文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论大题附答案

概率论大题附答案

假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则

496

4100

C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.

从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.

解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的

取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有2

5C 10=种不同取法);

有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);

有利于3A 的取法有5×2

5

C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得

111102550()0.06()0.15()0.30165165165

P A P A P A =

=====&&&&&&,,. 考虑一元二次方程 02

=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.

解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=?.事件{无实根}和{有两个不同实根},等价于事件{0}?<和{0}?>.下表给出了事件{

0}?<和{0}?>所含基本事件的个数.

由对称性知{0}?<和{0}?>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率

β为

17

0.47

αβ==

≈.

. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,

()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,

([])()()P A A B P A AB P A p +=+==.

假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.

解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完

全事件组,并且12()()0.5P H P H ==.由条件知

12(|)1(|)0.5P A H P A H ==,.

由贝叶斯公式,有

1111122()(|)2

(|)()(|)()(|)3

P H P A H P H A P H P A H P H P A H α==

=+.

假设一厂家生产的每台仪器,以概率可以直接出厂;以概率需进一步进行调试, 经调试以概率可以出厂,以概率定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器

(1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.

解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知

1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,

,.

(1) 10台仪器都能出厂的概率

0112210

100()()(|)()(|)

0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=?+===≈ ;

(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =.易见,10台中至少两台不能出厂的概率

10

9

{2}1{0}{1}

10.94100.940.060.1175P P P βννν=≥=-=-==--??≈.

设B A ,是任意二事件,证明:

(1) 若事件A 和B 独立且B A ?,则()0P A =或()1P B =;

(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.

证明 (1) 由于B A ?,可见

()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.

(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见

()()()0P A P B P AB ==,

因此,概率()P A 和()P B 至少有一个等于0.

补充:

第二节 事件的关系和运算

1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:

⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生;

⑺ A ,B ,C 都不发生.

解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC

第三节 事件的概率

解:由()()()()P A B P A P B P AB +=+-知,

()()()()P AB P A P B P A B =+-+0.40.30.6=+-= ()1()10.10.9P AB P AB =-=-=

()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=

解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-

()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=

3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,

()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=

解:由条件()()0P AB P BC ==,知()0P ABC =,

()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+

11115

00044488

=

++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问 ⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?

解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}

max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.

第四节 条件概率及与其有关的三个基本公式

1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,

B A A ?+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =

所以()

()()()()

()()

()

0010901500109099005B P A P P AB ..A A P .B P B ....B B

P A P P A P A A

?===≈?+?+

第五节 事件的独立性和独立试验

1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)

解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==L 每个元件正常工作,,且()i P C p =, {}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故

1212()()()()()n n n P A P C C C P C P C P C p ===L L ,

()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-L L

()1()1(1)n P B P B p =-=--

2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达, 1,2,3,i

= {}A =代表这个装置通达,

{}i A i =第条线路不通达,

1,2,3,i = {}A =代表这个装置不通达, 由条件知,2

()i P A p =,2()1i P A p =-,

23123()1()1()1(1)P A P A P A A A p =-=-=--

第二章 随机变量及其分布

口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;

(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.

解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于

“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为4

10C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:43

7C C k k

-,因此 4

37

4

10

C C {}(0,1,2,3)C k k P X k k -===,

01230123~35

1056371131210210210210621030X ???? ? ?= ? ? ? ?????

. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,

其基本事件总数4

10

P 10987120=???=.易见 7843728

{1}{2}10120109120P Y P Y ?==

====?,,

327732171

{3}{4}109812010987120

P Y P Y ?????======?????, .

1

234~84

2871120

120

120

120Y ?? ? ? ???

. 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.

解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:

2

{1}{2}e

e 2!

P X P X λ

λλλ--====

,.

于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此

422

22{=4}=e =e 0.090243

P X --≈ !

设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.

解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此

234

820

(){2}{3}3(1)92727

P B P Y P Y p p p ===+==-+=+

=α.

设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥

,分别求常数C

解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1

{}2

P X C <=所以C=3 (2) 由题意可知23

{}=32

C P X C Φ-<=()

所以反查表可得 3.88C ≈

设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中

10 00 10X Y X X -<==>??

???,若,,若,

,若.

解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为

1

{1}{0}{10}{0}{0}03

2

{1}{0}{02}3

1~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=?? ? ? ???

,,

;-1.

