文档视界 最新最全的文档下载
当前位置:文档视界 › 2008第37届美国数学奥林匹克 英文版答案

2008第37届美国数学奥林匹克 英文版答案

2008第37届美国数学奥林匹克 英文版答案
2008第37届美国数学奥林匹克 英文版答案

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N . 〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; 〔2〕假设 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解〔1〕设Q ,R 分不是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,那么 11 ,22EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,因此 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,因此 ABD ACD ∠=∠, 因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ?=?. 〔2〕答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么 11 ,22 NS OD EQ OB ==, C B

因此 NS OD EQ OB =.①又 11 , 22 ES OA MQ OC ==,因此 ES OA MQ OC =.② 而AD∥BC,因此 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 因此NSE ?~EQM ?, 故 EN SE OA EM QM OC ==〔由②〕.同理可得, FN OA FM OC =, 因此EN FN EM FM =, 从而EM FN EN FM ?=?. C B

AMC/AIME美国数学竞赛 试题真题

AMC/AIME美国数学竞赛试题真题 考试信息 AMC最新考试时间: ●2010年第26届AMC8于 11月16日,星期二 ●2011第12届AMC10A,第62届AMC12A 于2月8日,星期二 ●2011第12届AMC10B,第62届AMC12B 于2月23日,星期三 ●2011第29届AIME-1于3月17日,星期四 2011第29届AIME-2于3月30日,星期三 ●2009年AMC8考试情况

●2008年考试情况 AMC/AIME中国历程: 1983第1届AIME上海有76名同学获得参赛资格 1984年第2届AIME有110人获得参赛资格 1985年第3届AIME北京有118名同学获得参赛资格 1986年第4届AIME上海有154名同学获得参赛资格,我国首次参加IMO的上海向明中学吴思皓就是在第四届AIME中获得满分 1992年第10届AIME上海有一千多名同学获得参赛资格,其中格致中学潘毅明,交大附中张觉,上海中学葛建庆均获满分1993年第11届AIME上海有一千多名同学获得参赛资格,其中华东师大二附中高一王海栋,格致中学高二(女)黄静,市西中学高二张

亮,复旦附中高三韩志刚四人获得满分,前三名总分排名复旦附中41分,华东师大二附中41分,上海中学40分。 北京地区参加2006年AMC的共有7所市重点学校的842名学生,有515名学生获得参加AIME资格,其中,清华附中有61名学生参加AMC,45名学生获得AIME资格,20名学生获得荣誉奖章 据悉中国大陆以下地区可以报名参加考试: 北京地区:中国数学会奥林匹克委员会负责组织实施 长春地区、哈尔滨地区也有参加考试 在华举办的美国人子弟学校也有参加考试广州地区:《数学奥林匹克报》负责组织实施。 在中国大陆报名者就在中国大陆考试。考题采用英文版。 2009年AMC中国地区参赛学校一览表

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题 1.(保加利亚) 设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。试证:AM 、DN 和XY 三线共点。 证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。须证:Q 与Q ′重合。 由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90° 进而,Q ,M ,Z ,B 四点共圆。 同理Q ′,N ,Z ,B 四点共圆。 这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。 所以,QP= Q ′P 。而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。命题获证。 分析二* 如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。 证法二:设X (0,m ),P (0,y 0), ∠PCA=α, m 、y 0是定值。有2 0.yx x x ctg y x C A c =?-=但α, 则.0 2 αtg y m x A -= 因此,AM 的方程为 ).(0 2 ααtg y m x ctg y ?+=

令0 2,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。 2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。试证: .2 3)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a , 有.0=++γβα于是, ) (4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c a b c a c b a b c c b a a b c +++++= 112 111121111211)()()(------------+++++++++++=b a b a c c b c b c b γαβα 21112 1112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a .6132)111(23=?≥++≥abc c b a ∴原不等式成立。 背景资料:陕西省永寿县中学安振平老师在《证明不等式的若干代换技巧》一文中运用“增量代换”给出证法一,还用增量代换法给出第 6届IMO 试题的证明。什么是增量代换法?—— 由α≤+=≥0,,其中令a b a b a 称为增量。运用这种方法来论证问题,我们称为增量代换法。 题1 设c b a ,,是某一三角形三边长。求证: .3)()()(222abc c b a c b a c b a c b a ≤-++-++-+ (第6届IMO 试题) 证明 不失一般性,设.,0,0,0,,,y x z y x z y x c y x b x a >≥≥>++=+==且 abc c b a c b a c b a c b a 3)()()(222--++-++-+则 + ++++-+++++-++++=x z y x y x x z y x y x x z y x y x x [)()]()[()(])()[(222

