文档视界 最新最全的文档下载
当前位置:文档视界 › 氧化铝纳米材料+-

氧化铝纳米材料+-

氧化铝纳米材料+-
氧化铝纳米材料+-

沉淀法制备纳米级Al2O3中的团聚控制

学号:姓名:

自从Gleiter等在20世纪80年代中期制得纳米级Al2O3,人们对这一高新材料的认识不断加深并陆续发现它的更多特性。作为一种多功能的超微粒子,纳米Al2O3已广泛应用于结构及功能陶瓷、复合材料、催化剂载体、荧光材料、红外吸收材料等[1]。由于氧化铝陶瓷来源廉价,且具有耐腐蚀、耐高温、高硬度、高强度、抗磨损、抗氧化和绝缘性好等良好特性,在冶金、化工、电子、国防、航天及核工业等高科技领域得到了广泛的应用。制备纳米Al2O3是为进一步制备纳米Al2O3高分子复合材料提供优质原料。如何制备出价格低廉、工艺简单、性能优良的纳米氧化铝粉体一直是国内外研究的热点[2,3]。目前,制备纳米Al2O3粉体主要有固相法、气相法和液相法三大类。固相法操作简单,但生成颗粒粒径难以控制,且分布不均;气相法设备要求严格,操作复杂;液相法成本较低,生产设备和工艺过程简单,生成颗粒纯度高,粒径小且分布均匀,是制备纳米陶瓷粉体最常用的方法[4]。常用的液相法有:溶胶-凝胶法,水热法,微乳液法,沉淀法[5]。本文主要介绍沉淀法制备纳米氧化铝粉体的不同反应体系,并着重介绍了近几年在颗粒细化、减少团聚等研究方面取得的主要进展。

沉淀法就是在金属盐溶液中加入适当的沉淀剂,得到前驱体沉淀,再经过过滤、洗涤、干燥、煅烧等工艺得到所要的产物。沉淀法因原料成本低,设备及工艺简单,易于工业化,在生产高纯超细氧化铝粉末时有其优势[6]。近年来研究使用的不同反应体系主要有以下三种:

(1)铝盐+碳酸铵体系

a.以硝酸铝为母液,碳酸铵为沉淀剂,其反应方程为:

A1(NO3)3+2 (NH4)2CO3+H2O= NH4AlO(OH)HCO3+3NH4NO3+CO2该反应体系在酸性(pH>5)和碱性条件下都可以得到纳米粉体,但在碱性条件下结果较好。两种添加顺序,将A1(NO3)3溶液加(NH4)2CO3溶液或相反,都可以得到碳酸铝胺NH4AlO (OH)HCO3沉淀,在1150℃下煅烧沉淀可得到粒径小于

50nm 的粉体[7]。

b.以硫酸铝铵为母液,碳酸氢铵为沉淀剂,其反应方程式为:NH4A1(SO4)2+4NH4HCO3 = NH4AlO (OH)HCO3 +2 (NH4 )2SO4 +3CO2+H2O 这是目前研究最多的反应体系。两种添加顺序也都可以得到沉淀。采用先缓漫滴加碳酸氢铵至稍过量,然后以喷雾混合的方式,可使沉淀过程保持均相,获得平均粒径为30nm 的NH4AlO(OH)HCO3前驱体粉末。喷雾混合方式可使溶液的pH 值迅速上升,有利于晶核形成,而前驱沉淀物的晶核数目越多,产物的粒径就越小[8]。

(2)无机盐+尿素均相沉淀体系

在反应体系中加入尿素.随着温度升高,尿素分解生成沉淀剂

NH4OHCO(NH2)2+3H2O=CO2 +2NH4OH

沉淀剂NH4OH 在溶液中均匀分布,使沉淀均匀缓慢地生成,在沉淀过程中反应容器内一直保持均相。此方法制备的纳米氧化铝具有粒度小、粒径分布窄,制备成本低、工艺简单等优点,但同时由于其沉淀产物主要为氢氧化铝,因此存在较为严重的团聚问题。

沉淀法是在原料溶液中添加适当的沉淀剂,使得料液中的阳离子形成沉淀物,再经过过滤、洗涤、干燥、煅烧等工艺得到所要的产物。由于工艺过程中包括沉淀反应、晶粒生长到湿粉体的洗涤、干燥、煅烧等环节,都可以导致颗粒的长大和团聚的形成,为得到粒度分布均匀的粒子体系,必须对颗粒的团聚进行控制,近几年的研究中常用的控制方法介绍如下。

a.有机物洗涤

有机物洗涤用表面张力小的有机溶剂充分洗涤纳米颗粒,可以置换颗粒表面吸附的水分,减小氢键的作用和颗粒聚结的毛细管力,使颗粒不再团聚。目前此方法采用的洗涤溶剂为醇类,例如无水乙醇、乙二醇等。用醇类可以洗去粒子表面的配位水分子,并以烷氧基取代颗粒表面的羟基团。有关试验表明,通过对比直接减压抽滤和加无水乙醇洗涤方式分离前驱体发现,后者不仅可以明显加快沉

淀物的洗涤分离速度,而且洗滤后产物蓬松,层细粒状,干燥处理后易粉碎且颗粒均匀;直接进行减压抽滤洗涤费时很多,洗滤产物呈稀泥样,干燥后结块且难粉碎[9]。

b.加入分散剂

为了保证纳米颗粒在液体介质中的良好分散,可以加入适当的分散剂。常用的分散剂主要有:

(1)无机电解质。例如聚磷酸钠、硅酸钠、氢氧化钠及苏打等。此类分散剂的作用是提高粒子表面电位的绝对值,从而产生强的双电层静电斥力作用,同时吸附层还可以产生很强的空间排斥作用,有效地防止粒子的团聚。有文献报道[10],用0.1mol/L稀氨水洗涤已用去离子水洗涤两次的前驱体,可使几乎无法分离的前驱体快速分离。氨水是挥发性碱,所以能在后续的煅烧过程中分解掉,从而不会影响产品的纯度[11]。