补充:

第二节 离散随机变量

解:由条件知,随机变量X 的分布列如下:

设{}A =至多遇到一次红灯,则54()(0)(1)64

P A P X P X ==+==

2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。

解:A={在一分钟内至少有两辆车通过},A ={在一分钟内至多有一辆车通过}

由条件知,(),0,1,2,,!

k e P X K k l k λ

λ-===L ,且(0)(1)P X P X ===,

0!

1!

e e λλλλ

--=

,求出,1λ= 故:1(0)P X e -==,1(1)P X e -==,

1(A)(0)(1)2P P X P X e -==+== 1()1(A)12P A P e -=-=-

3.计算机硬件公司制造某种特殊型号的芯片,次品率达0.1%,各芯片成为次品相对独立,求在1000只产品中至少有2只次品的概率。以X 记产品中的次品数。

解:设{10002}A =在只产品中至少有只次品,{1000}A =在只产品中至多有1只次品,

B={生产的产品是次品},B ={生产的产品不是次品}

由条件知,()0.001P B =,)0.999B =P(,)0.999P B =(

010001

999

10001000()(0)(1)(10.001)0.001(10.001)P A P X P X C C ==+==-+-

1000999(10.001)(10.001)=-+-

1000

999()1[(10.001)(10.001)]P A =--+-

第三章 随机向量及其概率分布

设随机变量X 和Y 的联合密度为

(1) 试求X 的概率密度)(1x f ;

(2) 试求事件“X 大于Y ”的概率{}P X Y >;

解 (1) 易见,当)1,0(?x 时)(1x f =0;对于10<

222102

166

()(,)d d (2)

727

6(2)01()7

0 xy f x f x y y x y x x x x x f x +∞-∞??==+=+ ????+<

=?????,若,,若不然.

. (2) 事件“X 大于Y ”的概率

112

300066515{}(,)d d d d d 727456x x y

xy P X Y f x y x y x x y x x >??>=

=+=?= ??

???

??? .

设随机变量X 和Y 的联合密度为

22e 00(,) 0 0 0x y x y f x y x y --?>>=?≤≤?

或,若,,

,若.

求随机变量X 和Y 的联合分布函数和概率{1,1}P X Y >>.

解 设(,){,}F x y P X x Y y =≤≤是X 和Y 的联合分布函数.当0≤x 或0≤y 时0),(=y x F ;设

00>>y x ,,则

220

(,)2e e d d (1e )(1e )x y u x y F x y u ----==--?

?

v v .

于是

{}

223

1

1

1,1(1e )(1e )00(,) 0 0 0{1,1}(,)d d 2e

d e d e x y x

y

x y x y F x y x y P X Y f x y x y x y --+∞

+∞

--->>?-->>=?

≤≤?>>=

==????

或,若,,

,若.

设G 是曲线2y x =和直线4y =所围成的封闭区域,而随机向量),(Y X 在区域G 上均匀分布,求X 和Y 的概率密度)()(21y f x f 和.

解 设G 是x y =和2x y =所围区域,其面积G S 为

2

20

16d 3

G S x x ==

?(4-), 因此X 和Y 的联合概率密度为

3

(,)(,)16

0(,)x y G f x y x y G ?∈?=????,若,

,若.

(1) X 的密度 对于(02)x ∈,,2

4

2133

()d 1616

x

f x y x ==?(4-);

于是

2

13(4)()16 x x f x ?-≤

=???

,若02.

0,其他.

(2) Y 的密度 对于04y ≤<,

20

3()d 16f y x == 于是

24() y f y ≤<=??

.0,其他.

补充:

第一节 二元随机向量及其分布

1.设二维随机变量(,)X Y 的联合分布函数为:(,)(arctan )(arctan )F x y A B x C y =++,求常数

,,.A B C ,,x y -∞<<+∞-∞<<+∞

解: 由条件知,(,)1F +∞+∞=,(,)0F x -∞=,(,)0F y -∞=,即:

()()122(arctan )()02()(arctan )02A B C A B x C A B C y ππππ?++=??

?

+-=??

?-+=??

求出,2

1A π=,2B C π==

2.设X Y 和的联合概率密度函数为26,0,x y x

f ?≤≤=??(x,y ),

其他

,求x 和y 的边缘密度函数。 解:设(,)x f x y 为f (x,y )

关于x 的边缘密度函数,(,)y f x y 为(,)f x y 为关于y 的边缘密度函数,且,()(,)X f x f x y dy +∞

-∞

=?

