文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米氧化铝市场调研报告

纳米氧化铝市场调研报告

纳米氧化铝市场调研报告
纳米氧化铝市场调研报告

纳米氧化铝市场调研报告

纳米氧化铝是近年发展较快的一种极为重要的工业原料,外观为白色微细结晶粉末,无毒、无味、纯度高,粒子尺寸为30nm。极细晶粒具有明显的表面效应、体积效应、量子尺寸效应和宏观隧道效应,在光学、陶瓷、电子、力学、化工、塑料、油漆、涂料、油墨等方面具有特异功能及重要应用价值,是21世纪的重要新材料。[1]

一、纳米氧化铝概况

1.1. 纳米氧化铝的概况及理化性质[2]

中文名:纳米氧化铝

英文名:Aluminium oxide,nanometer

别名:纳米三氧化二铝

分子式:Al2O3

分子量:101.96

氧化铝是白色晶状粉末,已经证实氧化铝有α、β、γ、δ、η、θ、κ和χ等十一种晶体。不同的制备方法及工艺条件可获得不同结构的纳米氧化铝:χ、β、η和γ型氧化铝,其特点是多孔性,高分散、高活性,属活性氧化铝;κ、δ、θ型氧化铝;α-Al2O3,其比表面低,具有耐高温的惰性,但不属于活性氧化铝,几乎没有催化活性;β-Al2O3、γ-Al2O3的比表面较大,孔隙率高、耐热性强,成型性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。

1.2.纳米氧化铝的包装及贮存

外包装为纸箱或纸桶,内包装为聚乙烯薄膜袋,净重5/10/25Kg。

密封储存在阴凉、干燥、通风良好的地方。避免阳光直射。

1.3.纳米氧化铝的用途。[3]

(1)、透明陶瓷:高压钠灯灯管、EP-ROM窗口。

(2)、化妆品填料。

(3)、单晶、红宝石、蓝宝石、白宝石、钇铝石榴石。

(4)、高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶炉管。

(5)、精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带。

(6)、涂料、橡胶、塑料耐磨增强材料、高级耐水材料。

(7)、气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料。

(8)、催化剂、催化载体、分析试剂。

(9)、宇航飞机机翼前缘。

二、纳米氧化铝的生产方法

2.1. 溶胶—凝胶法[4]

2.1.1.合成概述

以异丙醇铝(Al (C3H7O) 3) 为原料,利用有机盐异丙醇铝水解、缩聚,使其在一定的条件下形成溶胶,并由此转化成凝胶、干凝胶,随后将干凝胶在一定温度下进行热处理1 h ,得到所需产物的粉末.XRD 分析结果也表明,溶胶—凝胶法所获得的干凝胶在1 200 ℃的温度下可以完全转化为α- Al 2O 3纳米颗粒,所制备的纳米α- Al 2O 3具有较为理想的晶体结构类型。

2.1.2.合成方法

以异丙醇铝100 g 为前驱物,加入异丙醇50 g、乙二醇单乙醚的混合物15 g 为混合溶剂,

回流搅拌4 h ,然后加入蒸馏水后磁力搅拌3 h. 由于溶剂蒸发和缩聚反应继续进行而导致向凝胶的逐步转变. 接下来再把制备好的凝胶在80~120 ℃环境下干燥24 h 获得干凝胶,将其研磨,可得到白色的粉末。然后,把这种白色的粉末热处理,由室温至450 ℃,后保温1 h ,升温速率5 ℃/ min. 由此便得到非晶纳米Al 2O 3。以同样的升温速率,再对样品在1 200 ℃进行热处理,保温1 h ,得到有晶体结构的纳米Al 2O 3。

制备过程流程图如下:

2.2用高岭土制备[5]

2.2.1.方法概述

采用高岭土为原料制备纳米氧化铝成本低廉,可以大幅度提高高岭土的产品附加值,提高经济效益。以高岭土为原料,通过酸溶、过滤、干燥和煅烧等步骤制备纳米氧化铝粉体。

高岭土经700 ℃煅烧,盐酸浓度20 % ,Al/ HCl 摩尔比为1 ∶7 ,100 ℃酸浸3h ,浸取率达到93. 83 % ,干燥产物在800 ℃煅烧得到长度为50nm、长径比为10 左右的针状γ- Al 2O 3 ,1300 ℃完全转变为α- Al 2O 3。

2.2.2.合成步骤

高岭土在不同温度煅烧2h 使其活化,煅烧料和分散剂加入预先配置好的一定浓度的盐酸溶液中,在具有冷凝、搅拌装置的水浴中恒温加热,反应一定时间后将反应物抽滤,使固液分

离。浸出液加入一定量的去离子水稀释后,得到一定浓度的AlCl3 溶液,滴加沉淀剂获得前驱体,前躯体干燥后于不同温度煅烧获得Al 2O 3粉体。

2.3.均相沉淀法[6]

以0. 5mol/ L硫酸铝铵(AlNH4(SO4) 2 ·12H2O)为母液,以1. 7mol/ L 碳酸氢铵(N H4HCO3) 为沉淀剂,以聚乙二醇( PEG-2000) 为分散剂(添加质量分数为3 % ,以硫酸铝铵和碳酸氢铵质量之和为基准) ,采用均相沉淀法制备纳米α- Al 2O 3。

2.4. 以蒸发—冷凝法[7]

将工业纯铝块(99. 99% )盛放于石墨—氧化铝复合坩埚中,对蒸发室抽真空,并用高纯Ar ( 99. 999% )清洗多次,以进一步降低真空室内杂质气体的浓度,再充入一定压力的高纯Ar。启动高频感应电源,缓慢提升感应电流,使坩锅内的铝块熔化直至蒸发,并保持一定蒸发时间,最后通入少量空气进行钝化处理。

2.5超临界抗溶剂法[8]

首先利用SAS 法制备前驱体纳米硝酸铝颗粒.以无水乙醇为溶剂, CO2为超临界介质,将硝酸铝溶解到无水乙醇中,配成一定浓度的硝酸铝乙醇溶液. 将该溶液用高压泵经由喷嘴连续打入充满CO2的沉淀釜中发生抗溶剂沉淀过程,CO2同时连续进入沉淀釜. 沉淀完成后,继续通入CO2吹扫以除去残存的乙醇,即制得前驱体硝酸铝颗粒。将硝酸铝颗粒在空气气氛中焙烧,即可制得纳米Al 2O 3颗粒。

2.6.水热法[9]

水热法就是在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过对反应容器加热,创造一个高温、高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶,用来生长各种单晶,是制备超细、无团聚或少团聚、结晶完好的粉体材料的一种新工艺新方法。温度的取值一般介于水的沸点和临界温度之间,即100 ~37312 ℃, 压力在011 ~22 MPa 范围内。

晶体的生长是利用高温高压使常温条件下不溶或难溶于水的物质溶解或反应并

在一定的过饱和度下反复进行结晶和生长的方法。可以用该法制造纳米氧化铝。

2.7.超声波—化学沉淀法[10]

选用廉价的硝酸铝和碳酸氢氨为主要原料,采用超声波—化学沉淀法制备出氢

氧化铝沉淀,经高温煅烧,得到纳米氧化铝粉末.