历届东南数学奥林匹克试题

目录 2004年东南数学奥林匹克 (2) 2005年东南数学奥林匹克 (4) 2006年东南数学奥林匹克 (6) 2007年东南数学奥林匹克 (9) 2008年东南数学奥林匹克 (11) 2009年东南数学奥林匹克 (14) 2010年东南数学奥林匹克 (16) 2011年东南数学奥林匹克 (18) 2012年东南数学奥林匹克 (20)

2004年东南数学奥林匹克 1.设实数a、b、c满足a2+2b2+3c2=32,求证:3?a+9?b+27?c≥1. 2.设D是△ABC的边BC上的一点,点P在线段AD上,过点D作 一直线分别与线段AB、PB交于点M、E,与线段AC、PC的延长线交于点F、N.如果DE=DF,求证:DM=DN. 3.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. (2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有 a n+12≥2a n a n+2. 4.给定大于2004的正整数n,将1,2,3,?,n2分别填入n×n棋盘(由n行n列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.求棋盘中“优格”个数的最大值. 5.已知不等式√2(2a+3)ccc(θ?π4)+6ssnθ+ccsθ?2csn2θ<3a+ 6对于θ∈?0,π2?恒成立,求a的取值范围. 6.设点D为等腰△ABC的底边BC上一点,F为过A、D、C三点的 圆在△ABC内的弧上一点,过B、D、F三点的元与边AB交于点E.求证:CD?EE+DE?AE=AD?AE. 7.N支球队要矩形主客场双循环比赛(每两支球队比赛两场,各有 一场主场比赛),每支球队在一周(从周日到周六的七天)内可以进

中国数学奥林匹克(CMO)试题和详细解答word版

2009中国数学奥林匹克解答 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N . (1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接 EQ ,MQ ,FR ,MR ,则 11 ,22 EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形,所以 OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆,所以 ABD ACD ∠=∠, 于是 图1 22EQO ABD ACD FRO ∠=∠=∠=∠, 所以 E Q M E Q O O Q M F R O O R M ∠=∠+∠=∠+∠=∠, 故 E Q M M R F ???, 所以 EM =FM , 同理可得 EN =FN , 所以 E M F N E N F M ?=?. (2)答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则 11 ,22 NS OD EQ OB ==, 所以 N S O D E Q O B =. ① C B

又 11 , 22 ES OA MQ OC ==,所以 ES OA MQ OC =.② 而AD∥BC,所以 OA OD OC OB =,③ 由①,②,③得NS ES EQ MQ =. 因为2 NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠, ()(1802) EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+?-∠ (180)2 AOE EOB AOD AOE =∠+?-∠=∠+∠, 即NSE EQM ∠=∠, 所以NSE ?~EQM ?, 故 EN SE OA EM QM OC ==(由②).同理可得, FN OA FM OC =, 所以EN FN EM FM =, 从而EM FN EN FM ?=?. C B