,()(,)Y f y f x y dx +∞

-∞

=?

01x ≤≤时,2

2

()66()x

X x

f x dy x x ==-?, 当0,1x x <>时,()0X f x = 当01y ≤≤

时,())Y y

f y dx y =

=

当0y <,1y >时,()0Y f y =

第四章 随机变量的数字特征

设随机变量X 的概率密度为

01()0kx x f x α?<<=?

?,若,

 

, 其他. 已知0.75EX =,求未知常数k 与α的值. 解 由题设知

1

1

1

20

()d d 0.7522k k

EX xf x x kx x x αααα+∞++-∞

=====++?

?,

另一方面,由于

1

1

100

()d d 111k k

f x x kx x x αααα+∞+-∞

====++?

?,

于是,得关于k 与α的方程组

0.752

11

k

k αα?=??+?

?=?+?,, 其解为2,3k α==.

设随机变量X 服从参数为2的泊松分布,求(32)E X -. 解 熟知,参数为2的泊松分布的数学期望2EX =,故

(32)323224E X EX -=-=?-=.

求EX ,已知随机变量X 具有概率密度为

01()2120x x f x x x <≤??

=-<≤???

若,,若,,其他.

解 由数学期望的定义,知

12

20

1

1

2

2323101

()d (2)d 11

133EX xf x x x dx x x x

x x x +∞-∞

==+-=+-=?

??.

设随机变量X 具有概率密度如下,

2(1)12() 0 x x f x -<

?,若,

,其他.

解 由随机变量函数的数学期望,知

2

22

111

1()d 2(1)d 2ln 2ln 2EZ zf x x x x x x x

+∞-∞

==-=-=-?

?

设随机变量123X X X ,,相互独立,且1X 服从区间(0,6)上的均匀分布,而2

2~(0,2)X N ,

3X 付出参数为3的泊松分布,试求12323Y X X X =-+的方差.

解 由条件知1233,4,3DX DX DX ===,而由方差的性质可得

123123

(23)493449346DY D X X X DX DX DX =-+=++=+?+?=.

设随机变量X Y 与相互独立,且~(12)~(01)X N Y N ,,,,试求随机变量23Z X Y =-+的数学期望、

方差以及概率密度.

解 由条件知,~(1,2),

~(0,1)X N Y N .从而由期望和方差的性质得

23549EZ EX EY DZ DX DY =-+==+=,.

由于Z 是X 和Y 的线性函数,且,X Y 是相互独立的正态随机变量,故Z 也为正态随机变量,而正态分布完全决定于其期望和方差,因此~(5,9)Z N ,于是,Z 的概率密度为

2

(5)

29() ()z Z f z z --?=-∞<<+∞.

已知随机向量(,)X Y 的概率密度

0101(,) 0 x y x y f x y +≤≤≤≤?=??,若,

,,若不然.

求cov()XY EX EY DX DY EXY X Y ρ,,,,,,,. 解 (1) 求EX EY DX DY ,,,。

11100011122220002

2217

(,)d d d ()d d 21215(,)d d d ()d d 2125711

()1212144

EX xf x y x y x x x y y x x x EX x f x y x y x x x y y x x x DX EX EX +∞+∞

-∞-∞+∞+∞-∞-∞??==+=+= ????

?==+=+= ???

??=-=-= ????

?????????;;.

由对称性,有

711

12144

EY DY =

=,.

(2) 求cov()XY EXY X Y ρ,,,.

11100011

(,)d d d ()d d 2331771

cov(,)31212144

114411114411XY x EXY xyf x y x y x x y x y y x x X Y EXY EX EY +∞+∞

-∞-∞??==+=+= ???

=-=-?=-==-=-?

????ρ;;

第六章 数理统计的基本概念和抽样分布

假设总体X 服从参数为λ的泊松分布, ,而12(,,,)n X X X …是来自总体X 的简单随机样本.求12(,,,)n X X X …的概率函数.

解 总体X 的概率函数为

,

e (;) ! 0 x x p x x x λ

λλ-??=???若为自然数若不是自然数,,.

由于12,,,n X X X …独立同服从参数为λ的泊松分布,可见12(,,,)n X X X …的概率函数为

121211221

12(,,,){,,,}e ()(0,1,2,)!!!n n n n n n

x x x i i i n p x x x P X x X x X x p x x x x x λ

λλλ-+++========∏L …;;……….