工艺流程如下:

2.8 机械化学法[11]

该方法将A lCl3 和CaO 按一定的比例混合并添加一定的钢球, 采用机械球磨震动使粉末活化, 然后在一定的温度下进行热处理. 热处理过程中存在如下反应:

2 A lCl3+ 3CaO →Al 2O 3+ 3CaCl2

2.9微乳液法[12]

使互不相溶的两种溶液中的一种以微小液滴的形式分散于另一相中形成乳状液, 然后用乳状液中的微小液滴作为氧化物或氢氧化物微粉生成的微反应器, 控制颗粒的形状、粒度分布及组成. 在利用乳化技术制备分散球形氧化铝粉末时, 制备微乳液的方法有三种: 1 先制备出油包水的微乳液, 然后让这种微乳液与醇铝反应; 2 水溶性的溶液在有机溶剂中溶化, 再使这种溶胶液滴凝胶化; 3 将醇铝乳化在一种惰性不

溶性溶剂中, 再水解醇铝乳化液滴.

2.10.等离子气相合成法[13]

等离子气相合成法可分为直流电弧等离子体法、高频等离子体法和复合等离子体法. 直流电弧等离子法, 由于电弧间产生高温, 在反应气体等离子化同时, 电极熔化或蒸发. 高频等离子法的主要缺点是能量利用率低, 产物稳定性差. 复合等离子法是将前两种方法和为一体, 在产生直流电弧时不需要电极,避免了由于电极物质熔化或蒸发而在反应产物中引入杂质. 同时直流等离子体电弧束又能有效地防止高频等离子火焰受原料的进入而造成干扰, 从而在提高产物的纯度、制备效率的同时提高了系统的稳定性.

2.11 喷雾热解法[14]

将金属盐溶液以雾状喷入高温气氛中, 使其蒸发和金属热分解, 然后因过饱和而析出固相, 从而直接制得氧化物纳米陶瓷粉末. 采用该方法已制备出纯度为99. 9%、粒度为10~20 nm 的α- Al 2O 3粉末.

三、纳米氧化铝的市场前景[15]

3.1.市场需求和生产企业状况

近年来, 随着纳米技术的发展, 纳米材料的经济价值和社会效益越来越明显。1999年至2005年,我国对该产品的需求从430t增长到1100t, 据预测, 2011年国内市场需求量将达到3050t。我国纳米氧化铝发展迅速, 但仍然存在诸多问题, 产品不能很好地满足国内市场的需求, 部分仍然依赖进口。虽然进口产品质量相对较高, 但价格比国内相同产品至少高出23%。

我国企业在近几年才开始涉足纳米氧化铝的生产。我国的纳米材料及纳米技术企业中, 有60%以上成立于仪2000年以后, 主要是2003年左右。而较早成立的纳米材料生产企业, 实际上也都是2000年以后才开始涉足纳米氧化铝生产领域的。可见, 我国纳米氧化铝生产刚刚起步, 纳米氧化铝生产企业还未成熟。

多数企业分布在东部发达城市。我国纳米氧化铝材料产业主要分布在经济实力雄厚市场开阔的华东、华北及华南地区, 可见, 资金和市场发展程度是影响纳米氧化铝产业发展的主要因素。在这些企业中,私营企业占绝大多数, 企业活力较强。

纳米氧化铝生产企业的规模较小, 注册资本在700万以下的占左右,1500 万以下的占63%。这是因为纳米氧化铝生产线一次性投资较大, 而大多数企业处于初创期, 面临资金短缺、难以扩大再生产的局面, 这是导致我国纳米氧化铝难以形成规模实现产业化的主要原因之一。

纳米产品的产量按小规模(年产不足10t)、中规模(年产50t)左右和大规模(年产100t以上)划分, 我国有80%的企业处于尝试性地小规模生产, 存在产品稳定性差、生产成本高等问题。可见, 我国纳米氧化铝的生产还没达到一定的生产规模。规模效应无法发挥作用也是纳米氧化铝产业发展的制约因素。

3.2.产品价格

国内价格混乱, 无统一产品定价标准。据调查, 2001年纳米氧化铝的市场售价约为50元/kg,2003年价格为120元/kg, 2004年10月以后达到180~200元/kg,2005 年以后仍然在增长。目前我国纳米氧化铝供不应求, 纳米产品市场没有统一的定价标准规范, 市场价格混乱。例如纯度99.9%、粒径10nm的型纳米氧化铝有的报价170元/kg, 而有的报价380元/kg。国内生产的纳米氧化铝主要是α型氧化铝, α型氧化铝占纳米氧化铝90%以上。

进口产品价格昂贵。国外昂贵的人力资源成本和关税等一系列附带支出, 导致进口纳米氧化铝价格十分昂贵, 高达250~400元/kg, 但产品质量较为稳定, 可以达到客户要求。

3.3. 市场前景

2005年《纳米氧化铝市场调研》报告显示,1999年一2005年, 我国高纯纳米氧化铝需求量分别为430t、450t、520t、610t、730t、920t、1100t。按这样的增长速度,到2011年我国高纯纳米氧化铝需求量将达到3000t左右。近年来, 纳米氧化铝需求一直保持增长势头, “上海六鉴电子商务有限公司”的专业调查人员表示纳

米氧化铝将以每年的25%速率增长, 他们预计2010年需求量将达到3500t, 纳米氧化铝的市场前景非常乐观。

四、总结

纳米氧化铝市场前景良好, 利润空间较大。作为一种有广泛用途的纳米材料, 纳米氧化铝市场前景广阔, 由于其优异的特性, 市场需求强劲, 市场价格连年增长, 利润空间较大。相信随着纳米技术的发展和市场的规范, 在不久的将来, 我国纳米氧化铝产业将逐步走向成熟, 为我国国民经济增长做出贡献。

参考文献:

[1] .https://www.docsj.com/doc/9b12133410.html,/productshow.asp?id=586&class=,纳米Al2O3产品介绍,2008-11-15.

[2] .https://www.docsj.com/doc/9b12133410.html,/view/1387274.htm,百度百科.2008-11-15.

[3].https://www.docsj.com/doc/9b12133410.html,/price/list-price--1657974--1.html,化工网.2008-11-15.

[4].史桂梅, 黄炎.溶胶-凝胶法Al2O3纳米粉体的制备及表征[J].沈阳工业大学学报.2007,29

(3).

[5]周竹发,吴铭敏等,利用高岭土制备纳米氧化铝[J].材料科学与工程学报,2008,26(3).