(2)有机高聚物[12]。常用的有聚丙烯酰胺系列、聚氧化乙烯系列及单宁、木质素等天然高分子。此类分散剂主要是在颗粒表面形成吸附膜而产生强大的空间排斥效应,因此得到致密的有一定强度和厚度的吸附膜是实现良好分散的前提。有机高聚物类分散剂随其特性的不同在水中或在有机介质中均可使用。试验表明[13],用聚乙二醇做分散剂时发现,随着分子量的加大,粉末的尺寸随之下降,但到了6000时,效果已不明显,而将不同分子量匹配加入时则获得了最小的粒径。这可能是因为表面活性剂的分子量越大,其吸附在颗粒表面上的覆盖情况越好,所产生的空间位阻效应也越大,因而团聚程度较轻。小分子量和大分子量的匹配加入提高了溶液的粘度,阻碍了母液与碱的剧烈反应,增长聚沉时间,使高分子量的PEG有充分时间吸附在胶粒表面上,小分子量的PEG还可以吸附在胶粒的空隙处,产生嵌合吸附作用[14]。

(3)表面活性剂。包括阴离子型、阳离子型和非离子型表面活性剂。此类分散剂可以在粒子表面形成一层分子膜阻碍颗粒之间相互接触,并且能降低表面张力和毛细管吸附力,减小空间位阻效应。表面活性剂的分散作用主要表现为它对颗粒表面润湿性的调整上。在颗粒表面润湿性的调整中,表面活性剂的浓度至关重要。适当浓度的表面活性剂在极性表面的吸附可以使得表面的疏水化,降低

颗粒在水中团聚;但是浓度过大,表面活性剂在颗粒表面形成吸附胶束,反而引起颗粒表面由疏水向亲水转化,此时分散又转化为团聚。关于分散剂与纳米粉体粒度的关系,已经有大量的著作做了论证。中国科学院上海硅酸盐研究所孙静等[15]通过实验分析了分散剂用量对纳米氧化锆粉体颗粒分布尺寸的影响,并得出这种影响是由改变粉体表面的电荷分布来实现的结论。

c.共沸蒸馏

共沸蒸馏在纳米颗粒形成的湿凝胶中加入沸点高于水的醇类有机物,混合后进行共沸蒸馏,可以有效地除去多余的水分子,消除了氢键作用的可能,并且取代羟基的有机长链分子能产生很强的空间位阻效应,使化学键合的可能性降低,因而可以防止团聚体的形成。共沸蒸馏法常用的有机溶剂是正丁醇或甲苯。由于水与正丁醇在93℃形成的共沸物中水的含量达45%,所以能有效地将水脱除,留下非常稳定的氢氧化铝-正丁醇溶胶体系,使颗粒间相互接近和形成化学键的可能性几乎被消除,从而有效防止硬团聚体的形成。采用这种方法干燥凝胶,经1150℃煅烧,制得了尺寸分布均匀、呈球形的α-A12O3超细粉体,其平均粒径为70nm。。颗粒团聚理论[16]认为,前体中的水分子影响最终产品的颗粒团聚,从而影响颗粒的孔结构及比表面积等。共沸蒸馏是一种重要的有机溶剂置换方式,通过加入沸点高于水、表面张力低的有机溶剂与凝胶中的水组成二组分共沸物系,以共沸的方式最大限度地带走凝胶中的水并替代它存在于凝胶中,可从根本上消除干燥时产生的硬团聚[17],使γ-A12O3,粒径均匀,孔结构优良,比表面积大[18]。

d.特殊干燥工艺

干燥法是除去纳米颗粒间水分的常用方法,但是普通的干燥方法使颗粒的团聚现象更加严重,其主要原因是由于吸附水结构中水的脱除,颗粒之间的引力更大,因此更易形成大的硬团聚体。目前采用的特殊干燥工艺,在控制纳米颗粒团聚方面已经取得了满意的效果。常用工艺为冷冻干燥和超临界流体干燥,冷冻干燥是利用水的特性,在充分冷却使水转化为冰后体积膨胀增大,可以使靠近的纳米颗粒适当分开,阻止了团聚体的形成;超临界流体干燥法是利用超临界流体对有机溶剂的很强的溶解能力,把纳米颗粒形成的胶体中的有机物除去[19]。本工

艺的原理是利用物质在临界温度和压力,气—液之间没有界面存在,因而可以避免表面张力的作用,防止粒子团聚[20]。中国科学院山西煤炭化学研究所马池明等研究了超临界流体干燥法在制备纳米Al2O3粒子中的应用,分析了干燥操作参数对纳米颗粒分散性能的影响。

e.超声波分散

超声波的应用可以有效地防止纳米粒子的团聚,其原理为超声空化作用产生的高温高压将加速水分子的蒸发,防止氢键形成,超声波特有的空化作用可使晶核的生成速率提高几个数量级,从而减小颗粒粒径,抑制晶核的聚结和长大,阻止颗粒硬团聚的形成。另外它产生的冲击波和微射流具有粉碎作用,可以使已经形成的团聚体破碎;同时超声波的搅拌作用可以使形成的胶粒充分分散。Chaum ont 等人的研究表明,经超声空化处理的溶胶和凝胶含有更少的水分子以及羟基等基团,并且粒子分布更加均匀。

沉淀法是液相合成金属氧化物纳米粉体常用的方法,可以广泛用来合成单一或复合氧化物纳米粒子,通过选择合适的反应体系,控制前驱体的颗粒团聚,得到粒度分布均匀的粒子体系,制备出所需形貌和晶型的纳米Al2O3。其中颗粒的团聚直接影响到沉淀法制备Al2O3纳米材料的成功与否,结合近几年的研究方法本文着重阐述了有机物洗涤,分散剂,共沸蒸馏法,特殊干燥法,超声波分散法的原理以及应用实例。

[1] 汪信,陆路德。纳米金属氧化物的制备及应用研究的若干进展。无机化学学报。2000,16(2):213~217

摘要:综述了氧化物及复合氧化物纳米晶的各种制备方法及特点,重点介绍了有机配合物前驱体法-聚乙二醇法、明胶法和硬脂酸法制备氧化物纳米晶的原理、特点以及在磁性材料、电磁波吸收材料、催化剂和塑料改性方面的若干应用。

