文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米氧化铝的应用

纳米氧化铝的应用

纳米氧化铝的应用
纳米氧化铝的应用

纳米氧化铝的应用

纳米氧化铝具有机械强度高,绝缘电阻大,硬度高,耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、纺织、石油、化工、建筑及电子等各个行业,是目前氧化物中用途最广、产销量大的化学材料。

一.氧化铝在功能方面的应用

1.电基材料:集成电路基片、封装、火花塞、Na-S电池固体电解质。

2、光学功能:高压钠蒸气灯发光管、激光器材料,传感器吊。

3、生物体功能:人工骨骼,人工牙根,(用5N高纯纳米氧化铝UG-L10)

4、热学功能:耐热,隔热结构材料

5、力学功能:研磨材料、切削材料,轴承、机械零部件。

二. 纳米氧化铝精细陶瓷的应用

以纳米氧化铝为主要原料制得的纳米氧化铝精细陶瓷,因具有多种功能,在高科技术领域及许多行业中已得到应用:

1、在电子工业中的应用

(1)多芯片式封装用陶瓷多层基板:封装用的纳米氧化铝陶瓷多层基板的制造方法有厚膜印刷法、生坯叠片法、生坯印刷法、厚薄膜混合法等四种。

(2)纳米氧化铝陶瓷传感器:用高纯纳米氧化铝陶瓷的晶粒、晶界、气孔等结构特征和特性作敏感元件,用于高温和含腐蚀性气体的环境中,使检测、控制的信息准确而迅速。从应用的类型看,有温度、气体、温度等传感器。

2. 生物纳米高纯氧化铝

高纯氧化铝多晶作为生物功能材料并应用于人体是1969年,高纯氧化铝精细陶瓷用于医学工程的有单晶体和烧结的多晶体两种。现王,美国、西德、瑞士和荷兰都在广泛地使用多晶高纯纳米氧化铝制乍人造牙和人造骨,医学用材料主要是高纯纳米氧化铝,用于牙根、关节,纳米氧化铝精细陶瓷与人体组织液的接触角是接近人体牙的材料。迄今用于医学工程中的生物陶瓷有20余种,高纯纳米氧化铝是用得挺多的一-种。

以上可见,纳米氧化铝作为一种新型材料,在近年来发展尤为迅速,用途也更加广泛。

纳米三氧化二铝粉体的制备与应用进展

2011年6月北京化工大学北方学院JUN.2011 北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 2008级纳米材料课程论文 题目: 纳米三氧化二铝的制备与应用进展 学院:理工学院专业:应用化学班级: 学号:姓名: 指导教师: 2011年6月6日

文献综述 前言 纳米材料一般是指在一维尺度小于100nm,并且具有常规材料和常规微细粉末材料所不具有的多种反常特性的一类材料。作为纳米材料的一种,Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应一切特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等奇异特性,从而使Al2O3近年来备受关注研究并且在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景[1]。 近年来从用途大体可以把氧化铝分为两类:第一类是用作电解铝生产的冶金氧化铝,随着氧化铝材料的广泛应用该类氧化铝占产量的大多数;第二类为非冶金氧化铝,主要包括非冶金用的氢氧化铝和氧化铝,也是通常所说的特种氧化铝,因其作用不同而与冶金氧化铝有较大的区别,主要表现在纯度、化学成分、形貌、形态等方面。由于粒径细小,纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性[2]。随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注[3]。