2008第26届美国数学邀请赛AIME1中英文对照重点

《数学奥林匹克报》 Mathematical Olympiad Express https://www.docsj.com/doc/7714857761.html, 26th Annual American Invitational Mathematics Examination 2008 第 26 届美国数学邀请赛(AIME1 2008 年 3 月 18 日注意: 1,直到监考老师给出信号方可答题. 2,本卷共 15 道题,答题时间 3 小时.每题的答案都是 000~999 之间的整数.如果某题你的答案是 7, 请在相应位置涂黑 007;如果某题你的答案是 43,请在相应位置涂黑 043.你答对的题数就是你的得分,每题没有部分得分,做错也不倒扣分. 3,可以使用草稿纸,方格纸,直尺,圆规,量角器,橡皮.特别地,不许使用计算器和计算机. 4,AIME 与 AMC10 或 AMC12 的总分将用来决定美国数学奥林匹克(USAMO的参赛资格. 2008 第 37 届USAMO 于 4 月 29 日~30 日举行. 5,请把试题答案和相关信息填涂于 AIME 答题卡. 6,答题卡请用 2B 铅笔在相应的圆圈内涂黑,方框处可用签字笔书写. 7,答题卡不许折叠,不许使用涂改液,涂改带.若需修改请用橡皮擦拭干净后再修改. 8,请不要忘记答题卡背面的签名(先英文再中文"Yes"处也请涂黑. , 9,Last Name 姓,First Name 名,Gender 性别,Female 女,Male 男简体中文版试题 1,在参加学校聚会的学生中,60%的学生是女生,40%的学生喜欢跳舞.随后又多了 20 名都会跳舞的男生,现在聚会的 人中有 58%是女生.那么现在聚会的人中有多少人喜欢跳舞? 2,正方形 AIME 的边长为 10,等腰△ GEM 的底是 EM ,且△ GEM 与正方形 AIME 的公共部分的面积为 80.求△ GEM 的底 EM 上的高. 3,艾德和苏骑自行车的速度相等且恒定,他们慢跑的速 度也是相等且恒定,他们游泳的速度也是相等且恒定.艾德在骑车 2 小时,慢跑 3 小时,游泳 4 小时后共行 74 千米,苏在慢跑 2 小时,游泳 3 小时, 骑车 4 小时后共行 91 千米.他们骑车,慢跑,游泳的速度都是以每小时整千米数行进.求艾德骑车, 慢跑,游泳的速度的平方和. 普及数学知识,传播奥林文化,快递竞赛信息. 《数学奥林匹克报》 Mathematical Olympiad Express 2 2 https://www.docsj.com/doc/7714857761.html, 4,存在唯一的正整数 x , y 满足方程 x + 84 x + 2008 = y .求 x + y . 5,圆锥的底面圆半径为r ,高为 h .把此圆锥的侧面平放于桌面,它沿着桌面无滑动地滚动.当圆锥再次回到起始位置时正好滚动 17 周,这时圆锥的底座边沿在桌面上形成一个以圆锥顶点为圆心的圆弧. 比值 h 能写成 m n 的形式,其中 m , n 是正整数且 n 不能被任何质数的平方 整除.求 m + n . r 6,三角形阵列中的第一行数字按照奇数1,3,5,……,99 的递增顺序书写,在第一行下面的每一行比上一行少一个数字,最底部的一行只有一个数字.每行的

2007年第6届中国女子数学奥林匹克(CGMO)试题(含答案)

2007年女子数学奥林匹克 第一天 1.设m 为正整数,如果存在某个正整数n ,使得m 可以表示为n 和n 的正约数个数(包括1和自身)的商,则称m 是“好数”。求证: (1)1,2,…,17都是好数; (2)18不是好数。 2.设△ABC 是锐角三角形,点D 、E 、F 分别在边BC 、CA 、AB 上,线段AD 、BE 、CF 经过△ABC 的外心O 。已知以下六个比值 DC BD 、EA CE 、FB AF 、FA BF 、EC AE 、DB CD 中至少有两个是整数。求证:△ABC 是等腰三角形。 3.设整数)3(>n n ,非负实数.2,,,2121=+++n n a a a a a a 满足 求1 112 1232 221++++++a a a a a a n 的最小值。 4.平面内)3(≥n n 个点组成集合S ,P 是此平面内m 条直线组成的集合,满足S 关于P 中的每一条直线对称。求证:n m ≤,并问等号何时成立? 第二天 5.设D 是△ABC 内的一点,满足∠DAC=∠DCA=30°,∠DBA=60°,E 是边BC 的中 点, F 是边AC 的三等分点,满足AF=2FC 。求证:DE ⊥EF 。 6.已知a 、b 、c ≥0,.1=++c b a 求证: .3)(4 1 2≤++-+ c b c b a 7.给定绝对值都不大于10的整数a 、b 、c ,三次多项式c bx ax x x f +++=2 3)(满足条件32:.0001.0|)32(|+<+问f 是否一定是这个多项式的根?

8.n 个棋手参加象棋比赛,每两个棋手比赛一局。规定:胜者得1分,负者得0分,平局各得0.5分。如果赛后发现任何m 个棋手中都有一个棋手胜了其余m —1个棋手,也有一个棋手输给了其余m —1个棋手,就称此赛况具有性质P (m ). 对给定的)4(≥m m ,求n 的最小值)(m f ,使得对具有性质)(m P 的任何赛况,都有所有n 名棋手的得分各不相同。 综上,最少取出11枚棋子,才可能满足要求。 三、定义集合}.,|1{P k m k m A ∈∈+=+N 由于对任意的k 、1 1, ,++≠∈i k i k P i 且是无理数,则对任意的k 1、P k ∈2和正整数 m 1、m 2, .,1121212211k k m m k m k m ==?+=+ 注意到A 是一个无穷集。现将A 中的元素按从小到大的顺序排成一个无穷数列。对于任意的正整数n ,设此数列中的第n 项为.1+k 接下来确定n 与m 、k 间的关系。 若.1 1,1111++≤+≤+i k m m k m i m 则 由m 1是正整数知,对5,4,3,2,1=i ,满足这个条件的m 1的个数为].1 1[++i k m 从而,).,(]1 1[5 1 k m f i k m n i =++= ∑= 因此,对任意.),(,,,n k m f P k N m N n =∈∈∈++使得存在