[6].李芳, 许珂敬等,用作催化剂载体的纳米氧化铝的制备及改性[J].山东理工大学学报(自然科

学版),2007,21(3).

[7].王建军,宋武林等,表面钝化纳米铝粉的制备及氧化机理分析[J].表面技术,2008,37(2).

[8].何春燕,姜浩锡等,超临界抗溶剂法制备纳米氧化铝颗粒[J].催化学报,2007,28(10).

[9].郝保红,向兰等,水热法制备纳米Al 2O 3的应用前景[J].·热加工工艺技术与装备,2006(7).

[10].邢怀勇,刘东亮等,化学沉淀法制备纳米氧化铝粉末[J].山东陶瓷,2006,29(5).

[11].唐海红, 焦淑红等,纳米氧化铝的制备及应用[J ]. 中国粉体技术, 2002, 8 (6) : 37239.

[12].宋然然,隋万美. 湿化学法制备纳米氧化铝粉末的研究进展[J ]. 陶瓷学报, 2004, 25 (3) :

1862190.

[13].冯文浩, 唐海红, 赵志英等. 浅谈纳米氧化铝的研制与应用[J ]. 山西冶金, 2004, 3: 49251.

[14].刘粤惠等,喷雾热解法制备高纯超细氧化铝粉[J ]. 中国陶瓷, 1996, 32 (4) : 729.

[15].王冲钟, 翟秀静等,我国纳米氧化铝市场调查分析[J].轻金属,2007(3).

氧化铝微纳结构材料的研究进展

氧化铝微纳结构材料的研究进展3 朱振峰,孙洪军,刘 辉,杨 冬,张建权,郭丽英 (陕西科技大学材料科学与工程学院,西安710021) 摘要 氧化铝微纳结构材料由于具有特殊的形貌、高比表面积、高介电常数、高的热和化学稳定性等特性,以及可以作为构筑单元,采用自下而上的方法合成各种超级结构材料,从而使其在吸收剂、催化剂载体、陶瓷材料、耐磨材料和新结构材料合成等诸多领域得到重要应用,已成为当前纳米材料科学领域的前沿和热点。结合近年来国内外的最新研究进展对氧化铝微纳结构材料的制备方法、表征和物性研究等进行了综述,并对其发展趋势和前景进行了展望。 关键词 氧化铝 微纳结构 制备方法R esearch Progress of Micro/N ano 2structural Alumina Materials ZHU Zhenfeng ,SUN Hongjun ,L IU Hui ,YAN G Dong ,ZHAN G Jianquan ,GUO Liying (School of Materials Science and Engineering ,Shaanxi University of Science and Technology ,Xi ’an 710021)Abstract Alumina micro/nano 2structural materials are widely used as the adsorbents ,catalyst supports ,ce 2ramics ,abrasives and the build 2blocks for synthesizing the new structural materials by bottom 2up approach ,because of its unique properties such as specific morphology ,high specific surface area and dielectric constant ,high thermal and chemical stability and so on.In this paper ,the recent development of micro/nano 2structural alumina materials are re 2viewed with respect to the preparation ,characterization ,properties and the latest developments at home and abroad in recent years.Furthermore ,the development trends and prospects of the micro/nano 2structural alumina materials are proposed. K ey w ords Al 2O 3,micro/nano 2structure ,preparation methods  3国家自然科学基金(50772064);陕西科技大学研究生创新基金资助课题  朱振峰:1963年生,教授,博士生导师,主要从事纳米粉体的合成与制备 Tel :029********* E 2mail :zhuzf @https://www.docsj.com/doc/9b12133410.html, 0 引言 随着纳米科学和技术的发展,各种具有特殊形貌的纳米结构越来越引起人们的兴趣和重视。氧化铝微纳结构材料 作为一种具有特殊结构和复杂形貌的纳米结构材料,是近几年来化学和材料科学前沿的一个日益重要的研究领域。设计和可控合成氧化铝微纳结构材料之所以受到研究者们的广泛关注是因为它们具有许多独特的性质,如特殊的形貌和结构、稳定性、可控性、自组装以及涉及光、电、催化、化学和生物反应能力等。氧化铝微纳结构材料还由于其特殊的形貌、高比表面积[1]、高介电常数、高的热和化学稳定性等特性,以及可以作为构筑单元,采用自下而上的方法合成各种超级结构材料的性质,从而使其在吸收剂、催化剂载体、陶瓷材料、耐磨材料和新结构材料合成等诸多领域都得到重要应用。 相对于氧化锌等其它无机材料,对氧化铝微纳结构材料的合成和性能进行研究的报道较少,是一个新兴的领域。本文结合近年来国内外最新的研究进展,就不同制备方法合成的氧化铝微纳结构材料、合成材料的形貌以及物性和应用等方面作一综述。 1 制备方法 1.1 水热法 水热法提供了一个在常温常压条件下无法得到的特殊的物理化学环境,使前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶,由此促进反应的进行和各种形貌的形成,因此,水热法被广泛地应用于制备各种不同形貌的氧化铝微纳结构材料。在采用水热法制备氧化铝微纳结构材料的过程中,铝源的种类和物质的量、溶液的p H 值等都对最终产品的形貌有一定影响。另外,在水热过程中形成的一维结构也可以通过自组装的方法最终形成二维及三维结构。 (1)铝源的影响 在水热环境中铝源的种类及物质的量对产品的形貌有很大影响,通过改变铝源的种类及物质的量可以改变产品的形貌。J un Zhang 等[2]以AlCl 3?6H 2O 为铝源,将NaO H 水溶液逐滴加入到AlCl 3溶液中,然后将该混合溶液置于高压釜中200℃水热反应24h ,制得了直径约为60nm 、长为6~8 μm 的氧化铝纳米棒状结构。Taobo He 等[3]则以Al 2(NO 3)3?9H 2O 为铝源,通过控制Al (NO 3)3?9H 2O 的物质