[2] 周克刚,李玉平,李骏驰等。直接沉淀法制备纤维状纳米A12O3。湖南大学学报。2009,36(18):59~63

摘要:纳米Al2O3粒子的制备方法很多,但所制备的产物多为球形或不规则的粒状,呈纤维状的纳米Al2O3粒子的报道不多.本文以A12(S04)3·18H20和NaOH为原料,十二烷基苯磺酸钠(DBS)为表面活性剂,通过控制反应温度为65℃,

Al2(S04)3初始浓度为0.5mol/L,以直接沉淀法先合成纤维状氧化铝的前驱体,然后在1 000℃下煅烧2 h得到直径为5~10 nm,长为60~120 nm,分散良好的γ- Al2O3短纤维。通过TEM,XRD等检测手段对各阶段产物的表征和分析,详细讨论了洗滤方式,反应温度,Al2(S04)3初始浓度对前驱体产物粒径形貌的影响,以及煅烧温度对最后产物形态和晶型的调整。

[3] HUANG Ke-long,YIN Liang-guo,LIU Su-qin. metastable phases transformation temperature during A1203 synthesis using precipitation method.journal of functional marerials and devices.2007,13(2):135-141

Abstract: α—A1203 nanocrystalline powders were synthesized by calcining the

Al(OH)3 gels prepared from aluminum nitrate and ammonia solution using precip itation method, and we studied TG/DTA and the transformation metastables A1203 in the process of calcining different dry Al(OH)3 gels. Because of NH4NO3 and α—

A1203 seed crystal,the nucleation barriers ofθ→αreduced, consequently, the phase transformation temperature can be reduced for 40℃by the effect of NH4NO3;and about 220℃lower than the normal transformation temperature because of the dual role of the NH4NO3 and 2wt%α—A1203 seed crystal. The obtained α—A1203 powder has no obvious agglomeration,narrow particle size distribution, hexagonal spherical shape, and a mean particle size of 70 nm.

摘要:

煅烧以硝酸铝和氨水为原料,沉淀法制备的Al(OH)3凝胶,制成α—A1203纳米晶粒粉末。用TG/DTA法研究煅烧不同样品中亚稳态A1203的相变过程。因为

NH4NO3和α—A1203籽晶的双重作用,θ→α转变的壁垒减少,随之,NH4NO3的作用使相变温度减少了40℃,而NH4NO3和2wt%α—A1203双重作用使相变温度比正常相变温度减少220℃。制备出的α—A1203粉末没有明显的团聚,较窄的颗粒分布,近似六方球形,平均粒径70nm。

[4] 张宵,朱艳。纳米A12 03粉体反向沉淀法制备工艺的优化。纺织高校基础科学学报。2008,21:(2)242~246

摘要:制备纳米Al2O3。是为进一步制备纳米Al2O3/高分子复合材料提供优质原料.优化了采用NH4Al(S04)2和NH4HCO3为原料的反向沉淀NH4AlO(OH)HCO3前驱体热分解的制备工艺,制备出了粒径约在11nm,团聚较少、分布均匀的纳米Al2O3粉体,并用电子透射显微镜(TEM)、X射线衍射(XRD)对其进行了表征分析.实验表明,优化了的工艺可以有效地抑制团聚,控制粒径.

[5] 王笃金,吴瑾光。反胶团或微乳液法制备超细颗粒的研究进展。化学通报。1995,1(1):1~5

摘要:本文对超细颗粒的各种化学制备方法进行了简单介绍,并重点介绍了一种新的超细颗粒制备法—反胶团或微乳液法。对反胶团或微乳液法制备超细颗粒的研究工作进行了归纳和总结,分析了反胶团或微乳液滴中超细颗粒的形成机理,讨论了用该法制备超细颗粒的影响因素,并提出了这一研究领域可能的发展前景。

[6] 叶颖。沉淀法制备纳米氧化铝粉体的研究。南京工业大学。硕士论文

摘要:本文介绍了纳米氧化铝的性质、用途、国内外研究现状及制备方法。首先通过对微乳法制备超细粉末的研究,对微乳法在制备纳米粉体中的影响因素和反应机理进行探讨。采用微乳法制得的CaCO3颗粒呈球形,平均粒径约100nm,具有分散好、粒度分布均匀等特点。但由于在制备和洗涤过程中需要用到大量的有机溶剂,这不仅容易对环境造成污染,同时也增加了粉末的制备成本,因此如何回收利用这些有机溶剂,是微乳法应用推广的难题之一。采用沉淀法制备纳米材料则能很好地避免上述的问题,但粉末团聚则成了新的问题。因此我们选择以

氯化铝和碳酸氢铵为原料,通过对沉淀法制备纳米铝以及对其防团聚工艺进行了较为系统的深入研究。

在粉末的制备过程中,首先设计了单因素试验,探索了各个因素对纳米Al2O3制备的影响,然后以正交试验法筛选出制备过程的优化工艺条件为

[Al3+]=1.5mol/L,[NH4HCO3]=6.75mol/L,反应时间为60min,pH 控制在7.5,在最佳条件下制得的纳米Al2O3粉末比表面积可达280m2/g,同时将陶瓷膜过滤技术应用与沉淀物的洗涤中,使其得率达到97.2%,纯度达99.8%。其次通过比较直接干燥、乙醇洗涤和共沸蒸馏三种不同的方法对纳米Al2O3团聚的影响,发现乙醇洗涤和共沸蒸馏能解决沉淀物在干燥过程中出现的硬团聚问题,但二者使用成本高,难以进行工业应用。因此我们拟通过添加表面活性剂,降低颗粒表面的张力以达到解决粉末的团聚问题的目的。从实验结果表明,通过往沉淀物中添加适量HLB=10 的表面活性剂,能有效地防止了纳米Al2O3粉末在干燥煅烧过程中出现的硬团聚问题,制得的粉末有很好的疏松性,可以实现规模化应用。

因此采用沉淀法以氯化铝和碳酸氢铵为原料制备纳米Al2O3粉体,其工艺简单,操作方便,生成成本低,约为24 元/kg,易于实现工业放大,无三废排放等优点。

[7] L in Yuanhua , Zhang Zhongtai , Huang Chuanyong .PREPARATION OF HIGH PURITY AND ULTRAFINE α- Al2O3 POWDERS BY PYROLYSIS OF NH4AlO(OH) HCO3.Journal Of The Chinese Ceramic Society. 2000,28(3):268~271. Abstract :NH4AlO(OH) HCO3 precursor was synthesized by using NH4Al (SO4) 2 and NH4HCO3 as the starting materials ; suitable ratios of reactants and pH value of the reaction system. Active high purity (99. 98 %) and ultrafine Al2O3 powders can be prepared by calcining the precursor at 1 050 ℃for 1. 5 h. The particle size is about 5~20 nm as observed by the transmission electron microscopy.