第32届中国数学奥林匹克获奖名单及2017年集训队名单

第32届中国数学奥林匹克获奖名单 一等奖(116人,按省市自治区排列) 编号姓名地区学校 M16001 吴蔚琰安徽合肥一六八 M16002 考图南安徽安师大附中 M16003 徐名宇安徽合肥一中 M16004 吴作凡安徽安师大附中 M16005 周行健北京人大附中 M16006 王阳昇北京北京四中 M16007 陈远洲北京北师大附属实验中学M16008 杨向谦北京人大附中 M16009 夏晨曦北京北师大二附 M16010 谢卓凡北京清华附中 M16011 薛彦钊北京人大附中 M16012 胡宇征北京北京四中 M16013 徐天杨北京北京101中学 M16014 董昕妍北京人大附中 M16015 冯韫禛北京人大附中 M16016 林挺福建福建师范大学附属中学M16017 任秋宇广东华南师大附中 M16018 何天成广东华南师大附中 M16019 戴悦浩广东华南师大附中 M16020 谭健翔广东华南师大附中 M16021 王迩东广东华南师大附中 M16022 程佳文广东深圳中学 M16023 李振广东深圳外国语学校 M16024 张坤隆广东深圳中学 M16025 齐文轩广东深圳中学 M16026 卜辰璟贵州贵阳一中 M16027 顾树锴河北衡水第一中学 M16028 袁铭泽河北衡水第一中学 M16029 卢梓潼河北石家庄二中 M16030 赵振华河南郑州外国语学校 M16031 陈泰杰河南郑州外国语学校

M16032 迟舒乘黑龙江哈尔滨市第三中学 M16033 黄桢黑龙江哈尔滨市第三中学 M16034 姚睿湖北华中师范大学第一附属中学M16035 魏昕湖北武汉二中 M16036 黄楚昊湖北武钢三中 M16037 刘鹏飞湖北武汉二中 M16038 赵子源湖北华中师范大学第一附属中学M16039 徐行知湖北武钢三中 M16040 吴金泽湖北武汉二中 M16041 李弘梓湖北武汉二中 M16042 施奕成湖北华中师范大学第一附属中学M16043 袁睦苏湖北武汉二中 M16044 王子迎湖北武汉二中 M16045 袁昕湖北华中师范大学第一附属中学M16046 陈子瞻湖北湖北省黄冈中学 M16047 詹立宸湖北华中师范大学第一附属中学M16048 严子恒湖北武钢三中 M16049 陈贵显湖北华中师范大学第一附属中学M16050 张騄湖南长沙市长郡中学 M16051 刘哲成湖南长沙市雅礼中学 M16052 仝方舟湖南长沙市长郡中学 M16053 谢添乐湖南长沙市雅礼中学 M16054 尹龙晖湖南长沙市雅礼中学 M16055 黄磊湖南长沙市雅礼中学 M16056 肖煜湖南长沙市长郡中学 M16057 吴雨澄湖南湖南师范大学附属中学M16058 方浩湖南长沙市第一中学 M16059 郭鹏吉林东北师大附中 M16060 丁力煌江苏南京外国语学校 M16061 朱心一江苏南京外国语学校 M16062 高轶寒江苏南京外国语学校 M16063 彭展翔江西高安二中 M16064 刘鸿骏江西江西省吉安市第一中学M16065 孔繁淏辽宁大连二十四中 M16066 孔繁浩辽宁东北育才学校 M16067 孟响辽宁大连24中 M16068 毕梦达辽宁辽宁省实验中学