纳米氧化铝的研究进展

1.5纳米氧化铝的研究进展 1.5.1氧化铝的性质 氧化铝是化学键力很强的离子键化合物。它有八种同质异形晶体:Q、B、Y、0、 q、8、K、X-A1203,其中主要的也是在工业中得到重要应用的是Q.A1203、B.A1203 和Y.A1203---种晶型。Y—A1203为低温稳定相,Q.A1203是熔点2050。C以下唯一的在任 何温度下都会稳定存在的相态,其它相态均为过渡相或不稳定相【74】。 Y.A1203属于立方晶系,尖晶石型结构,其中氧原子呈面心立方密堆积,铝原子不 规则地排列在由氧原子围成的八面体和四面体孔穴中。它的密度为3.30.3.639/cm3,只在 低温下稳定,在高温下不稳定,它不溶于水,但溶于酸或碱。y.A1203比表面很大,约 为200.600m2/g,具有强的吸附能力和催化活性,广泛用于吸附剂、催化剂和催化剂载体[751 O B.A1203是一种氧化铝含量很高的多铝酸盐,它的化学组成可近似地用RO.6A1203 或R20.1 1A1203来表示(RO为碱土金属氧化物,R20为碱金属氧化物),其结构由碱土 金属或碱金属离子层尖晶石结构单元交替堆积而成,氧离子排列成立方密堆积结构,Na+ 完全包含在垂直于c轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电,称钠离子导体。因此,13.A1203是一类重要的固体电解质【75J。 Q.A1203属于三方晶系,刚玉型结构,该结构可以看成氧离子按六方紧密排列,即ABABAB一二层重复型,而铝离子有序的填充于2/3的八面体间隙中,使其化学式成为A1203。Q.A1203熔点为2050。C,密度为3.90-4.019/cm3,模氏硬度为9。它的化学性质 稳定,不溶于水,也不溶于酸或碱,耐腐蚀且电绝缘性好,广泛应用于高硬度研磨材料、陶瓷材料、耐火材料和集成电路的基板等【75,76】。

纳米氧化铜在各领域的应用专利

纳米氧化铜在各领域的应用专利 1、纳米氧化铜在镍氢电池中的应用: 哈尔滨工业大学申请的“含纳米氧化铜的镍氢电池负极材料”专利号CN 20 0510010585.6有这样的记载:在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的重量。 2、纳米氧化铜掺杂对储氢合金电极性能的影响: 研究了掺杂纳米氧化铜VK-Cu01后储氢合金电极的电化学性能,CV、SEM结果表明,氧化铜在首次充电过程中被还原成低价态沉积在合金颗粒表面,由于氧化铜比容量远大于合金,可以通过掺杂氧化铜调节合金的储备容量。电化学测试结果表明,掺杂合金电极具有更好的高倍率充放电能力和循环性能。EIS分析结果表明,掺杂合金电极导电性增强,电化学活性提高。 3、纳米氧化铜在常温脱硫剂的应用: 哈尔滨工业大学申请的“纳米氧化铜的应用及其制备方法”专利号CN 20071 0071896.2,指出纳米氧化铜(VK-Cu01,99.9%)可作为常温脱硫剂的唯一组分。该纳米氧化铜在常温25-30℃条件下脱硫精度高,硫容高达18.3%-28.7%。比同等条件下的分析纯氧化铜硫容的4.-65倍,是纳米氧化锌硫容的4-8倍,是首选的常温脱硫剂。 4、纳米氧化铜在介孔脱硫剂的应用: 上海工业大学申请,专利号CN 200810041467.5介绍了用浸渍法将纳米氧化铜VK-Cu01均匀负载到介孔材料上,制备的纳米氧化铜脱硫剂具有超强的H2S 脱除能力,且避免飞温现象的发生,这种新型的纳米氧化铜脱硫剂将取代常用的氧化铁脱硫剂和氧化锌脱硫剂。 5、纳米氧化铜在抗菌方面的应用: 曲阜师范大学申请的“一种纳米氧化铜抗菌剂的制备方法”专利号CN 20081 0016322.X其中指出纳米氧化铜对金黄色葡萄球菌和枯草杆菌均具有较好的抗 菌作用。这种纳米氧化铜抗菌剂具有清洁、高效、能耗低、污染小。是一种新型的抗菌剂,可广泛使用在医药、纺织等领域。

纳米材料在现实生活中的应用

纳米材料属于纳米技术中的一种,是一种很特殊的材料。物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。纳米材料指的就是这种尺度达到纳米单位的、具备特殊性能的材料。它在现实生活中的应用广泛,包含以下几点: 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳

米材料的延展性的高性能陶瓷。 3、纳米传感器 纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。 4、纳米倾斜功能材料 在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。 5、纳米半导体材料 将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。 利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,然后生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能

纳米三氧化二铝的应用及研究进展

纳米三氧化二铝的应用及研究进展应化100130139 吕进 摘要:本文主要简述三氧化二铝的催化原理和他的结构、组成。简述其制备的方法和表征以及其使用情况。总的说来,三氧化二铝的制备分别有以下几中方法:碱法生产三氧化二铝;酸法生产三氧化二铝;电热法生产三氧化二铝。三氧化二铝的性质,包括比表面积、孔结构、晶体结构和形貌等,主要由其制备方法决定.。氧化铝包括了α型氧化铝和γ氧化铝。 关键词:三氧化二铝,催化原理,制备,表征,球花型介孔A12O3,X-射线衍射(XRD),Pt/A12O3的制备 Nano 3 oxidation the application and research progress Applied Chemistry 100130139 LV Jin Abstract: this paper mainly discusses the catalytic principle and his 3 oxidation 2 aluminium structure, composition. Briefly introduces the preparation and characterization of the method and the use. On the whole, the preparation of the 3 oxidation 2 aluminium respectively in the following methods: 3 oxidation 2 aluminium production process; Acid production by 3 oxidation 2 aluminium; Electric heating method production 3 oxidation 2 aluminium. 3 oxidation the properties, including specific surface area, pore structure, crystal structure and morphology, mainly by its preparation methods decision.. Alumina including α type alumina and gamma alumina. Key words:3 oxidation 2 aluminium, catalytic principle, preparation, characterization, the ball pattern mesoporous A12O3, X-ray diffraction (XRD), Pt/A12O3 preparation 1 组成 1 活性组分:三氧化二铝2载体:负载型催化剂3助催化剂: α-A12O3,γ- A12O3 2 结构 在α型氧化铝的晶格中,氧离子为六方紧密堆积,铝离子对称地分布在氧离子围成的八面体配位中心 3 催化原理 具有良好的孔径分布、较大的孔容和比表面积以及多种晶型的不同性能 4 制备 4.1 碱法生产A12O3 碱法的基本原理是使矿石中的A12O3与碱在一定条件下生成铝酸钠进入溶液,从而与二氧化硅和氧化铁等杂质分离,然后再使纯净的铝酸钠溶液分解析出Al(oH)3,经高温锻烧制得成品A12O3。 碱法生产A12O3又可分为拜耳法、烧结法、联合法。 4.2 酸法生产A1203 酸法是用适当的无机酸处理矿石使产生的相应铝盐(如AIC13、A12(S04)3、Al州03)3)进入溶液中,矿石中的氧化硅不与酸作用而残留于渣中;将铝盐进一步净化除铁后,使之分解得到Ab03。该法需要昂贵的耐酸设备,且所使用的酸回收十分困难,所以难以 用于大规模的工业化生产

纳米三氧化二铝粉体的制备与应用进展

2011年6月北京化工大学北方学院JUN.2011 北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 2008级纳米材料课程论文 题目: 纳米三氧化二铝的制备与应用进展 学院:理工学院专业:应用化学班级: 学号:姓名: 指导教师: 2011年6月6日