纳米氧化铝的研究进展

1.5纳米氧化铝的研究进展 1.5.1氧化铝的性质 氧化铝是化学键力很强的离子键化合物。它有八种同质异形晶体:Q、B、Y、0、 q、8、K、X-A1203,其中主要的也是在工业中得到重要应用的是Q.A1203、B.A1203 和Y.A1203---种晶型。Y—A1203为低温稳定相,Q.A1203是熔点2050。C以下唯一的在任 何温度下都会稳定存在的相态,其它相态均为过渡相或不稳定相【74】。 Y.A1203属于立方晶系,尖晶石型结构,其中氧原子呈面心立方密堆积,铝原子不 规则地排列在由氧原子围成的八面体和四面体孔穴中。它的密度为3.30.3.639/cm3,只在 低温下稳定,在高温下不稳定,它不溶于水,但溶于酸或碱。y.A1203比表面很大,约 为200.600m2/g,具有强的吸附能力和催化活性,广泛用于吸附剂、催化剂和催化剂载体[751 O B.A1203是一种氧化铝含量很高的多铝酸盐,它的化学组成可近似地用RO.6A1203 或R20.1 1A1203来表示(RO为碱土金属氧化物,R20为碱金属氧化物),其结构由碱土 金属或碱金属离子层尖晶石结构单元交替堆积而成,氧离子排列成立方密堆积结构,Na+ 完全包含在垂直于c轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电,称钠离子导体。因此,13.A1203是一类重要的固体电解质【75J。 Q.A1203属于三方晶系,刚玉型结构,该结构可以看成氧离子按六方紧密排列,即ABABAB一二层重复型,而铝离子有序的填充于2/3的八面体间隙中,使其化学式成为A1203。Q.A1203熔点为2050。C,密度为3.90-4.019/cm3,模氏硬度为9。它的化学性质 稳定,不溶于水,也不溶于酸或碱,耐腐蚀且电绝缘性好,广泛应用于高硬度研磨材料、陶瓷材料、耐火材料和集成电路的基板等【75,76】。

纳米氧化铜在各领域的应用专利

纳米氧化铜在各领域的应用专利 1、纳米氧化铜在镍氢电池中的应用: 哈尔滨工业大学申请的“含纳米氧化铜的镍氢电池负极材料”专利号CN 20 0510010585.6有这样的记载:在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的重量。 2、纳米氧化铜掺杂对储氢合金电极性能的影响: 研究了掺杂纳米氧化铜VK-Cu01后储氢合金电极的电化学性能,CV、SEM结果表明,氧化铜在首次充电过程中被还原成低价态沉积在合金颗粒表面,由于氧化铜比容量远大于合金,可以通过掺杂氧化铜调节合金的储备容量。电化学测试结果表明,掺杂合金电极具有更好的高倍率充放电能力和循环性能。EIS分析结果表明,掺杂合金电极导电性增强,电化学活性提高。 3、纳米氧化铜在常温脱硫剂的应用: 哈尔滨工业大学申请的“纳米氧化铜的应用及其制备方法”专利号CN 20071 0071896.2,指出纳米氧化铜(VK-Cu01,99.9%)可作为常温脱硫剂的唯一组分。该纳米氧化铜在常温25-30℃条件下脱硫精度高,硫容高达18.3%-28.7%。比同等条件下的分析纯氧化铜硫容的4.-65倍,是纳米氧化锌硫容的4-8倍,是首选的常温脱硫剂。 4、纳米氧化铜在介孔脱硫剂的应用: 上海工业大学申请,专利号CN 200810041467.5介绍了用浸渍法将纳米氧化铜VK-Cu01均匀负载到介孔材料上,制备的纳米氧化铜脱硫剂具有超强的H2S 脱除能力,且避免飞温现象的发生,这种新型的纳米氧化铜脱硫剂将取代常用的氧化铁脱硫剂和氧化锌脱硫剂。 5、纳米氧化铜在抗菌方面的应用: 曲阜师范大学申请的“一种纳米氧化铜抗菌剂的制备方法”专利号CN 20081 0016322.X其中指出纳米氧化铜对金黄色葡萄球菌和枯草杆菌均具有较好的抗 菌作用。这种纳米氧化铜抗菌剂具有清洁、高效、能耗低、污染小。是一种新型的抗菌剂,可广泛使用在医药、纺织等领域。

纳米材料在现实生活中的应用

纳米材料属于纳米技术中的一种,是一种很特殊的材料。物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。纳米材料指的就是这种尺度达到纳米单位的、具备特殊性能的材料。它在现实生活中的应用广泛,包含以下几点: 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳

米材料的延展性的高性能陶瓷。 3、纳米传感器 纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。 4、纳米倾斜功能材料 在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。 5、纳米半导体材料 将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。 利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,然后生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