国际数学奥林匹克IMO试题(官方版)2000_eng

41st IMO2000 Problem1.AB is tangent to the circles CAMN and NMBD.M lies between C and D on the line CD,and CD is parallel to AB.The chords NA and CM meet at P;the chords NB and MD meet at Q.The rays CA and DB meet at E.Prove that P E=QE. Problem2.A,B,C are positive reals with product1.Prove that(A?1+ 1 B )(B?1+1 C )(C?1+1 A )≤1. Problem3.k is a positive real.N is an integer greater than1.N points are placed on a line,not all coincident.A move is carried out as follows. Pick any two points A and B which are not coincident.Suppose that A lies to the right of B.Replace B by another point B to the right of A such that AB =kBA.For what values of k can we move the points arbitrarily far to the right by repeated moves? Problem4.100cards are numbered1to100(each card di?erent)and placed in3boxes(at least one card in each box).How many ways can this be done so that if two boxes are selected and a card is taken from each,then the knowledge of their sum alone is always su?cient to identify the third box? Problem5.Can we?nd N divisible by just2000di?erent primes,so that N divides2N+1?[N may be divisible by a prime power.] Problem6.A1A2A3is an acute-angled triangle.The foot of the altitude from A i is K i and the incircle touches the side opposite A i at L i.The line K1K2is re?ected in the line L1L2.Similarly,the line K2K3is re?ected in L2L3and K3K1is re?ected in L3L1.Show that the three new lines form a triangle with vertices on the incircle. 1

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题 第一天 1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC 上两点D 、E 分别为弧 ABC 、 ACB 的中点。记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD 相切的圆为2O ,1O 与2O 交于点A 、P 。证明:AP 平分ABC ∠。 2. 给定质数p 。设()ij A a =是一个p p ?的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。 允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。求好矩阵A 的个数。 3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i i a M >; (2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得 1122m m n b a b a b a =+++ .

第二天 4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。对满足 121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n F f x f x ≤<≤= ∑ 的最大值。

参考答案 第一天 1. 如图2,联结EP 、BE 、BP 、CD 。 分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。 由已知条件易得,AD DC AE EB ==。结合A 、B 、D 、 12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也 不改变结论。同样,不妨设12p y y y <<< 。于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。 由上面的讨论知11121,2a a ==或212a =,不妨设122a =。否则,将整个数表关于主对

国外的奥数教育

国外的奥数教育 “奥数”是“奥林匹克数学竞赛”的简称。作为一项国际性赛事,国际数学奥林匹克竞赛由国际数学教育专家命题,出题范围超出了所有国家的义务教育范围,难度大大超过各国大学入学考试。我国是奥数大国,近年来赢得了诸多奖项,但是,国人过度追捧奥数给基础教育带来了许多负面影响。那么,如何正确看待奥数?让我们参考一下国外的做法。 ——编者 韩国:奥数不是大众化教育 2012年的国际数学奥林匹克竞赛,韩国首次获得团体冠军。韩国国内数学界认为,这表明韩国数学已达到发达国家的水平。 早在1988年,韩国就开始组队参加这项赛事,但成绩并不理想。此后,随着国内奥数教育不断发展,成绩也稳步提高,从2006年起,韩国从未跌出过团体赛世界前五。 据首尔中学教师卢泳和介绍,奥数教育在韩国不是大众化教育,只有英才高中和科学高中的学生才专门学习奥数。小学生和初中生学奥数完全凭兴趣,可以到培训班报名学习奥数,不过奥数成绩和学生升学没有关系。英才高中和科学高中在招生时会考虑奥数成绩,其他高中则不会将奥数成绩作为升学标准。他表示,小学生和初中生过早

学习奥数可能会给他们造成负担,可能产生对数学的反感。学习奥数更多应凭个人兴趣,并非每个人都适合。 截至2012年,韩国共有24所科学高中。其中,首尔科学高中、京畿科学高中等4所科学高中因为教学条件和教学质量好,在2009年后改名为科学英才高中。韩国科学高中偏重教授数学、物理、化学、生物等,绝大多数毕业生最后会选择韩国科学技术院、浦项工业大学等理工科大学,或者选择首尔大学等综合大学的理工科专业。2012年参加阿根廷国际奥数竞赛的6名韩国学生,全部来自科学高中。(李越) 保加利亚:奥数强,数学弱 近20年来的国际奥数竞赛中,保加利亚是除俄罗斯以外唯一夺冠的欧洲队伍。保加利亚中学生学习奥数、参加奥数竞赛有很长的历史。首届保加利亚全国数学奥林匹克竞赛可以追溯到1949年。目前,在保加利亚国内,该竞赛每年举办一次,共分为三轮,分别是校级比赛、市级比赛和全国性决赛。在进入全国决赛的70名中学生(9~12年级,14~19岁)中,只有6人能进入数学奥林匹克国家队。 在国内和国际奥数比赛中获奖的中学生,可以免去大学入学考试,进入相应专业学习。也就是说,要学与数学相关的专业,如果该学生想申请诸如文学之类的其他专业,仍需参加统一的入学考试。 虽然在国际奥数竞赛中的成绩一直不错,但是保加利亚中学生总体的数学成绩并不突出。根据欧盟委员会2011年发布的关于欧洲国家数学教育的报告,保加利亚和罗马尼亚中学生的平均数学成绩要比