文献综述 前言 纳米材料一般是指在一维尺度小于100nm,并且具有常规材料和常规微细粉末材料所不具有的多种反常特性的一类材料。作为纳米材料的一种,Al2O3拥有小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应一切特殊性质,所以具备特殊的光电特性、高磁阻现象、非线性电阻现象、在高温下仍具有的高强度、高韧、稳定性好等奇异特性,从而使Al2O3近年来备受关注研究并且在催化、滤光、光吸收、医药、磁介质及新材料等领域有广阔的应用前景[1]。 近年来从用途大体可以把氧化铝分为两类:第一类是用作电解铝生产的冶金氧化铝,随着氧化铝材料的广泛应用该类氧化铝占产量的大多数;第二类为非冶金氧化铝,主要包括非冶金用的氢氧化铝和氧化铝,也是通常所说的特种氧化铝,因其作用不同而与冶金氧化铝有较大的区别,主要表现在纯度、化学成分、形貌、形态等方面。由于粒径细小,纳米氧化铝可用来制作人造宝石、分析试剂以及纳米级催化剂和载体,用于发光材料可较大的提高其发光强度,对陶瓷、橡胶增韧,要比普通氧化铝高出数倍,特别是提高陶瓷的致密性、光洁度、冷热疲劳等。纳米氧化铝已用于YGA激光器的主要部件和集成电路基板,并用在涂料中来提高耐磨性[2]。随着人们对自身健康的关注和环保意识的增强,绿色化学理念正在材料制备与应用领域备受关注[3]。

纳米氧化镍的制备及性能表征

晋中学院 本科毕业论文(设计) 题目超细纳米氧化镍的制备及性能 表征 院系化学化工学院 专业化学 姓名肖海宏 学号1309111134 学习年限2013年10月至2017年7月 指导教师吕秀清副教授 申请学位理学学士学位 2017年 4 月 10 日

超细纳米氧化镍的制备及研究性能 学生姓名:肖海宏指导教师:吕秀清 摘要:随着纳米技术和纳米材料的不断发展,纳米氧化物的研究已经达到了一定的水平。就电学和催化两方面而言,纳米氧化镍就具有非常好的性能,并且应用较为广泛,比如应用于制备催化剂的原材料,电池的电极,在材料学、化学化工领域中生产超级传感器、电容器等,在陶瓷方面用于添加剂和染色剂等。就本文的内容而言,主要针对纳米氧化镍的制备方法的进行分析探讨以及通过采用均匀沉淀法制备纳米氧化镍晶粒并使用TEM、XRD等仪器进行性能表征。 关键字:超细纳米氧化镍应用制备性能表征

Preparation And Characterization of Superfine NiO Nanometer Author’s Name: Xiao Haihong Tutor:Lv Xiuqing ABSTRACT:With the continuous development of nanotechnology and nanomaterials, nano-oxide research has reached a certain level. In terms of electrical and catalytic aspects, nano-nickel oxide has a very good performance, and the application is more extensive, such as the preparation of the catalyst for the preparation of raw materials, battery electrodes, in the field of materials, chemical and chemical production of super sensors, capacitors, etc. , In the ceramic for additives and stains and so on. In this paper, the preparation method of nano-nickel oxide was studied and the nano-nickel oxide grains were prepared by uniform precipitation method and characterized by TEM and XRD. KEYWORDS:Superfine NiO Application Preparation Performance characterizati

纳米氧化铝制备工艺技术

1. 200780101735 用于制备有控制结构与粒度的纳米多孔氧化铝基材料的方法和利用所述方法获得的纳米多孔氧化铝 2. 92104368 尺寸可控纳米、亚微米级氧化铝粉的制备方法 3. 95105843 纳米级氧化铝的生产工艺 4. 96117151 纳米添加氧化铝陶瓷的改性方法 5. 00125966 一种形态松散的纳米、亚微米级高纯氧化铝的制备方法 6. 01134059 纳米氢氧化铝的制备方法 7. 01126878 纳米尺寸的均匀介孔氧化铝球的合成方法 8. 01124685 一种作催化剂载体用的纳米级氧化铝及其制备方法 9. 01121545 高纯纳米级氧化铝的制备方法 10. 01113724 去除纳米氧化铝模板背面剩余铝的方法 11. 01132376 导电性纳米氮化钛-氧化铝复合材料的制备方法 12. 02139370 氧化铝纳米纤维的制备方法 13. 02138470 制备纳米材料的氧化铝模板及模板的制备方法 14. 02136111 利用氧化铝模板生长锗纳米线的方法 15. 02129021 纳米羟基磷灰石/氧化铝复合生物陶瓷的制备方法 16. 02116802 超纯纳米级氧化铝粉体的制备方法 17. 02109247 一种带有氧化铝壳的复合金属纳米粉末材料及其制备方法 18. 02138014 醇铝气相法制取纳米高纯氧化铝的方法 19. 200310106128 高纯纳米氧化铝纤维粉体制备方法 20. 03141495 一种氧化铝纳米纤维的制备方法 21. 03140530 一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法 22. 03129084 纳米氧化铝材料的制造方法 23. 03117871 纳米氧化铝胶体功能陶瓷涂料生产方法 24. 03800065 α-氧化铝纳米粉的制备方法 25. 03136606 一种纳米孔氧化铝模板的生产工艺 26. 03133529 纳米氧化铝浆组合物及其制备方法 27. 03102045 一种含有改性纳米级氧化铝的半合成烃类转化催化剂 28. 200480009462 纳米多孔超细α-氧化铝粉末及其溶胶-凝胶制备方法 29. 200420080270 一种去除纳米氧化铝模板背面铝层的装置 30. 200410063067 纳米氧化铝铜基体触头材料 31. 200410019998 一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法 32. 200410013256 一种无硬团聚的纳米氧化铝的制备方法 33. 200410010510 阳极氧化铝模板中一维硅纳米结构的制备方法 34. 200410067540 纳米氢氧化铝的制备方法 35. 200410077970 纳米氢氧化铝、粘土与乙烯-醋酸乙烯共聚物的阻燃复合材料