假设总体),(~2

σμN X ,而12(,,,)n X X X …是来自总体X 的简单随机样本.求12,,,n X X X …的概率函数. 解 由于12,,,n

X X X …独立同分布,可见12

(,,,)n X X X …的密度为

22

()

212i 1

221(,,,)1exp ()2i x n

n n

n

i i f x x x x μσμσ--===??=--????∑L .

其中12,,,n x x x -∞<<+∞….

第七章 参数估计

设总体X 的概率分布为

2

2

12

3

~2(1)

12X θθθθθ?

?

?--?

?

1

(022134)28

X =++?+?=

用X 估计数学期望EX ,可得关于未知参数θ矩估计量?Θ

的方程;总体X 的数学期望为 21???????2(1)23(12)2434104

EX x =-++-==-+-==,,,.θ

θθθθθθ 于是,θ的矩估计值为14.

(2) θ的最大似然估计量 易见,在12(,,,)n X X X … 中0,1,2和3各出现1,

2,1和4次,因此未知

参数θ似然函数和似然方程为

22242212()[2(1)](12)ln ()ln 6ln 2ln(1)4ln(12)dln ()62861)1212)81)

d 1121)12121430 1214301)12?L L C L =--=++-+----+-=--=

----+==+=--==,

;(()-2(((()

-,-,(()

θθθθθθθθθθθθθθθθθθθθθ

θθθθθθθθθθθ 其中C 是常数,而似然方程的解

1

?θ=≈10.88>2

显然不合题意。于是,参数θ的最大似然估计值为

≈0.28. 设总体X 的密度函数为

其中0θ>为未知参数, 12,,,n X X

X …为来自总体X 的一个样本,求θ的矩估计量和最大似然估计量. 解 (1) 矩估计量 总体X 的数学期望为

1

1

1

()d d EX xf x x x x

θθ+∞-∞===

?

将EX

换成样本均值X ,得参数θ的矩估计量?Θ

: 2

2

?1X X X Θ==-(). (2) θ的最大似然估计量 参数θ的似然函数?Θ

11

2

11

1

1

11

22

2

2

1

1

()

ln()ln1)ln

2

ln()

ln0

2

ln0ln

?

ln0

ln

n

n n

i i

i i

n

i

n

i

n n

i i

n

n

i

i

i

L

n

L X

L n

X

X X

n

X n

X

θθ

θθ

θ

θθ

θθ

θθΘ

==

=

=

==

=

=

==

=+

=+=

?==-

?

?

??-==

?

????

?

??

∑∑

2

d

d

,,

,.

假设总体X的概率密度为

01

(;)112

x

f x x

θ

θθ

<<

?

?

=-≤<

?

??

,若,

,若,

,其他,

其中θ是未知参数(1

0<

<θ).

12

,,,

n

X X X

…为来自总体X的简单随机样本,记N为样本的n个观测值中小于1的个数.

(1) 求θ的矩估计量;(2) 求θ的最大似然估计量.

解 (1) 求θ的矩估计量总体X的数学期望为

12

01

3

(;)d d(1)d

2

EX xf x x x x x x

θθθθ

+∞

-∞

==+-=-

???.

用样本均值X估计EX,得θ的矩估计量?Θ:

33

??

22

X X

ΘΘ

=-=-

,.

于是,?Θ就是θ的矩估计量.

(2) 求θ的最大似然估计量参数θ的似然函数为

1

)

(

ln

)

1

ln(

)

(

ln

)

(

ln

)

1(

)

;

(

)

(

1

=

-

-

-

=

-

-

+

=

-

=

=-

=

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

θ

N

n

N

d

L

d

N

n

N

L

X

f

L N

n

N

n

i

i

?

(1)

N

N n N

n

θθθΘ

-=-=

,.

于是,θ的最大似然估计量是?N n

Θ=.