实验2-纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析 一.实验目的 1.了解纳米材料的基本知识。 2.学习纳米氧化铝的制备。 3. 了解粒度分析的基本概念和原理。 4. 掌握马尔文激光粒度分析仪的使用。 二.实验原理 纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。 许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。 本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。 三.仪器与试剂 试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。 仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。 Mastersizer 2000激光粒度仪。 四.实验步骤 1.查文献 《分散剂聚合度对纳米氧化铝粉体特性的影响》 2.样品的制备 将十二水合硫酸铝铵(M=453.33)配成0.2 mol/L的溶液(需加热溶解),分别取出100 ml加入3 g不同聚合度的聚乙二醇(PEG),恒温磁力搅拌(45±5 ℃)使PEG迅速溶解,保持水浴温度,用分液漏斗将25 ml氨水逐滴加入匀速搅拌的溶液中(10 min),形成白色胶状沉淀,氨水加完后,继续搅拌5 min,然后抽滤(抽滤时要防止滤纸穿破),用蒸馏水和无水乙醇分别洗涤1次,得到胶体样品。胶体经70~80℃烘干,再800~1100 ℃煅烧2h,得到α型氧化铝纳米粉体,研磨后保存。 查阅文献《粒度分析基本原理》。 五.结果与讨论 采用不同聚合度的PEG作分散剂,测氧化铝粉体的粒径分布曲线,曲线的峰宽反映体系中所含颗粒尺寸的均匀程度,峰宽越窄则粒子的粒度越均匀。 1.完成表1内容。

纳米氧化镍的制备及性能表征

晋中学院 本科毕业论文(设计) 题目超细纳米氧化镍的制备及性能 表征 院系化学化工学院 专业化学 姓名肖海宏 学号1309111134 学习年限2013年10月至2017年7月 指导教师吕秀清副教授 申请学位理学学士学位 2017年 4 月 10 日

超细纳米氧化镍的制备及研究性能 学生姓名:肖海宏指导教师:吕秀清 摘要:随着纳米技术和纳米材料的不断发展,纳米氧化物的研究已经达到了一定的水平。就电学和催化两方面而言,纳米氧化镍就具有非常好的性能,并且应用较为广泛,比如应用于制备催化剂的原材料,电池的电极,在材料学、化学化工领域中生产超级传感器、电容器等,在陶瓷方面用于添加剂和染色剂等。就本文的内容而言,主要针对纳米氧化镍的制备方法的进行分析探讨以及通过采用均匀沉淀法制备纳米氧化镍晶粒并使用TEM、XRD等仪器进行性能表征。 关键字:超细纳米氧化镍应用制备性能表征

Preparation And Characterization of Superfine NiO Nanometer Author’s Name: Xiao Haihong Tutor:Lv Xiuqing ABSTRACT:With the continuous development of nanotechnology and nanomaterials, nano-oxide research has reached a certain level. In terms of electrical and catalytic aspects, nano-nickel oxide has a very good performance, and the application is more extensive, such as the preparation of the catalyst for the preparation of raw materials, battery electrodes, in the field of materials, chemical and chemical production of super sensors, capacitors, etc. , In the ceramic for additives and stains and so on. In this paper, the preparation method of nano-nickel oxide was studied and the nano-nickel oxide grains were prepared by uniform precipitation method and characterized by TEM and XRD. KEYWORDS:Superfine NiO Application Preparation Performance characterizati

