文档视界 最新最全的文档下载
当前位置:文档视界 › 对数平均数的应用(史上最全题型)

对数平均数的应用(史上最全题型)

对数平均数的应用(史上最全题型)

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

(完整版)对数函数图像及其性质题型归纳,推荐文档

对数函数及其性质题型总结 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征Error! 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2-a +1)log (a +1) x 是对数函数,则实数a =__________. (1)图象与性质 a >10<a <1 图 象 (1)定义域{x |x >0} (2)值域{y |y R } ∈(3)当x =1时,y =0,即过定点(1,0) (4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当 0<x <1时,y >0 性质 (5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0 性质(7)直线x =1的右侧底大图低 谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. 题型一:定义域的求解 求下列函数的定义域. 例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4); (3). y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0. 题型二:对数值域问题 对数型函数的值域的求解

半对数计算精编版

半对数计算 一、 何谓股价三分线 ▲我们常计算回档(反弹)1/3、0.382、1/2、0.618,其实1/3与0.382属同层级, 意谓强势整理(弱势反弹),乃最有机会创高(破底)之表征。1/2中线则是最普遍 运用的支撑或压力之观测点,因为这里是回档或反弹的成本均衡处,稳定的涨 势或跌是常藉1/2中线之转折继续维系其多空步伐。至于0.618乃回檔的『最 后防线』及反弹的『乾坤挪移』所在,前者跌破,防回档转回跌,后者突破可 促反弹转回升,这一关的重要性关乎原始趋势之转变与否。 ◆问题来了!没人规定股价的高低点要落在三分线位置,若视之为『随机』落在 任何位置皆可能,重要的是据美国分析界学者之长期统计,落在三分线附近之 机率远大于其它位置,足见其存在的惯性意义。 二、 为什么要用半对数计算 ▲很多人早就会自行计算所谓的回档(反弹)1/3、1/2及黄金切割率,久而久之却 懒得算了;原因是算不出『准头』!何以艾略特主张要用『半对数』? 例:10→ 100的中心点在哪 ? 小学生也知道(10 + 100 ) / 2 = 55,但是,股价的运算~ √10 X 100 = 31.6。半对数乃一门运用数学,并适用于股市这门投资学。 ◆原理:拿一百万元买一档10元的股票,涨到31.6元增值为316万;又,拿一 百万元买足一档31.6元的股票,涨到100元同样增值为316万。可见31.6才 是10←→100的涨跌『成本中心』位置;若说线图为人性之轨迹,那么『惯性』 透过半对数计算才得知最敏感的表征处。 进而推演出公式:10→ 100回檔1/3~ 100.333 X 1000.666= 46.2;100 → 10反弹 1/3~ 1000.333 X 100.666= 21.5。所以说,一定要用工程用计算器才算得出来。 三、如何『取样』来加强计算的可信度 ? ▲半对数计算必须先有『背景取样』,因为我们是藉由前一上涨波来测量回档支 撑,由前一下跌波来测量反弹压力;但所谓的『前一波』可长可短,且走势不 见得如想象中单纯,是故,取样的准则应力求: 一、较佳的线性轨道(走势太曲折则不佳); 二、较符合波浪循环之原则。 有时会遇到较复杂或模棱两可的股价背景时,则不排除采用不同版本之 交叉计算,甚至舍弃某一模糊阶段寻求其它途径来判断。 也就是说,越符合前两项取样原则,计算半对数的参考价值将愈高。 譬如 10元(低点)涨到 100元(高点)之回檔0.382为100.382X 1000.618 = 41.5;回檔0.618为100.618 X

人教A版数学必修一高一数指数函数、对数函数

高一数指数函数、对数函数 一、选择题:(每小题6分, 共36分) 1.化简3458log 4log 5log 8log 9???的结果是( ) A .1 B . 3 2 C .2 D .3 2.函数1)2(log ++=x y a 的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.已知a <0,则a 2 ,a )2 1 ( ,a 2.0的大小关系是( ) A .a 2.0 1,实数x ,y 满足log a y+x =0,则y 关于x 的函数图象大致是( )