摘要:利用NH4Al (SO4) 2和NH4HCO3为原料,制得NH4AlO (OH) HCO3前驱体化合物,同时采用适当的反应物配比和pH 值。在1050℃对前躯体燃烧1.5h,可以制取含量高达99. 98 %.纯度的细Al2O3粉末。TEM 测得粉体粒径约5~20 nm。

[8] 李江,潘裕柏,宁金威等。均相沉淀法制备纳米A1203先驱体。中国陶瓷。

2002,38(6):13~17

摘要:以分析纯硫酸铝铵和碳酸氢铵为原料,采用均相沉淀法制备纳米A1203先驱体。结果表明,溶液的混合方式、超声振动、降化时间对粉体的尺寸和形貌有很大的影响。采用先缓慢滴加,然后喷雾混合的方式可获得正均粒径为10nn、的NH4 Al(0H)2C03粉体。并对粉体进行了扫描电镜(SEM),透射电镜(TEM)、比表面积(BET)、X射线衍射(XRD)、红外光谱分析(IR)、热毫/差热(TG/DTA)等表征。

[9] 卫芝贤,胡双启,朱敬星。沉淀法制备纳米γ-氧化铝前驱体。洗涤分离的研究。应用基础与工程科学学报。2004,12(1):19~23

摘要:以拜耳法生产的粒径较粗的Al(OH)3为原料,通过沉淀法制取了纤维状γ-Al2O3纳米粉体,探讨了超细前驱体Al(OH)3的洗涤分离问题.并用透射电镜,x 射线衍射对产物进行了表征.此研究为工业上批量生产纳米γ-Al2O3提供了借鉴.

[10] HAN Bing,LI Zhi-hong. Technology of Preparing Alumina Nanoparticles by Precipitation Method.CHEMICAL INDUSTRY AND ENGINE ERING.2006,23(6)

:512~518

Abstract:Aluminium hydroxide,the precursor of alumina,was synthesized by precipitation reaction of the aluminium nitrate and sal volatile.The innuence factors,such as pH values of solution,concentration of reactive so1ution and content of dispersant,on the size of alumina nanopanicles were inVestigated.The charcteristic of powders was performed by TG—DSC,BET,TEM and laser particle analysis instmment.The results showed that when the react condition was tempemture of 45℃,pH 5,content of dispersant 0f 1.0%and aluminium nitrate concentration of 0.1 m01/L,the pmduct could be transformed to 5—10 nm powders bycalcining at 800 ℃and 40 nm α—A1203 at l 210℃for 1.0 h.

摘要:氢氧化铝,铝的前躯体,用硝酸铝溶液和碳酸铵溶液的沉淀反应制备。研究了pH值、溶液浓度、分散剂用量对纳米氧化铝粒径的影响。用TG-DSC、透射电子显微镜、BET、激光粒度分析仪等测试手段对产物进行分析。结果表明,当反应温度45℃、pH=5.0、分散剂用量为1.0%、铝盐浓度为0.1 mol/L时,

制得的产物经800℃煅烧1.0 h,颗粒大小为5~10 nm;在1 210℃煅烧1.0 h可转化为α-A12O3,一次粒子粒径为40 nm左右。

[11] 卢红霞,毛爱霞,郝好山等。利用纳米铝和沉淀法制备纳米a—A1203粉体。郑州大学学报。2005,26(1):83~87

摘要:以AI(N03)3·9H20、氨水和纳米铝粉为原料,采用液相沉淀法制备出Al(OH)3溶胶,经过真空抽滤和高温煅烧获得了纳米α—A1203粉体.研究了反应体系pH 值、纳米铝粉添加和煅烧温度对A1(OH)3溶胶质量以及Al203晶型转化温度的影响.结果表明,反应体系pH值为9时可以获得团聚少、分散性好的A1(OH)3溶胶,添加摩尔分数为3%的纳米铝粉作为籽晶可以使α—A1203的转变温度降至

1000 ℃左右.实验获得的纳米α—A1203,粉体粒度分布均匀,无明显团聚,近似球形,平均粒径约为20 nm.

[12] 许珂敬,杨新春。高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用。中国陶瓷。1999,5:15~19.

摘要: 本文针对用湿化学法制备氧化物陶瓷超细微粉过程中和其悬浮液的颗粒

团聚问题,评述了表面活性剂对颗粒团聚状态的控制作用,在氧化物陶瓷微粉悬浮液中通过调节PH 值,使颗粒间具有较高静电效应的基础上加入高分子表面活性剂,使颗粒间又具有空间位阻效应,防止了颗粒间的团聚,可得到高度分散而无团

聚的粉末和悬浮液。

[13] 丁红燕,沉淀法制备纳米A12 03粉末。淮阴工学院学报。2001,10(2):23~28

摘要:以工业用NH4AI(SO4)2·12H20和NH4HCO3为原料,采用均匀沉淀法制备纳米Al2O3粉末。研究了沉淀剂的滴加方式、表面活性剂等因素对粉体尺寸的影响。经检测,最佳工艺得到的Al2O3粉末的平均粒径小于15nm。

[14] 邹惠静,尹良果。沉淀法制备超细氧化铝粉末过程中的团聚机理和消除办法。光谱实验室。2010,27(4):1633~1641

摘要:采用沉淀法以Al(NO3)3·H2O和NH3·H2O为原料制备了Al(0H)3干凝胶,经过高温煅烧合成纳米级的α-A12O3粉末。分析了在制备过程中氧化铝粉末产生团聚的机理,推测了硬团聚的机理模型.并提出了几种消除硬团聚的方法,制备出的α-A12O3粉末,粒径分布均匀,且无明显团聚,近似球形,平均粒径为70nm。

[15] 孙静,高濂,郭景坤。分散剂用量对几种纳米氧化锆粉体尺寸表征的影响。无机材料学报。1999,14(3):465~469.