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

纳米氧化铝的研究

纳米氧化铝的研究及应用 [摘要] 纳米技术是当今世界最有前途的决定性技术,纳米科学与技术将对其他学科、产业和社会产生深远的影响。文章概述了纳米氧化铝的结构、性能、用途、制备等方面,更深入地了解了纳米氧化铝材料,并展望了纳米氧化铝材料的应用前景。 [关键字] 纳米氧化铝结构性能用途制备方法 [前言] 近年来, 纳米氧化铝材料备受到人们普遍关注,其广阔的应用前景引起了世界各国科技界和产业界的高度关注,因此作为21世纪具有发展前途的功能材料和结构材料之一,纳米氧化铝材料一直都是纳米材料研究领域的热点。 1 纳米氧化铝的结构与性质 Al2O3有很多同质异晶体,常见的有三种,即:α- Al2O3、β- Al2O3、γ- Al2O3。除β- Al2O3是含钠离子的Na2O-11Al2O3外,其他几种都是Al2O3的变体。β- Al2O3、γ- Al2O3晶型在1000~1600℃条件下,几乎全部转变为α- Al2O3。 ①α-Al2O3 α- Al2O3为自然界中唯一存在的晶型,俗称刚玉。天然刚玉一般都含有微量元素杂质,主要有铬、钛等因而带有不同颜色。刚玉的晶体形态常呈桶状、柱状或板状,晶形大都完整,具玻璃光泽。α- Al2O3

属六方晶系,氧离子近似于六方密堆排列,即ABAB???二层重复型。在每一晶胞中有4个铝离子进入空隙,下图为α- Al2O3结构中铝离子填入氧离子紧密堆积所形成的八面体间隙。 由于具有较高的熔点、优良的耐热性和耐 磨性,α- Al2O3被广泛的应用在结构与功 能陶瓷中。 ②β- Al2O3 β- Al2O3是一种含量很高的多铝酸盐矿物,它不是一种纯的氧化铝,其化学组成可近似用MeO-6 Al2O3和Me2O-11Al2O3表示(MeO 指CaO、BaO、SrO等碱土金属氧化物;Me2O指的是Na2O、K2O、Li2O)。β- Al2O3(Me2O-11Al2O3)由[NaO]-层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,钠离子完全包含在[Na0]-层平面内,并且可以很快扩散。适当条件下,它具有很高的离子电导率,因而被广泛地应用于电子手表、电子照相机、听诊器和心脏起博器的生产中。 ③γ- Al2O3 γ- Al2O3是最常见的过渡型氧化铝,属立方晶系,为尖晶石结构,在自然界中是不存在的物质。由氧离子形成立方密堆积,Al3+填充在间隙中。γ- Al2O3得密度为3.42~3.62g/ cm3,在1000℃时可以缓慢的转变为α- Al2O3,是水铝矿(Al2O3?H2O或Al2O3?3H2O)或氢氧化铝在加热中生成的过渡氧化铝物质。γ相粒子主要用途是作为催化剂的载体,目前多采用在γ相中添加稀土元素等微量元素来改善它的表面

纳米级氧化铝

纳米级氧化铝 纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥230m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂?乙醇、丙醇、丙二醇、异丙醇、?乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。 透明陶瓷:高压钠灯灯管、EP-ROM窗口;化妆品填料;单晶、红宝石、蓝宝石、白宝石、钇铝石榴石;高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管;精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带;涂料、橡胶、塑料耐磨增强材料、高级耐水材料;气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料;催化剂、催化载体、分析试剂;宇航飞机机翼前缘。 行业领导者 上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。 那博研发团队优势 从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。 ? 通过提升产品设计以改进性能 ? 更短的加工周期以提高生产力 ? 成本优势和出众的性能 ?领先的实验设备 消费者 作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。 商业伙伴 我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。

氧化镍和氮化镍纳米颗粒的制备

毕业论文 题目氧化镍和氮化镍纳米颗粒的制备学院化学化工学院 专业化学工程与工艺 班级 学生 学号 指导教师 二〇一五年月日

摘要 纳米氧化镍、氮化镍在电磁学、催化等方面具有高活性、高选择性等一系列优异的性质,被广泛应用于磁性材料领域、气体传感领域、燃料电池领域和催化领域,是比较有前景的功能性无机材料。本文一方面探索直接利用液相法制备氧化镍,以克服传统的两步法制备氧化镍----先制备前躯体再通过高温热处理----的缺点;另一方面,也对纳米氮化镍的制备进行了初步探索。实验以硫酸镍和氯化镍两种镍盐为镍源,以蒸馏水和无水乙醇为溶剂,探索了反应时间、温度、有无沉淀剂和表面活性剂对产物的影响。所制备的产物通过X射线衍射(XRD)、紫外可见吸收光谱(UV-vis)等手段进行了表征,并进一步对所获得的数据进行了分析。 关键词:纳米氧化镍;一步溶剂热法;氮化镍

