 的取值范围为(2,4). 方法2(转化为解超越不等式,先猜根再使用单调性) 由f (2)>f (a ),得e 24-a >e a a . 因为0<a <4,所以不等式可化为e 2>e a a (4-a ). 设函数g (x )=e x x (4-x )-e 2, 0<x <4. 因为g'(x )=e x ·-(x -2)2x 2≤0恒成立,所以g (x )在(0,4)上单调递减. 又因为g (2)=0,所以g (x )<0的解集为(2,4). 所以,a 的取值范围为(2,4). 例2 【答案】()0,1 【解析】易得f (1)=f (e)=0

相关文档
相关文档 最新文档