非金属矿物制品行业概述

第一章非金属矿物制品行业概述 1定义 一般认为,非金属矿,即非金属矿物材料,是指以非金属矿物和岩石为基本或主要原料,通过深加工或精加工制备的具有一定功能的现代新材料,它是无机非金属材料的一种,如功能填料和颜料、摩擦材料、密封材料、保温隔热材料、电功能材料、吸附催化材料、环保材料、胶凝与流变材料、聚合物/纳米黏土复合材料、建筑装饰材料等。而非金属矿物制品则是以这些非金属矿物材料经过进一步加工形成的产品。例如我们常见的建筑材料、玻璃、人造金刚石、磨料磨具、石棉制品等。 2 发展历史 3 特征 现代非金属矿物制品具有以下主要特征: 1、原料或主要组分为非金属矿物或经过选矿或初加工的非金属矿物。 2、一般来说,与同样用非金属矿物为原料生产的硅酸盐材料(水泥、玻璃、陶瓷等)以及无机化工产品(如硫化钡、氯化钡、碳酸锶、氧化铝等)不同,非金属矿物没有完全改变非金属矿物原料或主要组分的物理、化学特性或结构特征。 3、非金属矿物制品是通过深加工或精加工制备的功能性制品。因此,非金属矿物制品具有一定的技术含量和明确的用途,不能直接应用的原矿和初加工产品不属于非金属矿物制品的范畴。当然,深加工或精加工是一个相对的概念,随着科学技术的发展和社会的进步,其内涵也将发生变化。 4 分类

非金属矿物制品一般按照不同的特征分为如下几类:①水泥制品和石棉水泥制品业。包括水泥制品业、砼结构构件制造业、石棉水泥制品业、其他水泥制品业等。②砖瓦、石灰和轻质建筑材料制造业。包括砖瓦制造业、石灰制造业、建筑用石加工业、轻质建筑材料制造业、防水密封建筑材料制造业、隔热保温材料制造业、其他砖瓦、石灰和轻质建筑材料制品等。③玻璃及玻璃制品业。包括建筑用玻璃制品业、工业技术用玻璃制造业、光学玻璃制造业、玻璃仪器制造业、日用玻璃制品业、玻璃保温容器制造业、其他玻璃及玻璃制品业等。④陶瓷制品业。包括建筑、卫生陶瓷制造业、工业用陶瓷制造业、日用陶瓷制造业、其他陶瓷制品业等。⑤耐火材料制品业。包括石棉制品业、云母制品业、其他耐火材料制品业等。⑥石墨及碳素制品业。包括冶金用碳素制品业、电工用碳素制品业、其他石墨及碳素制品业等。⑦矿物纤维及其制品业。包括玻璃纤维及其制品业、玻璃钢制品业、其他矿物纤维及其制品业等。⑧其他类未包括的非金属矿物制品业。包括砂轮、油石、砂布、砂纸、金钢砂等磨具、磨料的制造,晶体材料的生产等。 5用途 非金属矿物制品是人类利用最早的。原始人使用的石斧、石刀等都是用无机非金属矿物或者岩石材料制备的。但是,在现代科技革命和新兴产业发展之前的人类文明进化过程中,基本上是以金属材料为主导,随着现代科技进步、人类生活水平的提高和环境保护意识的觉醒,开创了应用非金属制品的新时代。 目前,非金属矿物制品广泛应用于化工、机械、能源、汽车、轻工、食品加工、冶金、建材等传统产业以及航空

纳米级氧化铝

纳米级氧化铝 纳米氧化铝显白色蓬松粉末状态,晶型是γ-Al2O3。粒径是20nm;比表面积≥230m2/g。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。极好分散,在溶剂水里面;溶剂?乙醇、丙醇、丙二醇、异丙醇、?乙二醇单丁醚、丙酮、丁酮、苯、二甲苯内,不需加分散剂,搅拌搅拌即可以充分的分散均匀。在环氧树脂,塑料等中,极好添加使用。 透明陶瓷:高压钠灯灯管、EP-ROM窗口;化妆品填料;单晶、红宝石、蓝宝石、白宝石、钇铝石榴石;高强度氧化铝陶瓷、C基板、封装材料、刀具、高纯坩埚、绕线轴、轰击靶、炉管;精密抛光材料、玻璃制品、金属制品、半导体材料、塑料、磁带、打磨带;涂料、橡胶、塑料耐磨增强材料、高级耐水材料;气相沉积材料、荧光材料、特种玻璃、复合材料和树脂材料;催化剂、催化载体、分析试剂;宇航飞机机翼前缘。 行业领导者 上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。 那博研发团队优势 从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。 ? 通过提升产品设计以改进性能 ? 更短的加工周期以提高生产力 ? 成本优势和出众的性能 ?领先的实验设备 消费者 作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。 商业伙伴 我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。

氧化镍和氮化镍纳米颗粒的制备

毕业论文 题目氧化镍和氮化镍纳米颗粒的制备学院化学化工学院 专业化学工程与工艺 班级 学生 学号 指导教师 二〇一五年月日

摘要 纳米氧化镍、氮化镍在电磁学、催化等方面具有高活性、高选择性等一系列优异的性质,被广泛应用于磁性材料领域、气体传感领域、燃料电池领域和催化领域,是比较有前景的功能性无机材料。本文一方面探索直接利用液相法制备氧化镍,以克服传统的两步法制备氧化镍----先制备前躯体再通过高温热处理----的缺点;另一方面,也对纳米氮化镍的制备进行了初步探索。实验以硫酸镍和氯化镍两种镍盐为镍源,以蒸馏水和无水乙醇为溶剂,探索了反应时间、温度、有无沉淀剂和表面活性剂对产物的影响。所制备的产物通过X射线衍射(XRD)、紫外可见吸收光谱(UV-vis)等手段进行了表征,并进一步对所获得的数据进行了分析。 关键词:纳米氧化镍;一步溶剂热法;氮化镍

ABSTRACT Because of the highly active, high selectivity and a series of excellent properties of the nano nickel oxide and nano nickel nitride in electromagnetics, chemistry, so widely applied in the field of magnetic materials, gas sensing and catalysis, fuel cell areas, is a more promising functional inorganic material. In this paper, on the one hand, explore direct nickel oxide prepared by liquid phase method, to overcome the shortcomings of the traditional two-step preparation of nickel oxide: Preparation before the body first, then through the high temperature heat treatment. On the other hand, for the preparation of nanometer nickel nitride has carried on the preliminary exploration. Experiment with nickel sulfate and nickel chloride as the source of nickel, with distilled water and anhydrous ethanol as solvent, to explore the reaction time, temperature, presence of precipitant and the influence of surfactants on product. The preparation of the product by X-ray diffraction (XRD), UV-vis absorption spectra have been characterized, and further analyses the data obtained. Keywords:nickel oxide; one step solvothermal; nitride nickel

纳米氧化铝项目可行性研究报告

纳米氧化铝项目 可行性研究报告 xxx科技发展公司

纳米氧化铝项目可行性研究报告目录 第一章概况 第二章项目必要性分析 第三章市场研究分析 第四章产品规划方案 第五章选址评价 第六章土建方案说明 第七章工艺技术方案 第八章环境保护概述 第九章职业保护 第十章项目风险评价 第十一章节能说明 第十二章实施计划 第十三章投资情况说明 第十四章项目经营收益分析 第十五章招标方案 第十六章项目总结、建议