ABSTRACT Because of the highly active, high selectivity and a series of excellent properties of the nano nickel oxide and nano nickel nitride in electromagnetics, chemistry, so widely applied in the field of magnetic materials, gas sensing and catalysis, fuel cell areas, is a more promising functional inorganic material. In this paper, on the one hand, explore direct nickel oxide prepared by liquid phase method, to overcome the shortcomings of the traditional two-step preparation of nickel oxide: Preparation before the body first, then through the high temperature heat treatment. On the other hand, for the preparation of nanometer nickel nitride has carried on the preliminary exploration. Experiment with nickel sulfate and nickel chloride as the source of nickel, with distilled water and anhydrous ethanol as solvent, to explore the reaction time, temperature, presence of precipitant and the influence of surfactants on product. The preparation of the product by X-ray diffraction (XRD), UV-vis absorption spectra have been characterized, and further analyses the data obtained. Keywords:nickel oxide; one step solvothermal; nitride nickel

纳米陶瓷及其主要性能简析

纳米陶瓷 及其主要性能简析 [摘要] 纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能进行了阐述。 [关键词] 纳米陶瓷、显微结构、晶界、扩散、烧结、强度、韧性、超塑性 [引言] 陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。但是 ,由于传统陶瓷材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家 Cahn 在《自然》杂志上撰文说:纳米陶瓷是解决陶瓷脆性的战略途径。 一、纳米陶瓷及其结构简介 所谓纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都是纳米水平的一类陶瓷。 我们知道陶瓷的烧结中粉料的粒度是重要的影响因素。粒度越小,粉粒的表面积越大,表面能越大,烧结的推动力越大;同时晶界所占体积越大,扩散越容易,因而烧结速度越快。当陶瓷中晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。如晶粒尺寸为nm 6~3,晶界的厚度为nm 2~1时,晶界的体积约占整个体积的%50。由于晶粒细化引起表面能的急剧增加。 纳米陶瓷由纳米量级的粉料烧结而成,是晶粒尺寸在nm 100~1之间的多晶陶瓷。所以结构中包含纳米量级的晶粒、晶界和缺陷。由于晶粒细化,晶界数量大幅度增加。当晶粒尺寸在nm 25以下,若晶界厚度为nm 1,则晶界处原子百分数达%50~%15,单位体积晶界的面积达32/600cm m ,晶界浓度达3 19/10cm 。 纳米陶瓷这样的特殊结构,使得其具有特殊的性能。 二、纳米陶瓷的主要性能及其简析 纳米陶瓷中纳米量级的晶粒、晶界和缺陷决定了它们具有区别于普通陶瓷的特殊性能,是纳米陶瓷性能优于普通陶瓷的根本原因所在。 1、 较低的烧结温度和较快的致密化速度