摘要:本文研究了三种不同来源的纳米氧化锆粉体在尺寸表征中的影响因素。其中,加入的分散剂用量不同,测得的粉体颗粒尺寸有很大差别,不足或过量的分散剂影响粉体的颗粒尺寸分布。这种影响是通过改变粉体表面的电荷分布来实现的。超声时间长短是影响粉体尺寸表征的另一个重要因素。

[16] 李召好,李法强,马培华。超细粉末团聚机理及其消除方法。盐湖研究。2005,13(1):31~36

摘要:对超细粉末的团聚机理进行了介绍,分析了粉体制备过程中团聚现象产生的原因以及消除团聚的方法。

[17] 蔡卫权,余小锋。高比表面大中孔拟薄水铝石和γ-A1203的制备研究。化学进展。2007,19(9):1 322~1 330

摘要:大中孔γ-Al2O3作为重要的催化剂载体、吸附剂和分离材料,尤其对重油和渣油转化催化剂的研制具有十分重要的意义,但传统大中孔γ-Al2O3的制备方法往往以牺牲其比表面积为代价。本文分别从控制拟薄水铝石的析出过程和后处理方法以及添加扩孔剂、助烧结剂扩孔等角度出发,评述了近年来国内外高比表面大中孔γ-Al2O3及其前驱物拟薄水铝石的制备方法和扩孔机制。这些方法包括pH 摆动法、有机溶剂合成法、表面活性剂组装法、微波加热法、水热处理法、有机溶剂置换法、非常规干燥法和扩孔剂或助烧结剂扩孔法等。最后,还对高比表面大中孔拟薄水铝石和γ-Al2O3制备方法的发展趋势进行了展望。[18] Bao Jianguo, Yang Yunquan, Wang Weiyan. Preparation of Mesoporous

Nano-Alumina wiUl Large Pore Volume andPore Diameter by Azeotropic Distillation-Homogeneous Precipitation. PETROCHEMICAL TECHNOLOGY. 2009,38(8):839~845

Abstract:

Precursor of objectiveγ-A12 03 was prepared from A12(S04)3 and NH4 HC03 byazeotropic distillation—homogeneous precipitation combined with ultra sonic dispersion.For precipitation of precursor,NH4HC03 solution must be slowly added into A12(S04)3 solution in presence of appropriate amount of polyethylene glycol as

dispersing agent.the water in wet precipitate was entrained by azeotropic distillation with butanol.The end product fibrous nano mesoporousγ一A1203 powder was obtained from the precursor after calcination at 600℃for4h.the precursor and the endproduct were characterized by means of FTIR,TG,XRD,BET and SEM.The fibrous nano mesoporousγ一A1203 powder was uniform in particle size distribution with large pore volume,large pore size and high specific surface area.The pore diameter was18.04 nm;pore volume was1.87 mL/g:specific surface area was 370.11 m2/g,average particle diameter was 75 nm and average particle length was 300 nm.

摘要:结合超声波分散法采用共沸蒸馏一均匀沉淀法用A12(S04)3和NH4HC03制备γ—A1203前驱体。在沉淀前躯体过程中,用适量的聚乙烯做分散剂,将A12(S04)3缓慢加入NH4HC03溶液。用异丁醇共沸蒸馏法带走沉淀中水分。该前驱体在600 ℃下煅烧4 h得到纤维状纳米γ一A1203粉体;采用傅里叶变换红外光谱、热重分析、x射线衍射、BET法、扫描电子显微镜等手段对所制得的前体和纳米γ—A1203进行了表征。表征结果显示,将NH4HC03溶液均匀缓慢加入到A12(S04)3溶液中,添加适量聚乙二醇作为分散剂,同时采用异丁醇共沸蒸馏可制备出粒径分布均匀、孔径与孔体积大、比表面积大的介孔纤维状纳米γ一A1203粉体;所制得的纳米γ—A1203的孔径为18.04nm、孔体积为1.87 mL/g、比表面积为370.11 m2/g,颗粒粒径约为75 nm、长为300 nm。

[19] 杨基础,沈忠耀。超临界流体技术与超细颗粒的制备。化工进展。1995,3:28~33

摘要:本文对超临界流体技术在超细颗粒制备中的应用进行了综述,介绍了RESS 过程、GAS过程和超临界流体反微乳技术的机理和装置。

[20] ZHANG Yang,SUN guo-xin.Chemical Precipitation-Supercritical CO2Dring for Preparing Nano-γ-Al2O3. Chinese journal of inorganic chemistry.2009,25(7):1295-1298

Abstract: The nanoγ-Al2O3 was prepared by chemical precipitation combined with CO2 drying. The nanoγ-Al2O3 was characterized by TG-DTA analysis,XRD diffraction,N2 physical adsorption-desorption testing, SEM and TEM analysis. Compared with the sample prepared by general drying, smaller particle size and

greater surface area were obtained. The surpercritcal CO2 drying was more effective in reducing aggregation.

摘要:结合超临界CO2干燥法用化学沉淀法制备纳米γ-Al2O3。用TG-DTA分析法,X射线衍射法,N2物理吸收解析法来表征γ-Al2O3。和用一般方法干燥的样品进行对比,得出更细颗粒,更大表面积的材料。超临界CO2干燥法可以有效地减少团聚。