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

概率论与数理统计模拟题一及标准答案

概率论与数理统计模拟题一 一、 单项选择题(每小题3分,共30分) 1、设,,A B C 是随机事件,且AB C ?,则( )。 (A)C A B ?U (B) A C ?且B C ? (C)C AB ? (D) A C ?或B C ? 2、某工厂生产某种圆柱形产品,只有当产品的长度和直径都合格时才算正品,否则就为次品,设A 表示事件“长度合格”,B 表示事件“直径合格”,则事件“产品不合格”为( )。 (A)A B U (B) AB (C)AB (D) AB 或AB 3、已知()0.6,()0.8,()0.6P A P B P B A ===,则()P A B =( )。 (A)0.4 (B) 0.5 (C)0.6 (D) 0.7 4、在下述函数中,可以作为某随机变量的分布函数的为( )。 (A)21()1F x x = + (B) 11 ()arctan 2 F x x π=+ (C)1(1),0 ()20, 0x e x F x x -?->?=??≤? (D) ()()x F x f x dx -∞=?,其中()1f x dx +∞-∞ =? 5、设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则( )。 (A)0()1f x ≤≤ (B)()()P X x F x == (C)()()P X x F x =≤ (D) ()()P X x f x == 6、设随机变量~(0,1)X N ,则方程2240t Xt ++=没有实根的概率为( )。 (A)1)1(2-Φ (B))2()4(ΦΦ- (C))2()4(---ΦΦ (D))4()2(ΦΦ- 7、设二维离散型随机变量(,)X Y 的联合分布律为 已知事件{0}X =与{1}X Y +=相互独立,则( )。

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率与统计 大题练习3(含解析)

概率与统计 大题练习3 1.某校决定为本校上学所需时间超过30分钟的学生提供校车接送服务(所有学生上学时间均不超过60分钟).为了解学生上学所需时间,从全校600名学生中抽取50人统计上学所需时间(单位:分),将600人随机编号,为001,002,…,600,将抽取的50名学生的上学所需时间分成六组:第一组(0,10],第二组(10,20],…,第六组(50,60],得到如图所示的频率分布直方图. (1)若抽取的50个样本是用系统抽样的方法得到的,且第一个抽取的编号为006,则第5个抽取的编号是多少? (2)若从50个样本中属于第四组和第六组的所有人中随机抽取2人,设他们上学所需时间分别为a 分钟,b 分钟,求满足|a -b |>10的概率. (3)设学校配备的校车每辆可搭载40名学生,请根据抽样的结果估计全校应有多少辆这样的校车? 解析:(1)因为600÷50=12,且第一个抽取的编号为006, 所以第5个抽取的数是6+(5-1)×12=54,即第5个抽取的编号是054. (2)第四组的人数为0.008×10×50=4,设这4人分别为A ,B ,C ,D ,第六组的人数为0.004×10×50=2,设这2人分别为x ,y , 随机抽取2人的可能情况有AB ,AC ,AD ,BC ,BD ,CD ,xy ,Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共15种,其中他们上学所需时间满足|a -b |>10的情况有Ax ,Ay ,Bx ,By ,Cx ,Cy ,Dx ,Dy ,共8种. 所以满足|a -b |>10的概率P =8 15 . (3)全校上学所需时间超过30分钟的学生约有600×(0.008+0.008+0.004)×10=120(人), 所以估计全校应有120÷40=3辆这样的校车. 2.某教师统计甲、乙两位同学20次考试的数学成绩(满分150分),根据所得数据绘制茎叶图如图所示. (1)根据茎叶图求甲、乙两位同学成绩的中位数; (2)根据茎叶图比较甲、乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可); (3)现从甲、乙两位同学的不低于140分的成绩中任意选出2个,设事件A 为“选出的2个成绩分别属于不同的同学”,求事件A 发生的概率. 解析:(1)甲同学成绩的中位数是116+1122=119,乙同学的中位数是128+128 2 =128. (2)从茎叶图可以看出,乙同学成绩的平均值比甲同学成绩的平均值高,乙同学的成绩比甲同学的成绩更稳定.

大学概率统计复习题(答案)

第一章 1.设P (A )=31,P (A ∪B )=21 ,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=31,P (A ∪B )=21 ,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A )=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18

概率论与数理统计模拟试题&参考答案

练习题一 一、填空题。 1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。 2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。 3、若)(~λP X ,则=EX ,=DX 。 4、二维离散型随机变量),(ηξ的分布律为: 则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。 5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n = ++ 服从__________。 6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。 7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x x x x x ?+≤