纳米氧化铜的制备及应用前景

(1)以硝酸铜为原料、氢氧化钠.碳酸钠混合溶液为沉淀剂,采用直接沉淀法,通过反应沉淀、过滤、洗涤、干燥、焙烧,制备纳米氧化铜的工艺技术是可行的。通过单因素、正交试验分析,综合考虑产品粒径和制备过程铜收率,得到沉淀反应过程适宜的工艺条件组合是:反应温度25℃,沉淀剂浓度O.5mol/L,反应时间20min,沉淀剂用量1.5:1 ;适宜的焙烧条件是:400℃下焙烧2小时;此时铜收率可达97%以上,产品粒径可达14nm(2)以硬脂酸钠为改性剂对纳米氧化铜粉体进行表面改性处理,各工艺条件较适宜的取值范围为:改性剂用量6~8%;改性时间20~30min;改性温度55~65℃:pH值7.5~8.0。 以十二烷基苯磺酸钠为改性剂对纳米氧化铜粉体进行表面改性处理,各工艺条件较适宜的取值范围为:改性剂用量6~lO%;改性时间20~30min;改性温度25~35℃;pH值7.5~8.0。 第一章 综 述 1.1纳米氧化铜的性质、用途及国内外研究现状 1.1.1纳米粒子的基本物理效应㈣’1∞ 当粒子的尺寸进入纳米数量级(1~100m)时,其本身就会具有表面效应、 体积效应、量子尺寸效应和宏观量子隧道效应,因而表现出许多一般固体材料所不具备的奇特物性,主要包括光学、电学、磁学、热学、催化和力学等性质。1.表面效应粒子表面原子与内部原子所处的环境不同,当粒子减小,粒子直径进入纳米数量级时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表面能和表面结合能都会发生很大的变化。人们把由此引起的特殊效应统称为表面效 应。 一般情况下,随着粒径的减小,粒子的表面原子数迅速增加,比表面积急剧变大,表面效应不容忽略。从物理概念上讲,表面原子与体内原子不~样,表面原子的能量比体内原子要高,因此纳米粉体具有高的表面能。以纳米铜微粒为例, 当铜微粒粒径由100m逐渐减小为1mn时,纳米铜微粒的比表面积、表面原子 数分率和比表面能随粒径的变化如表1.1所示。 表卜1 纳米铜微粒的比表面积、表面原子数分率和比表面能随粒径的变化 4 2.体积效应 当物质的体积减小时,.将会出现两种情况:一种是物质本身的性质不发生变化,而只是与体积密切相关的性质发生变化,如对于半导体材料来说,其电子自由程变小;另一种是物质本身的性质也发生了变化。因为纳米微粒是由有限个原子或分子组成的,它改变了物质原来由无数个原子或分子组成的属性,所以纳米材料的性质发生了很大的变化。这就称为纳米粒子的体积效应。 3.量子尺寸效应 当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道能级、能隙变宽的现象均称为量子尺寸效应。在纳米半导体中,量子尺寸效应的存在使得银纳米微粒在达到一定尺度时由导体变为绝缘体;而半导体二氧化钛禁带宽度在粒径小到纳米级时显著变宽。在纳米磁性材料中,随着晶粒尺寸的减小,样品的磁有序状态将发生本质性的变化。粗晶状态下的铁磁性材料,当颗粒尺寸小于某一临界值时可以转变为超顺磁状态。这种奇特的磁性转变主要是由量子尺寸效应造成的,从而使得纳米材料与常规的多晶材料在磁性结构上存在很大的差异。4.宏观量子隧道效应宏观物体,当动能低于势能的能垒时,根据经典力学规律是无法逾越势垒的;而对于微观粒子,如电子,即使势垒远较粒子动能高,量子力学计算表明,粒子的态函数在势垒中或势垒后就非零,这表明微观粒子具有进入和穿越势垒的能力,称之为隧道效应。宏观物理量如磁化强度等,在纳米尺度时将会受到微观机制的影响,也即微观的量子效应可以在宏观物理量中表现出来,称之为宏观量子 隧道效应。 早期人们曾在研究中用宏观量子隧道效应来解释镍超微粒子在低温继续保持超顺磁性。近年来人们发现Fe.Ni薄膜中畴壁运动速度在低于一