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

纳米氧化铝的研究进展

1.5纳米氧化铝的研究进展 1.5.1氧化铝的性质 氧化铝是化学键力很强的离子键化合物。它有八种同质异形晶体:Q、B、Y、0、 q、8、K、X-A1203,其中主要的也是在工业中得到重要应用的是Q.A1203、B.A1203 和Y.A1203---种晶型。Y—A1203为低温稳定相,Q.A1203是熔点2050。C以下唯一的在任 何温度下都会稳定存在的相态,其它相态均为过渡相或不稳定相【74】。 Y.A1203属于立方晶系,尖晶石型结构,其中氧原子呈面心立方密堆积,铝原子不 规则地排列在由氧原子围成的八面体和四面体孔穴中。它的密度为3.30.3.639/cm3,只在 低温下稳定,在高温下不稳定,它不溶于水,但溶于酸或碱。y.A1203比表面很大,约 为200.600m2/g,具有强的吸附能力和催化活性,广泛用于吸附剂、催化剂和催化剂载体[751 O B.A1203是一种氧化铝含量很高的多铝酸盐,它的化学组成可近似地用RO.6A1203 或R20.1 1A1203来表示(RO为碱土金属氧化物,R20为碱金属氧化物),其结构由碱土 金属或碱金属离子层尖晶石结构单元交替堆积而成,氧离子排列成立方密堆积结构,Na+ 完全包含在垂直于c轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电,称钠离子导体。因此,13.A1203是一类重要的固体电解质【75J。 Q.A1203属于三方晶系,刚玉型结构,该结构可以看成氧离子按六方紧密排列,即ABABAB一二层重复型,而铝离子有序的填充于2/3的八面体间隙中,使其化学式成为A1203。Q.A1203熔点为2050。C,密度为3.90-4.019/cm3,模氏硬度为9。它的化学性质 稳定,不溶于水,也不溶于酸或碱,耐腐蚀且电绝缘性好,广泛应用于高硬度研磨材料、陶瓷材料、耐火材料和集成电路的基板等【75,76】。

纳米三氧化二铝粉体的制备与应用进展

2011年6月北京化工大学北方学院JUN.2011 北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 2008级纳米材料课程论文 题目: 纳米三氧化二铝的制备与应用进展 学院:理工学院专业:应用化学班级: 学号:姓名: 指导教师: 2011年6月6日

文献综述 前言 纳米材料一般是指在一维尺度小于100nm,并且具有常规材料和常规微细粉末材料所不具有的多种反常特性的一类材料。作为纳米材料的一种,Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应一切特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等奇异特性,从而使Al2O3近年来备受关注研究并且在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景[1]。 近年来从用途大体可以把氧化铝分为两类:第一类是用作电解铝生产的冶金氧化铝,随着氧化铝材料的广泛应用该类氧化铝占产量的大多数;第二类为非冶金氧化铝,主要包括非冶金用的氢氧化铝和氧化铝,也是通常所说的特种氧化铝,因其作用不同而与冶金氧化铝有较大的区别,主要表现在纯度、化学成分、形貌、形态等方面。由于粒径细小,纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性[2]。随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注[3]。

纳米材料科学与技术

聚合物基纳米复合材料的研究进展 摘要:本文总结了聚合物基纳米复合材料的研究进展,主要涉及纳米复合材料的制备方法、性能介绍和应用情况等方面,对聚合物基纳米复合材料的合成技术方法、不同的类型和相应性能特点进行了重点分析。对于聚合物基纳米复合材料,纳米填料的分散性、与聚合物基体的界面性能以及基体的性质都是影响其物理、热性能、机械等性能的重要参数。最后,简要介绍了目前在聚合物基纳米复合材料研究领域存在的问题,并对中国在该领域的未来发展以及纳米复材的产业化应用提出了相关建议。 关键词:纳米复合材料;聚合物;进展 Progress in Polymer Nanocomposites Development Abstract:This article summarizes some of the highlights of newest development in polymer nanocomposites research. It focuses on the preparation, properties and applications of polymer nanocomposites. The various manufacturing techniques, analysis of kinds of polymer nanocomposites and their applications have been described in detail. In the case of polymer nanocomposites, filler dispersion, intercalation/exfoliation, orientation and filler-matrix interaction are the main parameters that determine the physical, thermal, transport, mechanical and rheological properties of the nanocomposites. Finally, the recent situation of research in polymer nanocomposites was introduced and some constructive suggestions were proposed about the industrialization of polymer nanocomposites in China. Keywords:nanocomposites; polymer; progress

纳米级氧化铝

纳米级氧化铝 纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥230m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂?乙醇、丙醇、丙二醇、异丙醇、?乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。 透明陶瓷:高压钠灯灯管、EP-ROM窗口;化妆品填料;单晶、红宝石、蓝宝石、白宝石、钇铝石榴石;高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管;精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带;涂料、橡胶、塑料耐磨增强材料、高级耐水材料;气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料;催化剂、催化载体、分析试剂;宇航飞机机翼前缘。 行业领导者 上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。 那博研发团队优势 从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。 ? 通过提升产品设计以改进性能 ? 更短的加工周期以提高生产力 ? 成本优势和出众的性能 ?领先的实验设备 消费者 作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。 商业伙伴 我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

钙钛矿型复合氧化物材料

钙钛矿型复合氧化物材料 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性

石墨烯纳米材料及其应用

墨烯纳米材料及其应

二?一七年十二月

摘要 ................. 错误!未定义书签 1引言................ 错误!未定义书签 2石墨烯纳米材料介绍......... 错误!未定义书签 3石墨烯纳米材料吸附污染物...... 错误!未定义书签金属离子吸附........... 错误!未定义书签 有机化合物的吸附......... 错误!未定义书签 4石墨烯在膜及脱盐技术上的应用..… 错误!未定义书签石墨烯基膜............ 错误!未定义书签 采用石墨烯材料进行膜改进..... 错误!未定义书签 石墨烯基膜在脱盐技术的应用??… 错误!未定义书签5展望................ 错误!未定义书签

石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、 较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度, 被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。 2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构()。在石墨烯平面内,碳原子以六兀环形式周期性排列,每个碳原子通过C键与临近的二个碳原子相连,S Px和Py三个杂化轨道形成强的共价键合,组成sp2杂化结构,具有120° 的键角。石墨烯可由石墨单层剥离而产生,最初是通过微机械剥离,使用胶带依次将石墨粘黏成石墨烯来实现。Geim和Novoselov