江苏2010年高考+(世上最难+最牛试卷)+数学

一、2010年江苏高考数学考卷解读 2010年高考已经落下帷幕,本次数学试题突出数学学科特点,考查基础与考查能力并重,有创新题、题目梯度明显,区分度较高。考生的评价集中为一个字“难”,许多题目看似简单,但要真正解决得分却很难。运算量很大,甚至部分同学的最后两题都没来得及看。接下来我们来具体分析试题。 1、基础题 试题第1题、第2题、第3题、第4题、第5题、第6题、第7题分别考查考纲中的集合的性质与集合的运算、复数的运算、古典概型、频率直方图的运用、函数的奇偶性、双曲线的标准方程与集合性质、算法流程图,基本集中在对A、B级要求的考查。难度与计算量均不大。大多数考生都应该能顺利解决。 第9题主要考查直线与圆的位置关系以及点到直线的距离的计算,只要判断准确接下来的计算也不成问题。 第11题主要考查分段函数、函数的单调性以及不等式,难度虽不大,但分情况讨论对于部分函数基础较薄弱的考生稍有难度。 第15题主要考查向量,并与平时常用的解析法结合,在处理过程中需要稍加小心,容易出现计算上的失误。 第16题以四棱锥为模型,主要考查立体几何中线线、线面垂直以及多面体的体积,需要证明过程完整、理由充分,有部分考生虽然会做,但论证过程写的不够完善而导致失分。 总体看以上列举的考题考查的考点明确,难度与平时练习相当,

考生的失分会较少。 2、中档题 第8题、第10题、第12题主要考查导数的集合意义、数列的概念、三角函数的图像、不等式的解法与不等式的性质中比较容易的考点,只要平时的基本功扎实,解决这几个问题应该不难。重点在与考题与平时练习题的联系。 第17题测量电视塔的高度,本题的原型在苏教版数学必修5第11页第3题,它进行了改编,并添加了初中的相似三角形、解直角三角形这些知识的运用,在此基础上,考查了解斜三角形、基本不等式的运用。题目本身难度不大,但在这些知识点的融合中,有部分考生往往会失去方向,似乎有很多途径来解决问题,但要找到一个真正适合的方法不容易。 第19题主要考查等差数列的概念和通项公式与不等式的证明,本题主要是难下手,许多考生就在这一环节上缺少有效的突破,最终无功而返。 3、难题 第13题主要考查三角变换与运用解三角形知识进行三角运算,综合性较高,边、角、三角函数名称错综复杂,处理这类问题在运算、代换等运用方面需要恰当。否则导致运算量偏大,却得不到最后结果。第14题构造等腰梯形,求其周长的平方与面积的比值的最小值,将几何图形与函数模型相结合,具有高度的综合性,有想法,当深入解决问题时发现对于函数知识的要求相当高。

2016女子数学奥林匹克试题

2016女子数学奥林匹克 (2016年8月12‐8月13日) 1、整数3n ≥,将写有21,2,...,n 的2 n 张卡片放入n 个盒子,每个盒子各有n 张。其后允许操作如下:每次选其中两个盒子,在每个盒子中各取两张卡片放入另一个盒子。证明:总是可以通过有限次操作,使得每个盒子内的n 张卡片上恰好是n 个连续整数。 2、ABC ?的三条边长为,,BC a CA b AB c ===,ω是ABC ?的外接圆。 ①若不含A 的 BC 上有唯一的点P (不同于,B C ),满足 PA PB PC =+,求,,a b c 应该满足的充要条件。 ②P 是①中所述唯一的点,证明:若AP 过BC 的中点, 则60BAC ∠