二、填空题:(每小题6分,共18分) 7.函数:26x x y --=单调增区间是__________________________ 8.四个数:23.0,3.0log 2,3.02,0)2 (π的由小到大的顺序为____________________ 9.计算: 3 75754 log 3 1log 9 log 2log ??=__________________________ 三.解答题: 10.(15)已知函数.)3 1 ()(x x f =当]1,1[-∈x 时,求3)(2)(2+-x f x f 的取值范围。 11.(15)求函数) (2 6ln x x y --=的单调区间。

对数函数典型例题

对数运算与对数函数复习 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 例2.比较下列各组数中两个值的大小: (1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; (3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8; 例3.求下列函数的值域: (1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47) a y x x =-+(0a >且1a ≠).

例4.(1)已知:36log ,518,9log 3018求==b a 值. 例5.判断函数2()log )f x x =的奇偶性。

对数运算与对数函数复习练习 一、选择题 1.3 log 9log 28的值是( ) A .32 B .1 C .2 3 D .2 2.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x ≥1)的值域是( ) A .R B .[2,+∞] C .[3,+∞] D .(-∞,2) 4.如果0-+ C .0)a 1(log )a 1(>+- D .0)a 1(log )a 1(<-+ 5.如果02log 2log b a >>,那么下面不等关系式中正确的是( ) A .0b>1 D .b>a>1 6 若a>0且a ≠1,且14 3log a <,则实数a 的取值范围是( ) A .0或 D .4 3a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3 a b +等于( ) A .1(lg lg )2a b + B .1lg()2ab C .1(lg ||lg ||)3a b + D .1lg()3 ab 8.如果1x >,12log a x =,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >> 二、填空题(共8题) 8.计算=+?+3log 22450lg 2lg 5lg . 10.若4 12x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________ 12.函数x )31 (y =的图象与函数x log y 3-=的图象关于直线___________对称.

对数极对数函数题型总结

对数极对数函数题型总结 例题讲解 一、利用对数恒等式化简求值 1.求值: 2.求的值(a,b,c∈R+,且不等于1,N>0) 二、积、商、幂的对数 3.求值 (1)(2)lg2·lg50+(lg5)2(3)lg25+lg2·lg50+(lg2)2 4.已知3a=5b=c,,求c的值. 5.设a、b、c为正数,且满足a2+b2=c2.求证:. 6.已知:a2+b2=7ab,a>0,b>0. 求证:. 三、换底公式的运用 7.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x. 8.求值:(1);(2);(3). 9. 10. 11.四、对数运算法则的应用 12.9.求值 13.(1) log89·log2732 14.(2)

15.(3) 16.(4)(log2125+log425+log85)(log1258+log254+log52) 17. 18.10.求值: 19. 11.已知:log23=a,log37=b,求:log4256=? 五、函数的定义域、值域 求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用. 12. 求下列函数的定义域. (1) y=(2) y=ln(a x-k·2x)(a>0且a11,k?R). 13.函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域. 六、函数图象问题 七、14.作出下列函数的图象: 八、(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx. 九、 七、对数函数的单调性及其应用 利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值. 15.已知则() A.B.C.D.

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数、对数函数基本知识点

基本初等函数知识点 (1)(2)(3) 知识点一:指数及指数幂的运算 知识点二:指数函数及其性质 1. 根式的概念 1. 指数函数概念 的次方根的定义:一般地,如果,那么叫做的次方根,其 一般地,函数叫做指数函数,其中是自变量,函数中 的定义域为. 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为 2. 指数函数函数性质: ;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示 函数名称 指数函数 为. 定义函数且叫做指数函数负数没有偶次方根, 0的任何次方根都是 0. 式子叫做根式,叫做根指数,叫做被开方数 . 2.n 次方根的性质: 图象 (1) 当为奇数时,;当为偶数时, (2) 3. 分数指数幂的意义: 定义域 ;值域 注意: 0 的正分数指数幂等与0,负分数指数幂没有意义 . 过定点图象过定点,即当时,. 4.有理数指数幂的运算性质:

奇偶性非奇非偶 4. 对数的运算性质 单调性在上是增函数在上是减函数 如果,那么①加法: 函数值的 变化情况②减法:③数乘: 变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向 象的影响看图象,逐渐减小 . 知识点三:对数与对数运算 ④⑤ 1.对数的定义 (1) 若,则叫做以为底的对数,记作⑥换底公式: 知识点四:对数函数及其性质 ,其中叫做底数,叫做真数. 1. 对数函数定义 (2) 负数和零没有对数. 一般地,函数叫做对数函数,其中是自变量,函 (3) 对数式与指数式的互化:. 数的定义域. 2.几个重要的对数恒等式 ,,. 2. 对数函数性质: 函数名称对数函数 3. 常用对数与自然对数 常用对数:,即;自然对数:,即 定义函数且叫做对数函数( 其中 图象 ?).

对数与对数函数-知识点与题型归纳

对数与对数函数-知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般 对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数 函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数 (a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27 注意: 知识点一对数及对数的运算性质 1.对数的概念 2

3 一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M . (2)对数的性质 ①a log aN =N ;②log a a N =N (a >0,且a ≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10,log 1a a a ==

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果 ,那么叫做的次方根,其 中 当为奇数时,正数的次方根为正数,负数的 次方根是负数,表示为 ;当为偶数时,正数的 次方根有两个,这两个数互为相反数可以表示 为 . 负数没有偶次方根,0的任何次方根都是0. 式子 叫做根式,叫做根指数,叫做被开方数. 2.n 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1) (2) (3) 知识点二:指数函数及其性质 1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数 的定义域为 . 且 图象过定点 ,即当时,

变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向 看图象, 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作 ,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中 …). ,那么①加法: ②减法:③数乘: ⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函 数的定义域. 且

图象过定点,即当 时, 上是增函数上是减函数 变化对图在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向 看图象, 1.幂函数概念形如的函数,叫做幂函数,其中 为常数. 2.幂函数的性质 (1) 限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象 关于原点对称);是非奇非偶函数时,图象只分布在第一象限. (2)过定点:所有的幂函数在都有定义,并且图象都通过点. (3)单调性:如果,则幂函数的图象过原点,并且在上为增函数. 如果,则幂函数的图象在上为减函数,在第一象限内,图象无 限接近轴与轴. 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函 当(其中 互质,和),若为奇数为奇数时,则是奇函数,若为 奇数为偶数时,则 是偶函数,若为偶数为奇数时,则是非奇非偶函数. ,当时,若,其图象 在直线下方,若,其图象在直线上方,当时,若 ,其图象在直线上方,若,其图象在直线下方.

高三总复习-指对数函数题型总结归纳

指对函数 1比较大小,是指对函数这里很爱考的一类题型,主要依靠指对函数本身的图像性质来做题,此外,对于公式的理解也很重要。常用方法有建立中间量;估算;作差法;作商法等。 1、若π2log =a ,6log 7=b ,8.0log 2=c ,则( ) A.c b a >> B.c a b >> C.b a c >> D.a c b >> 2、三个数6log ,7.0,6 7.067 .0的大小顺序是( ) A.60.70.70.7log 66<< B.60.70.70.76log 6<< C.0.760.7log 660.7<< D.60.7 0.7log 60.76<< 3、设 1.5 0.90.48 12314,8 ,2y y y -??=== ? ?? ,则( ) A.312y y y >> B.213y y y >> C.132y y y >> D.123y y y >> 4、当10<> B.a a a a a a >> C.a a a a a a >> D.a a a a a a >> 5、设 1)3 1()31(31<<>x x b a ,则下列不等式成立的是( ) A .10<<a 且1≠a ),则()f x 一定过点( ) A.无法确定 B.)3,0( C.)3,1( D.)4,2( 2、当10≠>a a 且时,函数()32-=-x a x f 必过定点( ) 3、函数0.(12>+=-a a y x 且)1≠a 的图像必经过点( ) 4、函数1)5.2(log )(-+=x x f a 恒过定点( ) 5、指数函数()x a x f =的图象经过点?? ? ??161,2,则a =( ) 6、若函数log ()a y x b =+ (0>a 且1≠a )的图象过)0,1(-和)1,0(两点,则b a ,分别为( ) A.2,2==b a B.2,2==b a C.1,2==b a D.2,2==b a 3针对指对函数图像性质的题