3、随机变量Y X ,相互独立必推出Y X ,不相关。( ) 4、已知θ 是θ的无偏估计,则2 θ 一定是2θ的无偏估计。( ) 5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为 0.4。( ) 三、选择题。 1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e - 2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为 (A ) ()3 131- y F (B )()13+y F (C )1)(3+y F (D )?? ? ??- 313 1y F 3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )2 4、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。 (A )8; (B )16; (C )28; (D )44 5、设B A ,满足1)(=B A P , 则有( ) (A )A 是必然事件 (B )B 是必然事件 (C )Φ=?B A (D ))()(A P B P ≤ 四.据某医院统计,心脏手术后能完全复原的概率是0.9,那么在对100名病人实施手术后,有84至95名病人能完全复原的概率是多少? (Ф0(1.67)=0.9525, Ф0(2)=0.9773) 五、设总体ξ的概率密度为0 (,)0x e x x λλ?λ-? >=? ?当其它,其中0λ>,试求参数λ的 最大似然估计量。 六、若已知某地幼儿身高总体的标准差7()cm σ=,现从该地一幼儿园中抽查了9名幼儿,测得身高()cm 为:115,120,131,115,109,115,115,105,110,试求总体期望值μ的95%的置信区间:(1)若已知幼儿身高分布为正态分布;(2)若幼儿身高分布未知。 七、证明:对于任何的随机变量ξ,都有22()D E E ξξξ=-。

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率与统计练习题

概率与统计练习题 (出题人 董贞) 一、填空题 1、小明五次测试成绩如下:91、89、88、90、92,则这五次测试成绩的平均数是_______________。 2五名同学目测同一本教科书的宽度时,产生的误差如下(单位:㎝):2、-2、-1、1、0,则这组数据的极差为_________________㎝。 3、十位同学分别购买如下尺码的鞋子:20、20、21、22、22、22、22、23、23、24(单位:㎝)这组数据的平均数、中位数、众数三个指标中,鞋店老板最喜欢的是______________。 4、已知一组数据:-2、-2、3、-2、x 、-1,若这组数据的平均数是0.5,则这组数据的中位数是____________。 5、小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,根据图中的信息,估计两人中谁的方差小___________________。 6、抛掷两枚分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件是___________________。 7、长度分别是1、3、5、7、9的五条线段,从中任取三条,则恰能围成三角形的概率是______________________。 8、小明和小丽按如下规则做游戏:桌上放有5支铅笔,每一次取一只或两只,有小明先取,最后取完铅笔的人获胜。如果小明获胜的概率为1,那么小明第一次应该取走___________只。 9、下表示对某校10名女生进行身高测量的数据表(单位:厘米),但其中一个数据不慎丢失(有x 表示)。 从这10名女生中任意抽出一名身高不低于162㎝的事件的可能性,可以用下图中的点____表示 (在A 、B 、C 、D 、E 五个字母中选择一个符合题意的) 。 10、某路公交车每20分钟一班,王义由于要急着上班,他最多只有5分钟的候车时间,否则他只能打出租车上班,那么他打出租车上班的概率是_________。 二、选择题 11、十字路口的信号灯每分钟红灯亮30秒,绿灯亮秒25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是( ) 12、一个均匀的立方体六个面上分别标有数1、2、3、4、5、6。如图是这个立方一半的概率是( )。 13、甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接力棒的运动员,那么这四名运动员在比赛过程中的接棒顺序有( )。 A 、3种 B 、4种 C 、6种 D 、12种 14、王大爷在工商银行存入5000元人民币,并在存单上留下4位数的密码,每个数字都是0~9这十个数字中的一个,但由于年龄的原因,王大爷忘了密码中间的两个数字,那么王大爷最多可能试验( )次,才能正确输入密码。 A 、1次 B 、50次 C 、100次 D 、200次 15、体育课上,八年级一班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的是( )。 A 、频率分布 B 、平均数 C 、方差 D 、众数 身高/㎝ 156 162 x 165 157 168 165 163 170 159 0 1 23 4 5 6 7 8 9 10 2 4 6 8 10 · · · · · · · · · · ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ·小张 ◎小李 2 1 6 4 5 3

概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5)1(=≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。 (按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计练习题及答案

概率论与数理统计习题 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1.设)4,5.1(~N X ,且8944.0)25.1(=Φ,9599.0)75.1(=Φ,则P{-2=? ≤?,则q=_____ (A)1/2 (B)1 (C)-1 (D)3/2 4.事件A ,B 为对立事件,则_____不成立。 (A) ()0P AB = (B) ()P B A φ= (C) ()1P A B = (D) ()1P A B += 5.掷一枚质地均匀的骰子,则在出现奇数点的条件下出现3点的概率为____ (A)1/3 (B)2/3 (C)1/6 (D)3/6 6.设(|)1P B A = ,则下列命题成立的是_____ A . B A ? B . A B ? C.A B -=Φ D.0)(=-B A P 7.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的 是_____ A . 0()1F x ≤≤ B .0()1f x ≤≤ C.{}()P X x F x == D.{}()P X x f x == 8.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是 统计量的是____ A.4114i i X X ==∑ B.142X X μ+- C.4 22 1 1 ()i i K X X σ==-∑ D.4 2 1 1()3i i S X X ==-∑ 9.设,A B 为两随机事件,且B A ?,则下列式子正确的是_____ A . ()()P A B P A += B .()()P AB P A =