5、设于数列12,,...a a 的前n 项之和为12...n n S a a a =+++,已知11S =,对于1n ≥都有 21(2)4n n n S S S ++=+。证明:对于任意正整数n ,都有n a ≥。 6、求最大的正整数m ,使得可以在m 行8列的方格表中填入,,,C G M O ,每个单元格填一个字母。使得对于其中任意两行,这两行中最多在一列所填字母相同。 7、I 是锐角ABC ?的内心,AB AC >。BC 边上的高AH 与直线,BI CI 分别交于,P Q 。O 是IPQ ?的外心,,AO BC 交于L ,AIL ?的外接圆与BC 交于,N L ,D 是I 在BC 上的投影,求:BD BN CD CN =。 8、,Q Z 分别代表全体有理数、整数,在坐标平面上,对于任意整数m ,定义 (,),,0,m xy A x y x y Q xy Z m ??=∈≠∈???? 。对于线段MN ,定义()m f MN 为线段MN 上属于m A 的点的个数。求最小的实数λ,使得对于任意直线l ,均存在与l 有关的实数()l β,满足:对于l 上任意两点,M N ,都有20162015()()()f MN f MN l λβ≤?+。

高中数学 第三节 不等式奥林匹克竞赛题解

第二章代数 第三节不等式 B3-001 北京、上海同时制成电子计算机若干台,除本地应用外,北京可支援外地10台,上海可支援外地4台.现在决定给重庆8台,汉口6台,若每台计算机运费如右表所示(单位:百元),又上海、北京当时制造的机器完全相同.问应怎样调运,才能使总的运费最省? 【题说】1960年上海市赛高一复赛题6. 【解】设北京调给重庆x台,上海调给重庆y台,则 0≤x≤10,0≤y≤4 x+y=8 总运费为8x+4(10-x)+5y+3(4-y)=4x+2y+52=84-2y 当y=4时,总运费最小,此时,x=4,10-x=6,4-y=0. 答:北京调给重庆4台,调给汉口6台,上海调给重庆4台,这样总运费最省. B3-002 x取什么值时,不等式 成立? 【题说】第二届(1960年)国际数学奥林匹克题2.本题由匈牙利提供.

将原不等式化简得 x2(8x-45)<0, 因此,原不等式的解为 B3-003甲队有2m个人,乙队有3m个人,现自甲队抽出(14-m)人,乙队抽出(5m-11)人,参加游戏,问甲、乙队各有多少人?参加游戏的人有几种选法? 【题说】1962年上海市赛高三决赛题4. 【解】抽出的人数必须满足 解得m=5. 故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有 选法. B3-004 求出所有满足不等式的实数. 【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.

B3-007 设a1,a2,…,a n为n个正数,且设q为一已知实数,使得0<q<1.求n个数b1,b2,…,b n使 1.a k<b k, k=1,2,…,n. 【题说】第十五届(1973年)国际数学奥林匹克题6.本题由瑞典提供. 【解】设b k=a1q k-1+a2q k-2+…+a k-1q+a k+a k+1q+…+a n q n-k(k=1,2,…,n). 1.显然b k>a k对k=1,2,…,n成立. 2.比较b k+1=q k a1+q k-1a2+…+qa k+a k+1+…+q n-k-1a n与qb k=q k a1+… +q2a k-1+qa k+q2a k+1+…+q n-k+1a n,qb k的前面k项与bk+1的前面k项相等,其余的项小于b k+1的相应项(因为q<1).因此b k+1>qb k.

第41届国际数学奥林匹克解答

第41届国际数学奥林匹克解答 问题 1.圆Γ1和圆Γ2 相交于点M和N.设L是圆Γ 1 和圆Γ2的两条公切线中距离 M较近的那条公切线.L与圆 Γ1相切于点A,与圆Γ2相切 于点 B.设经过点M且与L平 行的直线与圆Γ1还相交于点 C,与圆Γ2还相交于点 D.直 线C A和D B相交于点E;直线 A N和C D相交于点P;直线 B N 和C D相交于点Q. 证明:E P=E Q. 解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有 , . 这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q. 问题 2.设a,b,c是正实数,且满足a b c=1.证明: . 解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0