第一章概况 一、项目承办单位基本情况 (一)公司名称 xxx科技发展公司 (二)公司简介 公司全面推行“政府、市场、投资、消费、经营、企业”六位一体合作共赢的市场战略,以高度的社会责任积极响应政府城市发展号召,融入各级城市的建设与发展,在商业模式思路上领先业界,对服务区域经济与社会发展做出了突出贡献。 公司拥有优秀的管理团队和较高的员工素质,在职员工约600人,80%以上为技术及管理人员,85%以上人员有大专以上学历。 公司将加强人才的引进和培养,尤其是研发及业务方面的高级人才,健全研发、管理和销售等各级人员的薪酬考核体系,完善激励制度,提高公司员工创造力,为公司的持续快速发展提供强大保障。 (三)公司经济效益分析 上一年度,xxx有限公司实现营业收入13688.62万元,同比增长 31.01%(3240.38万元)。其中,主营业业务纳米氧化铝生产及销售收入为11931.28万元,占营业总收入的87.16%。

根据初步统计测算,公司实现利润总额2992.25万元,较去年同期相比增长379.29万元,增长率14.52%;实现净利润2244.19万元,较去年同期相比增长229.81万元,增长率11.41%。 上年度主要经济指标 二、项目概况

我国分子筛行业发展趋势分析pdf

我国分子筛行业发展趋势分析 作者:席晓晨、鲁向前 狭义上讲,分子筛是结晶态的硅酸盐或硅铝酸盐,它具有由硅氧四面体SiO 4通过氧桥键相连而形成分子尺寸大小(通常为0.3-2.0nm)的和铝氧四面体AlO 4 孔道和空隙体系,从而具有筛分分子的特性。广义上讲,分子筛是具有规则而均匀孔道结构的多孔化合物或多孔材料。根据分子筛孔径的大小划分,分别有小于2nm、2-50nm和大于50nm的分子筛,分别称为微孔、介孔和大孔分子筛。从发展过程看,分子筛主要经历了传统沸石、介孔材料和复合分子筛三个阶段。随着研究的深入, 人们发现分子筛的骨架硅或铝也可由Fe、Cr、Ge、Ti、Mn、Co、Zn、Be、Cu 等原子取代,其孔径和孔腔也可达到2nm以上。分子筛同时又经历了从低硅到高硅,从无机多孔骨架到金属有机多孔骨架的发展历程。 1、国外分子筛研究开发的简要回顾与展望:分子筛是一种战略新材料 1.1 国外开发进展简要回顾 上世纪50年代(1954年),美国联合碳化学公司(UCC)首次开发出合成沸石分子筛,称为第一代沸石分子筛。 上世纪70年代(1972年),美国Mobil公司的研究人员开发出由Zeolites Socony Mobil缩写命名的ZSM系列高硅铝比沸石分子筛,称为第二代沸石分子筛。 上世纪80年代(1984年),美国联合碳化学公司(UCC)的研究人员将硅元素引入AlPO-4分子筛中合成出一系列磷酸硅铝分子筛(SAPO),称为第三代沸石分子筛。 上世纪90年代(1992年),美国Mobil公司的研究人员采用较长链烷烃或芳烃的季铵盐阳离子表面活性剂作为模板剂首次合成出MCM系大孔径分子筛。 据国际分子筛学会(IZA)的统计:1970年微孔化合物的结构类型共有27种,1978年上升为38种,1988年上升至64种,1996年又上升至98种,2003年已达145种1。截止2005年2月,已达到169种2。由于骨架组成元素的大量扩展(从沸石的1徐如人、庞文琴等著:《分子筛与多孔材料化学》第1章第1页,科学出版社,2004年3月第一版。

纳米氧化铝的研究

纳米氧化铝的研究及应用 [摘要] 纳米技术是当今世界最有前途的决定性技术,纳米科学与技术将对其他学科、产业和社会产生深远的影响。文章概述了纳米氧化铝的结构、性能、用途、制备等方面,更深入地了解了纳米氧化铝材料,并展望了纳米氧化铝材料的应用前景。 [关键字] 纳米氧化铝结构性能用途制备方法 [前言] 近年来, 纳米氧化铝材料备受到人们普遍关注,其广阔的应用前景引起了世界各国科技界和产业界的高度关注,因此作为21世纪具有发展前途的功能材料和结构材料之一,纳米氧化铝材料一直都是纳米材料研究领域的热点。 1 纳米氧化铝的结构与性质 Al2O3有很多同质异晶体,常见的有三种,即:α- Al2O3、β- Al2O3、γ- Al2O3。除β- Al2O3是含钠离子的Na2O-11Al2O3外,其他几种都是Al2O3的变体。β- Al2O3、γ- Al2O3晶型在1000~1600℃条件下,几乎全部转变为α- Al2O3。 ①α-Al2O3 α- Al2O3为自然界中唯一存在的晶型,俗称刚玉。天然刚玉一般都含有微量元素杂质,主要有铬、钛等因而带有不同颜色。刚玉的晶体形态常呈桶状、柱状或板状,晶形大都完整,具玻璃光泽。α- Al2O3

属六方晶系,氧离子近似于六方密堆排列,即ABAB???二层重复型。在每一晶胞中有4个铝离子进入空隙,下图为α- Al2O3结构中铝离子填入氧离子紧密堆积所形成的八面体间隙。 由于具有较高的熔点、优良的耐热性和耐 磨性,α- Al2O3被广泛的应用在结构与功 能陶瓷中。 ②β- Al2O3 β- Al2O3是一种含量很高的多铝酸盐矿物,它不是一种纯的氧化铝,其化学组成可近似用MeO-6 Al2O3和Me2O-11Al2O3表示(MeO 指CaO、BaO、SrO等碱土金属氧化物;Me2O指的是Na2O、K2O、Li2O)。β- Al2O3(Me2O-11Al2O3)由[NaO]-层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,钠离子完全包含在[Na0]-层平面内,并且可以很快扩散。适当条件下,它具有很高的离子电导率,因而被广泛地应用于电子手表、电子照相机、听诊器和心脏起博器的生产中。 ③γ- Al2O3 γ- Al2O3是最常见的过渡型氧化铝,属立方晶系,为尖晶石结构,在自然界中是不存在的物质。由氧离子形成立方密堆积,Al3+填充在间隙中。γ- Al2O3得密度为3.42~3.62g/ cm3,在1000℃时可以缓慢的转变为α- Al2O3,是水铝矿(Al2O3?H2O或Al2O3?3H2O)或氢氧化铝在加热中生成的过渡氧化铝物质。γ相粒子主要用途是作为催化剂的载体,目前多采用在γ相中添加稀土元素等微量元素来改善它的表面