金属氧化物纳米材料的制备新进展

摘要:综述了近5年来金属氧化物纳米材料的制备方法、研究现状;讨论了这些方法的优缺点。指出液相法,尤其是溶胶-凝胶法、沉淀法、水解法、微乳液法、水热溶剂热法等是目前制备纳米金属氧化物材料最广泛应用的方法。而超声技术、微波辐射技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等新技术与传统液相法的有机结合,是制备高纯度、小粒径、均匀分散的金属氧化物纳米粉体的最有前途的方法。最后对金属氧化物纳米材料研究的发展方向提出了展望。 关键词:金属氧化物;纳米;制备;进展 金属氧化物纳米材料广泛应用于制作催化剂、精细陶瓷、复合材料、磁性材料、荧光材料、湿敏性传感器及红外吸收材料等[1]。例如:纳米氧化锌在磁、光、电敏感材料方面呈现常规材料所不具备的特殊功能,使得高品质的氧化锌的应用前景广阔;纳米氧化铝作为重要的陶瓷材料,具有非常高的应用价值;高纯纳米级SnO2可用来制作气敏及湿敏元件;纳米氧化钛由于在精细陶瓷、半导体、催化材料方面的广泛应用,也越来越引起人们的关注。多年来,科技工作者们已经研制出多种制备金属氧化物纳米材料的方法,如:溶胶-凝胶法、醇盐水解法、强制水解法、溶液的气相分解法、湿化学合成法、微乳液法等。近年来材料科学家和化学家又将激光技术、微波辐射技术、超声技术、交流电沉积技术、超临界流体干燥技术、非水溶剂水热技术等方法引入了金属氧化物纳米材料的传统制备方法中,使金属氧化物纳米材料的制备方法得到了较大的完善和发展。关于金属氧化物纳米材料,邓红梅[2]综述了化学法制备及EXAFS特征研究,汪信[3]对复合金属氧化物的制备进行了评述。本文着重评述近5年来单分散性金属氧化物纳米材料的制备方法、研究现状和发展方向。 1 金属氧化物纳米微粒的制备 根据原料状态的不同,制备金属氧化物纳米微粒的方法大致可分为3类:固相法、液相法和气相法。 1.1固相法 传统的固相法是将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子。此法设备和工艺简单,反应条件容易控制,产率高,成本低,环境污染少,但产品粒度分布不均,易团聚。刘长久等[4]采用固相反应法制备了粒径为30nm的NiO纳米粉体,并对其电化学性能进行了研究。HengLi等[5]在环境温度下用固相反应成功地合成了纳米氧化物SiO2、CeO2、SnO2,并初步探讨了环境温度下纳米材料的形成机理。贾殿赠等[6]对此法进行了改进,在固相配位化学反应的基础上,将室温固相配位化学反应引入金属氧化物纳米粒子的合成中,提出一种室温固相化学反应合成纳米材料的新方法,即用室温固相化学反应首先制得前驱物,进而前驱物经热分解得纳米金属氧化物。此法不仅是无溶剂反应,而且许多反应可在室温或低温条件下发生。因此从原料的使用、合成条件及合成工艺等方面考虑,固相配位化学反应法在合成新颖纳米材料方面具有其潜在的优点。目前采用此新方法已制得纳米CuO[7]、ZnO、NiO等。 1 2液相法 液相法因其相关的工业过程控制与设备的放大技术较为成熟,具有更强的技术竞争优势。该法比较容易控制成核,从而容易控制颗粒的化学组成、形状及大小,而且该方法添加的微量成分和组成较均匀,即使是对于很复杂的材料也可以获得化学均匀性很高的粉体。不过,该法极易引入杂质(如部分阴离子等),造成所得粉体纯度不够。近年来,超声、微波辐射、电弧放电、共沸蒸馏等物理技术的引入,使普通液相法制备纳米粉体得到了新的发展。液相法大致可分为以下几种方法。 1.2.1溶胶-凝胶法(Sol-Gel) 溶胶-凝胶法是近期发展起来的,能代替高温固相合成反应制备陶瓷、玻璃和许多固体材料的新方法。作为低温或温和条件下合成无机化合物或无机材料的重要方法,在软化学合成中已

纳米氧化铝的研究

纳米氧化铝的研究及应用 [摘要] 纳米技术是当今世界最有前途的决定性技术,纳米科学与技术将对其他学科、产业和社会产生深远的影响。文章概述了纳米氧化铝的结构、性能、用途、制备等方面,更深入地了解了纳米氧化铝材料,并展望了纳米氧化铝材料的应用前景。 [关键字] 纳米氧化铝结构性能用途制备方法 [前言] 近年来, 纳米氧化铝材料备受到人们普遍关注,其广阔的应用前景引起了世界各国科技界和产业界的高度关注,因此作为21世纪具有发展前途的功能材料和结构材料之一,纳米氧化铝材料一直都是纳米材料研究领域的热点。 1 纳米氧化铝的结构与性质 Al2O3有很多同质异晶体,常见的有三种,即:α- Al2O3、β- Al2O3、γ- Al2O3。除β- Al2O3是含钠离子的Na2O-11Al2O3外,其他几种都是Al2O3的变体。β- Al2O3、γ- Al2O3晶型在1000~1600℃条件下,几乎全部转变为α- Al2O3。 ①α-Al2O3 α- Al2O3为自然界中唯一存在的晶型,俗称刚玉。天然刚玉一般都含有微量元素杂质,主要有铬、钛等因而带有不同颜色。刚玉的晶体形态常呈桶状、柱状或板状,晶形大都完整,具玻璃光泽。α- Al2O3

属六方晶系,氧离子近似于六方密堆排列,即ABAB???二层重复型。在每一晶胞中有4个铝离子进入空隙,下图为α- Al2O3结构中铝离子填入氧离子紧密堆积所形成的八面体间隙。 由于具有较高的熔点、优良的耐热性和耐 磨性,α- Al2O3被广泛的应用在结构与功 能陶瓷中。 ②β- Al2O3 β- Al2O3是一种含量很高的多铝酸盐矿物,它不是一种纯的氧化铝,其化学组成可近似用MeO-6 Al2O3和Me2O-11Al2O3表示(MeO 指CaO、BaO、SrO等碱土金属氧化物;Me2O指的是Na2O、K2O、Li2O)。β- Al2O3(Me2O-11Al2O3)由[NaO]-层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,钠离子完全包含在[Na0]-层平面内,并且可以很快扩散。适当条件下,它具有很高的离子电导率,因而被广泛地应用于电子手表、电子照相机、听诊器和心脏起博器的生产中。 ③γ- Al2O3 γ- Al2O3是最常见的过渡型氧化铝,属立方晶系,为尖晶石结构,在自然界中是不存在的物质。由氧离子形成立方密堆积,Al3+填充在间隙中。γ- Al2O3得密度为3.42~3.62g/ cm3,在1000℃时可以缓慢的转变为α- Al2O3,是水铝矿(Al2O3?H2O或Al2O3?3H2O)或氢氧化铝在加热中生成的过渡氧化铝物质。γ相粒子主要用途是作为催化剂的载体,目前多采用在γ相中添加稀土元素等微量元素来改善它的表面