数学奥林匹克题解E组合数学 E2计数和离散最值031-040)汇总

E2-031 在一种“咬格子”的游戏中,两名选手轮流“咬”一个由单位正方形组成的5×7网格.所谓“咬一口”,就是一个选手在剩下的正方形中挑一个正方格子去掉(“吃掉”)它的左面的一条边(朝上延长)与底边(朝右延长)所确定的象限中的全部正方形格子,如图a所示,有阴影的格子是选定的,吃掉的是这个有阴影的及打“×”的四个格子.(虚线部分是在这之前已被“吃掉”的)游戏的目标是要对手“咬”最后一口.图b所示的是35个正方形组成的集合的一个子集,它是在“咬格子”游戏过程中可能出现的一个子集. 在游戏过程中,可能出现的不同的子集总共有多少个?整个网格及空集也计算在内. 【题说】第十届(1992年)美国数学邀请赛题12. 【解】根据游戏规则,每次“吃”剩下的图形有如下特点:从左到右,各列的方格数不增.因为如某一方格被“吃”,那么它右面和上面的格子全部被“吃”.于是每次剩下的图形从A到B的上边界是一条由7段横线与5段竖线组成的折线,且它是不增的;反之,每一条这样的折线,也对应一块“吃”剩下的方格集. E2-032 1克、30克、50克三种砝码共110个,总重量为1000克,问其中30克的砝码有多少个? 【题说】第一届(1990)希望杯高一二试题2(4).原是填空题. 【解】设1克、30克和50克砝码数分别有x、y、z,则有以下关系: (2)-(1)得

29y+49z=890 (3) 因29 890,49 890,所以y≠0,z≠0.即y≥1,z≥1.从而890=29y+49z≥29+49z 由于z是整数,故z≤17. 令z=1,2,…,17,代入(3),知:只有当z=1时,y=29是唯一整数解.又由(1)知,x=80. 即这一组砝码中有29个30克的砝码. E2-033 下图中将等边三角形每边3等分,过等分点作每边平行线,这样所形成的平行四边形个数,记为f(3),则f(3)=15.将等边三角形每边n等分,过各分点作各边平行线,所形成的平行四边形个数记为f(n),求f(n)表达式. 【题说】第二十三届(1991年)加拿大数学奥林匹克题5. 【解】如图所示的平行四边形,由a、b、c、d四个数决定.这4个数满足 a≥1, b≥1, c≥0,d≥0 2≤a+b+c+d≤n 即 0≤a1+b1+c+d≤n-2 其中a1=a-1,b1=b-1,c,d均为非负整数.

中国女子数学奥林匹克(CGMO)第10届(2011)解答

2011女子数学奥林匹克 2011年8月1日 上午8:00 ~ 12:00广东 深圳市第三高级中学 1.求出所有的正整数n ,使得关于,x y 的方程 111x y n += 恰有2011组满足x y ≤的正整数解(,)x y . 解:由题设,20()()xy nx ny x n y n n --=?--=.所以,除了x=y=2n 外,x n -取2n 的小于n 的正约数,就可得一组满足条件的正整数解(x , y ).故2n 的小于n 的正约数恰好为2010. 设1 1k k n p p α α= ,其中1,,k p p 是互不相同的素数,1,,k αα 是非负整数.故2n 的 小于n 的正约数个数为 1(21)(21)1 2 k αα++- , 故1(21)(21)4021k αα++= . 由于4021是素数,所以1k =,1214021α+=,12010α=. 所以,2010n p =,其中p 是素数.

2.如图,四边形ABCD的对角线AC与BD相交于点E,边AB、CD的中垂线相交于点F,点M、N分别为边AB、CD的中点,直线EF分别与边BC、AD相交于点P、Q.若M F C D N F AB ?=?且DQ BP AQ CP ?=?,求证:PQ BC ⊥. 证明:连接AF、BF、CF、DF.由题目条件可知△AFB和△CFD都是等腰三角形,FM 和FN分别为这两个等腰三角形底边上的高.由M F C D N F AB ?=?,知△AFB∽△DFC,从而∠AFB=∠CFD,∠FAB=∠FDC. 由∠AFB=∠CFD可得∠BFD=∠CFA,又因FB=FA,FD=FC,所以△BFD≌△AFC.由此可得∠FAC=∠FBD,∠FCA=∠FDB.从而A、B、F、E四点共圆,C、D、E、F四点共圆. 由上可得∠FEB=∠FAB=∠FDC=∠FEC,即直线EP是∠BEC的角平分线,从而EB/EC=BP/CP.同理,ED/EA=QD/AQ.由于DQ BP AQ CP ?=?,所以EB ED EC EA ?=?.由此可得ABCD为圆内接四边形,且点F为其外接圆的圆心.这时,因为 ∠EBC=1 2∠DFC=1 2 ∠AFB=∠ECB,所以E P B C ⊥. Q P M N F E D C B A A B C D E F N M P Q

相关文档
相关文档 最新文档