纳米氧化铜的制备及应用前景

(1)以硝酸铜为原料、氢氧化钠.碳酸钠混合溶液为沉淀剂,采用直接沉淀法,通过反应沉淀、过滤、洗涤、干燥、焙烧,制备纳米氧化铜的工艺技术是可行的。通过单因素、正交试验分析,综合考虑产品粒径和制备过程铜收率,得到沉淀反应过程适宜的工艺条件组合是:反应温度25℃,沉淀剂浓度O.5mol/L,反应时间20min,沉淀剂用量1.5:1 ;适宜的焙烧条件是:400℃下焙烧2小时;此时铜收率可达97%以上,产品粒径可达14nm(2)以硬脂酸钠为改性剂对纳米氧化铜粉体进行表面改性处理,各工艺条件较适宜的取值范围为:改性剂用量6~8%;改性时间20~30min;改性温度55~65℃:pH值7.5~8.0。 以十二烷基苯磺酸钠为改性剂对纳米氧化铜粉体进行表面改性处理,各工艺条件较适宜的取值范围为:改性剂用量6~lO%;改性时间20~30min;改性温度25~35℃;pH值7.5~8.0。 第一章 综 述 1.1纳米氧化铜的性质、用途及国内外研究现状 1.1.1纳米粒子的基本物理效应㈣’1∞ 当粒子的尺寸进入纳米数量级(1~100m)时,其本身就会具有表面效应、 体积效应、量子尺寸效应和宏观量子隧道效应,因而表现出许多一般固体材料所不具备的奇特物性,主要包括光学、电学、磁学、热学、催化和力学等性质。1.表面效应粒子表面原子与内部原子所处的环境不同,当粒子减小,粒子直径进入纳米数量级时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表面能和表面结合能都会发生很大的变化。人们把由此引起的特殊效应统称为表面效 应。 一般情况下,随着粒径的减小,粒子的表面原子数迅速增加,比表面积急剧变大,表面效应不容忽略。从物理概念上讲,表面原子与体内原子不~样,表面原子的能量比体内原子要高,因此纳米粉体具有高的表面能。以纳米铜微粒为例, 当铜微粒粒径由100m逐渐减小为1mn时,纳米铜微粒的比表面积、表面原子 数分率和比表面能随粒径的变化如表1.1所示。 表卜1 纳米铜微粒的比表面积、表面原子数分率和比表面能随粒径的变化 4 2.体积效应 当物质的体积减小时,.将会出现两种情况:一种是物质本身的性质不发生变化,而只是与体积密切相关的性质发生变化,如对于半导体材料来说,其电子自由程变小;另一种是物质本身的性质也发生了变化。因为纳米微粒是由有限个原子或分子组成的,它改变了物质原来由无数个原子或分子组成的属性,所以纳米材料的性质发生了很大的变化。这就称为纳米粒子的体积效应。 3.量子尺寸效应 当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道能级、能隙变宽的现象均称为量子尺寸效应。在纳米半导体中,量子尺寸效应的存在使得银纳米微粒在达到一定尺度时由导体变为绝缘体;而半导体二氧化钛禁带宽度在粒径小到纳米级时显著变宽。在纳米磁性材料中,随着晶粒尺寸的减小,样品的磁有序状态将发生本质性的变化。粗晶状态下的铁磁性材料,当颗粒尺寸小于某一临界值时可以转变为超顺磁状态。这种奇特的磁性转变主要是由量子尺寸效应造成的,从而使得纳米材料与常规的多晶材料在磁性结构上存在很大的差异。4.宏观量子隧道效应宏观物体,当动能低于势能的能垒时,根据经典力学规律是无法逾越势垒的;而对于微观粒子,如电子,即使势垒远较粒子动能高,量子力学计算表明,粒子的态函数在势垒中或势垒后就非零,这表明微观粒子具有进入和穿越势垒的能力,称之为隧道效应。宏观物理量如磁化强度等,在纳米尺度时将会受到微观机制的影响,也即微观的量子效应可以在宏观物理量中表现出来,称之为宏观量子 隧道效应。 早期人们曾在研究中用宏观量子隧道效应来解释镍超微粒子在低温继续保持超顺磁性。近年来人们发现Fe.Ni薄膜中畴壁运动速度在低于一

纳米氧化镍综述

纳米氧化镍综述 1、氧化镍性质 氧化镍的化学式为NiO,是一种绿色至黑绿色立方晶系粉末,密度为 6.6---6.89/cm3,熔点为1984℃,溶于酸和氨水,不溶于水和碱液。Ni原子周围有6个O原子,O原子周围也有6个Ni原子,他们的配位数均为6。由于多面体的型式主要取决于正负半径比,且Ni2+的半径值为69pm,0的半径值为140pm,正负离子的比值为0.1507,大于O.1414,所以得出氧化镍是八面体配位,也是由于这样的特殊结构成为了氧化镍不导电的主要原因。过渡金属氧化物P型半导体 2、应用 2.1催化剂 乙烷脱氢制乙烯的反应过程中作为催化剂,在甲酸盐分解中的非凡催化作用 2.2纳米NiO在光电材料方面的应用 能产生3.55eV的不连续光带,呈现出很强的原子电致变色特性。以此材料制成的灵巧窗不仅可根据季节的变化改变最佳光,还可以实现对光能控制的智能化;以此材料制成的反光镜用于汽车后视镜,可以根据改变电致变色层的吸收特性达到强光照射下的无炫光效果,已成为美国多数汽车制造商提供的标准配置。 2.3纳米NiO在电池、电极材料方面的应用 普通氧化镍蓄电池放电30min后,其端电压就接近衰竭,而纳米氧化镍蓄电池到了90min以后才出现衰竭,表现出良好的放电性能。产生这一现象的原因是因为这些纳米微粒与导电材料分布于正极活性物质的空隙中,这样既有利于电子电荷的传递,也有利于离子电荷的传递。并且其小尺寸效应增加了活性物质的空隙率和反应的表面积。普通氧化镍蓄电池一开始就表现为较大电流的充电,而纳米氧化镍蓄电池则表现为小电流充电,60min后电流趋于相等,表现出良好的充电性能。因此纳米氧化镍蓄电池具有优良的应用前景。有研究表明颗粒状氧化镍比针形氧化镍具有更好的电化学性能和更高的比电容. 2.4新型光电化学太阳能电池(DSSC)中的应用 为了提高DSSC效率和稳定性,HeJia~un等¨考虑到NiO作为P型半导体具有稳定性和宽带隙等优点而首次将其作为DSSC 中的阴极。 2.5在电化学电容器中的应用 过渡金属氧化物RuO ,IrO等作为电极材料虽具有较大比容,但由于高成本限制了其商品化。LiuXianming等制成的海胆状纳米NiO电极材料具有典型的电容性能,恒流充放电实验证明电极材料比容可达290F/g,循环使用500次以后仍具有217F/g。WangYonggang 等。。利用复制模板SBA一15合成的有序中空结构纳米NiO电容量可达120F/g。还有一种复合材料制作的电池如

相关文档