概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院 《概率论与数理统计》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。 一、【单项选择题】(本大题共5小题,每小题3分,共15分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。 [A] P (A)=1-P (B ) [B] P (A│B)=0 [C] P (A│B )=1 [D] P (A B )=0 2、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。 [A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A│B )=P (B ) [D] P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为( )。 [A] )()()(B P A P B A P = [B] 0)(=AB P [C] )()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,( )可以是离散型随机变量的概率函数。

[A] {}1 1(0,1,2)!e P k k k ξ-=== [B] {}1 2(1,2)! e P k k k ξ-=== [C] {}31 (0,1,2)2 k P k k ξ=== [D] {}41 (1,2,3)2 k P k k ξ== =--- 5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使 12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。 [A]1 ,2a =-32 b = [B] 2,3a = 23b = [C] 3,5a = 2 5 b =- [D] 1,2a = 32 b =- 二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。 6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。 ( ) 7、通过选取经验函数()12;,,...,k x a a a μ中的参数使得观察值i y 与相应的函数值 ()12;,,...,i k x a a a μ之差的平方和最小的方法称之为方差分析法。 ( ) 8、在进行一元线性回归时, 通过最小二乘法求得的经验回归系数^ b 为xy xx l l 。 ( ) 9、连续抛一枚均匀硬币6 次,则正面至少出现一次的概率为 9 2 。( ) 10、设某次考试考生的成绩服从正态分布( )2 70,N σ ,2 σ 未知,为了检验样本均 值是否显著改变,抽取36名同学测得平均成绩为66.5分,标准差为15分,显著水平0.05α=,则应该接受原假设。 ( )

概率论重点课后题答案

第2章条件概率与独立性 一、大纲要求 <1)理解条件概率的定义. <2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. <3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. <4)了解独立重复实验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 为2这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,, ,n A A A 为任意n 个事件<2n ≥),且121()0n P A A A ->,则有 12112131212 1()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列<有限或无限个)两两互不相容的事件,有

1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列<有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、<或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、; 、 中有一对是相互独立的,则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立.定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤成 立: ()()()i j i j P A A P A P A =<共2n C 个) ()()()()i j k i j k P A A A P A P A P A =<共3n C 个) 1212()()()()n n P A A A P A P A P A =<共n n C 个) 则称12,,n A A A 相互独立. 定理设n 个事件12,, n A A A 相互独立,那么,把其中任意m <1m n ≤≤)个事件相应换成它们的对立事件,则所得的n 个事件仍然相互独立. 6. 重复独立实验,而且这些重复实验具备:<1)每次实验条件都相同,因此各次实验中同一个事件的出现概率相同;<2)各次实验结果相互独立;满足这两

概率统计试题及答案(本科完整版)

一、 填空题(每题2分,共20分) 1、记三事件为A ,B ,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 . 2、匣中有2个白球,3个红球。 现一个接一个地从中随机地取出所有的球。那么,白球比红球早出现的概率是 2/5 。 3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时, 06505P(A B )_.__,P(B |A )_.__?==。 4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。 5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >, 必有概率{}P c x c e <<+ =?+?-?e ,c e b b a b c ,c e b b a 6、设X 服从正态分布2 (,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) . 7、设1128363 X B EX DX ~n,p ),n __,p __==(且= ,=,则 8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。则X 的数学期望=)(X E 4.5 。 9、设随机变量(,)X Y 的分布律为 则条件概率 ===}2|3{Y X P 2/5 . 10、设121,,X X Λ来自正态总体)1 ,0(N , 2 129285241?? ? ??+??? ??+??? ??=∑∑∑===i i i i i i X X X Y ,当常数 k = 1/4 时,kY 服从2χ分布。 二、计算题(每小题10分,共70分) 1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率 (2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率 解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则: ABC ABC ABC U U

相关文档