纳米材料与技术作业

纳米材料与技术作业 1.纳米材料按维度划分,可分为几类? (1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。 (2) 1维材料—线径为1—100 nm的纤维(管)。 (3) 2维材料—厚度为1 — 100 nm的薄膜。 (4) 体相纳米材料(由纳米材料组装而成)。 (5)纳米孔材料(孔径为纳米级) 2. 详细说明纳米材料有那几大特性?这几大特性的特点是什么?为什么纳米材料具有这些特性? (1) 表面效应:我们知道球形颗粒的比表面积是与直径成反比的,故颗粒直径越小,比表面积就会越大,因此,纳米颗粒表面具有超高的活性,在空气中金属颗粒会迅速氧化而燃烧,也正是基于表面活性大的原因,纳米金属颗粒可以看成新一代的高效催化剂,储气材料和低熔点材料; (2) 小尺寸效应:随着颗粒尺寸的量变会引起颗粒宏观物理性质的质变。特殊的光学性质:所有的金属在超微颗粒状态都呈现为玄色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等;特殊的热学性质:固体颗粒在超微细化后其熔点将明显降低,当颗粒小于10纳米量级时尤为明显;特殊的磁学性质:超微的磁性颗粒可以使鸽子、海豚等生物在微弱的地磁场中辨别方向,利用磁性超微颗粒具有高矫顽力的特性,可以做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等;利用超顺磁性,可以将磁性超微颗粒制成用途广泛的磁性液体;特殊的力学性质:由于纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很轻易迁移,因此表现出甚佳的韧性与一定的延展性。 (3)宏观量子隧道效应:处于分子、原子与大块的固体颗粒之间的超微纳米颗粒具有量子隧道效应,例如:在知道半导体集成电路时,当电路的尺寸接近电子的波长时,电子就会通过隧道效应溢出器件,使器件无法正常工作。 3.半导体纳米材料光催化特性产生的原因是什么?为什么一些半导体纳米材料的光催化特性要远远好于非纳米结构的半导体材料? (1)光催化特性是半导体具有的独特性能之一,在光的照射下,半导体价带中的电子跃迁到导带,从而价带产生空穴,导带中产生电子。空穴具有很强的氧化性,电子具有很强的还原性;(2)光激发和产生的电子和空穴可经历多种变化途径,其中最主要的分离和符合这两个相互竞争的过程,因此为了提高催化效率,需要加入电子或者空穴捕获剂,纳米半导体材料相比于一般的半导体材料具有更大的比表面积,因此具有更好的催化效果。 4.详细说明零维纳米材料具有哪些优良的物理化学特性?产

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.docsj.com/doc/9085682.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.docsj.com/doc/9085682.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

Birnessite型锰氧化物的合成研究进展

Birnessite型锰氧化物的合成研究进展 吴忠帅张向东*臧健荣欣 (辽宁大学化学科学与工程学院沈阳 110036) 摘要通过水热法、氧化还原沉淀法、溶胶-凝胶法、高温固相化学反应法、模板法等常见层状Birnessite锰氧化物的合成方法的介绍,阐述了二维层状锰氧化物的合成及反应产物控制,综述了Birnessite 锰氧化物在功能性材料研究方面的一些最新进展。 关键词层状水钠锰矿合成锰氧化物 Recent Progress on the Synthesis of Birnessite-type Manganese Oxide Wu Zhongshuai, Zhang Xiangdong*, Zang Jian, Rong Xin (College of Chemical Science and Engineering, Liaoning University, Shenyang 110036) Abstract This article reviewed the recent process on the synthesis and reaction conditions for the production of layered birnessite manganese oxide through six synthetic methods. The methods included hydrothermal method, redox precipitation method, sol-gel method, high temperature solid phase chemical method, templating reaction. The developing trends of birnessite-type manganese oxide to be used in the functional material were also discussed. Key words Layered, Birnessite, Synthesis, Manganese oxide Birnessite(以下简写Bir)型锰氧化物(亦称水钠锰矿,分子式Na4Mn14O27·9H2O[1]),在自然界中广泛存在于土壤及沉积物中,是一类二维层状[2]锰氧化物,层间距约0.7nm[1,3,4]。其片层由锰氧八面体MnO6共边或共角构成,层间由水分子、Na+(或其它金属离子)离子交互占据填充。层结构上每隔6个锰氧八面体MnO6就有一个空位,使得整个八面体层带负电荷,与嵌入层间的阳离子通过静电作用保持层状结构的稳定。 由于Bir型锰氧化物具有的特殊层状结构,决定了它有很多优异的物理和化学性质,如导电性、磁性、离子交换、催化、选择性吸附等。利用其结构和性质制备的材料在很多领域也有着重要的应用,如做为分子筛[5~9]、离子交换器[7,11]、高效催化剂[12,13]、磁性材料[14]、二次电池电极材料[15~17]、电化学[17~19]、选择性吸附剂[20~23]、纳米复合材料[24~26]和硫化处理剂[27]等。因此,相关研究引起了众多科学工作者的关注。 Bir型锰氧化物常见的合成方法有水热法[28~34]、氧化还原沉淀法[35~43]、溶胶-凝胶法[44,45]、高温固相化学反应法[46~48]、模板法[7,49~56]等。本文重点综述了Bir型锰氧化物的合成方法以及它们在功能性材料研究方面的一些最新进展。 1 水热法 水热法是液相反应的一种,一般在100~300℃间温和条件下完成反应。该方法应用于制备Bir,是将两种或两种以上的固体反应物,如氧化物、氢氧化物或Mn(NO3)2、MnSO4等无机锰盐溶解于水中,配成一定浓度的混合溶液,经搅拌后,转移到高压釜中,控制一定的水热温度和水热时间, 吴忠帅男,24岁,硕士生,现从事锰氧化物合成及应用研究。*联系人,E-mail: xdzhang@https://www.docsj.com/doc/9085682.html, 辽宁省科技厅基金(20031028)沈阳市科技局基金(1022037-1-07)资助项目 2005-09-27收稿,2006-01-19接受

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

相关文档
相关文档 最新文档