纳米氧化镍综述

纳米氧化镍综述 1、氧化镍性质 氧化镍的化学式为NiO,是一种绿色至黑绿色立方晶系粉末,密度为 6.6---6.89/cm3,熔点为1984℃,溶于酸和氨水,不溶于水和碱液。Ni原子周围有6个O原子,O原子周围也有6个Ni原子,他们的配位数均为6。由于多面体的型式主要取决于正负半径比,且Ni2+的半径值为69pm,0的半径值为140pm,正负离子的比值为0.1507,大于O.1414,所以得出氧化镍是八面体配位,也是由于这样的特殊结构成为了氧化镍不导电的主要原因。过渡金属氧化物P型半导体 2、应用 2.1催化剂 乙烷脱氢制乙烯的反应过程中作为催化剂,在甲酸盐分解中的非凡催化作用 2.2纳米NiO在光电材料方面的应用 能产生3.55eV的不连续光带,呈现出很强的原子电致变色特性。以此材料制成的灵巧窗不仅可根据季节的变化改变最佳光,还可以实现对光能控制的智能化;以此材料制成的反光镜用于汽车后视镜,可以根据改变电致变色层的吸收特性达到强光照射下的无炫光效果,已成为美国多数汽车制造商提供的标准配置。 2.3纳米NiO在电池、电极材料方面的应用 普通氧化镍蓄电池放电30min后,其端电压就接近衰竭,而纳米氧化镍蓄电池到了90min以后才出现衰竭,表现出良好的放电性能。产生这一现象的原因是因为这些纳米微粒与导电材料分布于正极活性物质的空隙中,这样既有利于电子电荷的传递,也有利于离子电荷的传递。并且其小尺寸效应增加了活性物质的空隙率和反应的表面积。普通氧化镍蓄电池一开始就表现为较大电流的充电,而纳米氧化镍蓄电池则表现为小电流充电,60min后电流趋于相等,表现出良好的充电性能。因此纳米氧化镍蓄电池具有优良的应用前景。有研究表明颗粒状氧化镍比针形氧化镍具有更好的电化学性能和更高的比电容. 2.4新型光电化学太阳能电池(DSSC)中的应用 为了提高DSSC效率和稳定性,HeJia~un等¨考虑到NiO作为P型半导体具有稳定性和宽带隙等优点而首次将其作为DSSC 中的阴极。 2.5在电化学电容器中的应用 过渡金属氧化物RuO ,IrO等作为电极材料虽具有较大比容,但由于高成本限制了其商品化。LiuXianming等制成的海胆状纳米NiO电极材料具有典型的电容性能,恒流充放电实验证明电极材料比容可达290F/g,循环使用500次以后仍具有217F/g。WangYonggang 等。。利用复制模板SBA一15合成的有序中空结构纳米NiO电容量可达120F/g。还有一种复合材料制作的电池如

纳米陶瓷技术

纳米陶瓷技术 摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。 关键词:纳米陶瓷;性能;制备 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。 一、纳米陶瓷 纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。 二、纳米陶瓷材料的性能研究 2.1 力学性能 研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。 不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。 2.2 低温超塑性 陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

纳米氧化铝粉体的制备与应用进展_何克澜

纳米氧化铝粉体的制备与应用进展 *何克澜,林 健,覃 爽 (同济大学材料科学与工程学院,上海 200092) 摘要:纳米氧化铝粉体在化工、陶瓷等行业拥有广泛的应用前景,不断开发纳米氧化铝材料的新 型制备工艺,对于提高产品质量并不断开拓其应用领域具有重要意义。本文综述了氧化铝纳米 粉体材料的各种制备工艺,并对其近年来最新研究、应用进展进行了阐述和分析。 关键词:纳米氧化铝;制备;应用 中图分类号:T Q 171.6+ 11 文献标识码:A 文章编号:1000-2871(2006)05-0048-05D e v e l o p m e n t o f P r e p a r a t i o n a n dA p p l i c a t i o n o f A l u m i n a N a n o p o w d e r H EK e -l a n ,L I NJ i a n ,Q I NS h u a n g (S c h o o l o f M a t e r i a l s S c i e n c e a n dE n g i n e e r i n g ,T o n g j i U n i v e r s i t y ,S h a n g h a i 200092,C h i n a ) A b s t r a c t :N o w a d a y s ,a l u m i n an a n o p o w d e r i s c o m m o n l ya n dw i d e l yu s e di nm a n yf i e l d s ,s u c ha s c h e m i c a l i n d u s t r y ,c e r a m i ci n d u s t r y .I t i sv e r yi m p o r t a n t t od e v e l o pn e w t e c h n i q u e so f a l u m i n a n a n o p o w d e r f o r i m p r o v i n g p r o d u c t q u a l i t y a n d e x p a n d i n gt h e i r a p p l i c a t i o n s .T h i s a r t i c l e p r e s e n t e da v a r i e t y o f m e t h o d s f o r p r o d u c i n g a l u m i n a n a n o p o w d e r ,a n de x p o u n d e da n da n a l y z e dr e c e n t r e s e a r c h p r o g r e s s a n d a p p l i c a t i o n s o f a l u m i n a n a n o p o w d e r . K e y w o r d s :a l u m i n a n a n o p o w d e r ;p r e p a r a t i o n ;a p p l i c a t i o n 1 前言 纳米材料是指其一维尺度小于100n m ,且具有常规材料乃至常规微细粉末材料所不具备的许多反常特性的一类材料。纳米氧化铝材料的特殊光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强、高韧、稳定性好等奇异特性,以及各种纳米粉体材料共有的小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应,使其在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景。 氧化铝是在地壳中含量非常丰富的一种氧化物。氧化铝有多种晶型,其中α-A l 2O 3属高温稳定晶型,具有较高的熔点和很高的化学稳定性。通常可使用拜尔法和电熔法来生产α-A l 2O 3粉体,此类粉体广泛运用于制备各种氧化铝陶瓷。而具有量子效应的纳米氧化铝粉体还可带来高化学活性、高比表面能、独特光吸收作用等各种优异性能,可广泛应用于冶金、机械、化工等领域 [1,2]。因此研究和开发纳米氧化铝材料的制 备工艺及其应用,具有重要的社会效益和经济价值。 第34卷第5期2006年10月玻璃与搪瓷G L A S S &E N A M E L V o l .34N o .5O c t .2006*收稿日期:2006-03-14