高一数学(必修1)专题复习三 指数函数和对数函数

高一数学(必修1)专题复习三 指数函数和对数函数 一.基础知识复习 (一)指数的运算: 1.实数指数幂的定义: (1)正整数指数幂: a n n a a a a 个???=(R a ∈)(2)零指数幂:10=a (0≠a ) (3)负整数指数幂:n n a a 1 = -(0≠a ) (4)正分数指数幂:n m n m a a =(1,,,0≠∈≠+n N n m a ) (5)负分数指数幂:n m n m a a 1 = -((1,,,0≠∈≠+n N n m a . 2.指数的运算性质: ① y x y x a a a +=? ② y x y x a a a -= ③ xy y x a a =)( ④ x x x b a ab =)( 1b 就叫做以a 为底N 的对数,记作b a log =.即:b N N a a b =?=log . (10 (2)当(3)1的对数是零,01log =a (4)底数的对数等于1,1log =a 2.对数恒等式:(1 (2)b a b a =log (3)m n a a n m log log = 3.对数的运算法则: ① ()N M MN a a a log log log += ② N M N M a a a log log log -= ③ () N n N a n a log log = ④ N n N a n a log 1log = 4.对数换底公式:b N N a b log log log =.由换底公式推出一些常用的结论: (1 (2)c c b a b a log log log =?

(3 (4 (5 (一)指数函数的图象和性质 1.x y a =(0a >且1a ≠)的定义域为R ,值域为()0,+∞. 2.x y a =(0a >且1a ≠) 的单调性: 当1>a 时,x y a =在R 上为增函数; 当01a <<时,x y a =在R 上是减函数. 3.x y a =(0a >且1a ≠)的图像特征: 当1>a 时,图象像一撇,过点()0,1, 且在y 轴左侧a 越大,图象越靠近y 轴; 当01a <<时,图象像一捺,过点()0,1,且在y 轴左侧a 越小,图象越靠近y 轴. 4.x y a =与x a y -=的图象关于y 轴对称. (二)对数函数的图象和性质 1.)10(log ≠>=a a x y a 且 的定义域为+ R ,值域为R . 2.)10(log ≠>=a a x y a 且的单调性: 当1>a 时,在()+∞,0单增, 当01a <<时,在()+∞,0单减. 3.)10(log ≠>=a a x y a 且的图象特征: 当1>a 时,图象像一撇,过()1,0点,在x 轴上方a 越大越靠近x 轴; 当01a <<时,图象像一捺,过()1,0点,在x 轴上方a 越小越靠近x 轴. 4.b a log 的符号规律(同正异负法则): 给定两个区间()0,1和()1,+∞,若a 与b 的范围处于同一个区间,则对数值大于零;否则若a 与b 的范围分处两个区间,则对数值小于零. 5.log a y x =与x y a 1log =的图像关于x 轴对称. 6.指数函数x y a =与对数函数log a y x =互为反函数. (1)互为反函数的图像关于直线x y =对称 (2)互为反函数的定义域和值域相反 (3)一般地,函数)(x f y =的反函数用)(1 x f y -=表示,若点),(b a 在) (x f y =的图像上,则点),(a b 在)(1x f y -=的图像上,即若b a f =)(,则a b f =-)(1 . (4)求反函数的步骤:①反解,用y 表示x ; ②求原函数的值域; ③x 与y 互换, 并标明定义域. 二.训练题目 (一)选择题 1.设0a >( )

对数的发明

类型:研究性学习课题(数学)课题负责人: 成员: 指导老师: 班级: 完成时间:

1、对数发明的背景 16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,天文学家们苦不堪言。 德国数学家约翰·维尔纳首先推出了三角函数的积化和差公式,即 sinα·sinβ=[cos(α-β)-cos(α+β)]/2 , cosα·cosβ=[cos(α-β)+cos(α+β)]/2 . 大大简化了三角函数连乘的计算。比如,计算sin67°34'×sin9°3',可以从三角函数表查出sin67°34'=0.92432418,sin9°3'=0.15729632。但随后的乘法的计算十分烦琐,且容易出错。(请你不用计算器,手算一下0.92432418×0.15729632=?,记住还要验算一遍,以保证计算正确哦!)用维尔纳的三角函数积化和差公式,计算就大大简便了: sin67°34'×sin9°3' =cos(67°34'-9°3')-cos(67°34'+9°3') =[cos(58°31')-cos(76°37')]/2 =[0.52225052-0.23146492]/2 =0.14539280 这个公式还可以用于把任何二个数的乘法计算转为加减法计算,方法如下:若求小于1的二个数a与b的乘积可以先由反三角函数表查得使a=sinα=a ,sin β=b的α与β,然后计算(α-β)和(α+β),再由三角函数表查得cos(α-β)与cos(α+β) ,最后应用上面的公式求出它们的一半,就得所要求的数。由于大于1的数可用小于1的数乘上10n表示,因此上面的两个公式实际上对于任意两个数都是适宜的。 但这样做同样太繁杂了,况且还不能直接应用于除法、乘方和开方,因此,寻找更好的计算迫在眉睫。 2、对数产生的前奏 请你观察下面两个数列,并找出规律: 1, 2, 4, 8,16,32,64,128,256,512,1024,2048, 4096,8192,16384?? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14?? 德国数学家Stifel (1487~1567)在观察上述两个数列时,称上排的数为

对数函数题型总结

对数函数题型总结: 类型1:(求对数函数定义域与值域)1.N > 0 2. a > 0且 不= 1 例1、求下列函数的定义域: (1) (2)(3) 变式练习1. 求下列函数的定义域: (1)(2) (3)(4) 1. 函数 212 log (617) y x x =-+的值域是________ 2. 设1a >,函数 ()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1 2,则a =___________ 3. 函数 ()log (1)x a f x a x =++在[0,1]上最大值和最小值之和为a ,则a 的值为___________ 类型二、指数式与对数式互化及其应用 例2.: (1) (2) : 变式2: 求下列各式中x 的值: (3)lg100=x (4) 类型三、利用对数恒等式化简求值:恒等式 例3 .求值: 变式3:求的值(a ,b ,c ∈R +,且不等于1,N>0) 类型四、积、商、幂的对数 ① log a (MN)=___________________________;② log a =____________________________; ③ log a M n =(n ∈R). 例4.已知lg2=a ,lg3=b ,用a 、b 表示下列各式. (1)lg9 ((2)lg64 (3)lg6(4)lg12 (5)lg5 (6) lg15 【变式4】求值(1) N M 2 a y log x =a y log (4x) =-2 (3x)y log x -=5y log (1x)=-21y log x = 7 1 y log 13x = -y =

【高考数学】对数平均不等式

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b ab a b +->>-其中ln ln a b a b --被称为对数平均数 2.几何解释: 反比例函数 ()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,,T ab ab ? ? ? ?? 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为 ABNM ABQP ABFE S S S >=矩形曲边梯形梯形,所以 ()12 ln ln ,b a dx b a b a x a b =->-+ò ① 又1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形, ()11ln ln 22ABQP b a S =-=曲边梯形, ( ) 11 111 222 AUTP ABCD b a S ab a S a ab ab 骣-÷ ?=+-= ?÷?÷ ?桫梯形梯形, 根据右图可知, AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b a b a ab --< , ②

另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln ,2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+,即 ()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 等价变形: )0.() (2ln ln >≥+-≥ -b a b a b a b a )0.(ln ln >≥-≤ -b a a b b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a -> >>-的应用 例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n ++ +与()n f n -的大小,并加以证明. 解析 (3)因为()1x g x x = +, 所以()()()121111223 123 1n g g g n n n n ?? +++= +++ =-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n ++ +与()n f n -的大小,即只 需比较 1 13121++++n 与()ln 1n +的大小即可. 根据0b a >>时, ln ln b a b b a -> -,即()1ln ln , b a b a b -<-

相关文档
相关文档 最新文档