不同形貌氧化铜纳米材料的合成及表征

不同形貌氧化铜纳米材料的合成及表征 纳米材料是由粒径为1~100nm的粒子组成的超微细材料,具有小尺寸效应,量子尺寸效应及表面效应等,在光、电、催化等方面具有优越的性质。纳米材料的制备方法分为气相法、液相法和固相法等。文章以液相法为主,在氢氧化钠体系中,通过改变不同的反应介质,在120℃的水热条件下,得到了三种形貌不同的纳米材料。用扫描电镜、XRD对得到的产物进行表征,根据实验结果进行探讨。保持合成方法不变,改变不同的水热反应温度,均未得到具有此形貌的氧化铜纳米材料。 标签:氧化铜;纳米材料;水热法;SEM表征 Abstract:Nanomaterials are ultrafine materials composed of 1~100 nm particles with small size effect,quantum size effect and surface effect. They have excellent properties in light,electricity,catalysis and so on. The preparation methods of nano-materials can be divided into gas phase method,liquid phase method and solid phase method. In this paper,three kinds of nanomaterials with different morphologies were obtained by changing different reaction media and hydrothermal conditions at 120℃in the system of sodium hydroxide by liquid phase method. The product was characterized by SEM and XRD,and discussed according to the experimental results. When the synthesis method was unchanged while changing the different hydrothermal reaction temperature,the study did not obtain copper oxide nanomaterials with certain morphology. Keywords:copper oxide (CuO);nanomaterials;hydrothermal method;SEM characterization 近年来,纳米技术作为一种新型的研究方法,在各种领域均被广泛应用。氧化铜纳米材料是一种铜的黑色氧化物,氧化铜纳米材料具有表面效应、小尺寸效应、量子尺寸效应及宏观量子隧道效应等性质[1-2]。与一般的氧化铜化合物相比,氧化铜纳米材料的纳米尺度具有特殊的光学性质、电学性质及催化性质等。不同形貌的氧化铜纳米材料,因其形状、尺寸、比表面积等不同,具有不同的性质[3-4]。本文以硝酸铜及氢氧化钠为原料,采用水热合成的方法,合成了六方相纳米材料,并调节不同的反应溶液及反应时间,得到了形貌不同的纳米材料[5]。 1 实验部分 1.1 实验试剂及仪器 试剂:六次亚甲基四胺,硝酸铜,氢氧化钠,乙二醇,乙醇,蒸馏水。 仪器:DGG型立式鼓风干燥箱,TG16W型台式高速离心机,SCZL型磁力搅拌器,SU8100型冷场扫描电镜,SMART APEXIICCD型X射线衍射仪。

相关文档