文档视界 最新最全的文档下载
当前位置:文档视界 › 第四章交通流理论.ppt.Convertor

第四章交通流理论.ppt.Convertor

第四章交通流理论.ppt.Convertor
第四章交通流理论.ppt.Convertor

Traffic Flow Theory 第四章交通流理论1

Generalization

第一节概述

2

交通流理论:运用数学和物理学的方法来描述交通特性的一个边缘科学,它用分析的方法阐述交通现象及其机理,使我们更好的理解交通现象及其本质,并使城市道路与公路的规划设计和运营管理发挥最大的功效。

3

1 初期:概率论方法(20 世纪30 年代)

1933年,金蔡(Kinzer.J.p提出了泊松分布;

2 中期:跟驰理论、交通波理论和排队理论(20 世纪50 年代)

1959 年12 月,首届交通流理论学术讨论会召开;

3 后期:迅速发展时期(20 世纪60 年代后)

丹尼尔(Daniel」.G)和马休(Marthow.J.H )1975年出版了《交通流理论》。发展历程

4

1. 交通量、速度和密度的相互关系和量测方法

2. 交通流的统计分布特性

3. 排队论的应用

4. 跟驰理论

5. 驾驶员处理信息的特性

6. 交通流的流体力学模拟理论

7. 交通流模拟主要内容

5

第二节交通流的统计分布特性

The Statistical Distribution Characteristic of Traffic Flow

6

1 、到达某一断面的车辆数:离散型分布

2、到达同一地点的两辆车的时间间隔:连续性分布

3、离散型分布:计数分布

连续性分布:间隔分布、车头时距分布、速度分布、可穿越空档分布

统计分布的含义

7

1、泊松分布

二项分布

2、

3、负二项分布

离散型分布

8

1、泊松分布

(1)适用条件:车流密度不大,其它外界干扰因素基本上不存在,车流是随机的

(2)基本公式:

令:计数间隔平均到达的车辆数,泊松分布参数。离散型分布

9

1、泊松分布离散型分布

10

1、泊松分布

(3)递推公式:

(4)分布的均值M 和方差D:

离散型分布

11

1、泊松分布

Poisson distribution belongs to discrete function with only one parameter.

In traffic engineering Poisson distribution equation is used to describe the arrivals of vehicles at intersections or toll booth, as well as number of accident (crash)

Poisson distribution is appropriate to describe vehicle ' s arrival when traffic volume is not high. When field data shows that the mean and variance have significant difference, we can no longer apply Poisson distribution

离散型分布

12

2、二项分布

(1)适用条件:车流比较拥挤,自由行驶机会不多的车流

(2)基本公式:

:独立事件发生的概率,

n,p 为二项分布参数。离散型分布

13

2、二项分布离散型分布

14

2、二项分布

3)递推公式:

(4)分布的均值M 和方差D:

离散型分布

15

2、二项分布

Binomial distribution belongs to discrete function with two parameters (n ,k).

Binomial distribution is used to describe mode split, namely choice between transit and auto. It can also simulate the arrival of turning vehicles.

It is can only be used when an event has two outcomes. 离散型分布

16

1、负指数分布

2、移位负指数分布

3、爱尔朗分布

4、韦布尔分布连续型分布

17

1、负指数分布

(1)适用条件:有充分超车机会的单列车流和密度不大的多列车流的车头时距分布,与计数分布的泊松分布对应。

(2)基本公式:

连续型分布

18

1、负指数分布车头时距不小于t 的数目:

连续型分布

19

1、负指数分布

(3)概率密度函数:

4)分布的均值M 和方差D:

连续型分布

20

1、负指数分布

Exponential distribution is the special case of Poisson distribution.

Exponential distribution equation is a continuous one with the headway being as its variable. It is applicable when traffic flow is light or moderate.

Traffic engineers are concerned with headway greater or equal to specific value. 连续型分布

21

2、移位负指数分布

(1)适用条件:不能超车的单列车流和车流量低车流的车头时距分布。

(2)基本公式:

连续型分布

22

2、移位负指数分布

(3)概率密度函数:

(4)分布的均值M 和方差D:

连续型分布

23

3、移位负指数分布的局限性

车头时距越接近最小值,出现的可能性越大,一般不符合驾驶员的心理习惯和行车特点。而车头时距分布的概率曲线是先升后降的。

连续型分布

24

第三节排队论的应用

The Application of Queuing Theory

25 排队论也称随机服务系统理论,是研究“服务”系统因“需求”拥挤而产生的等待行列或排队的现象,以及合理协调“需求”与“服务”关系的一种数学理论。是运筹学中以概率论为基础的一个重要分支。

在交通工程中,排队论在研究车辆延误、通行能力、信号配时以及停车场、收费厅、加油站等交通设施的设计与管理诸方面得到广泛的应用。

排队论概述

26 排队:单指等待服务的,不包括正在被服务的;排队系统:即包括等待服务的,也包括正在被服务的。排队论基本原理

1. 排队和排队系统

2.排队系统的3 个组成部分

(1)输入过程(2)排队规则(3)服务方式

27 定长输入:顾客等时距到达;泊松输入:顾客到达时距符合负指数分布;爱尔朗输入:顾客到达时距符合爱尔朗分布;

排队论基本原理

(1)输入过程各种类型的“顾客”按怎样的规律到达

28 损失制:顾客到达时,若所有服务台被占,该顾客就自动消失,永不再来;等待制:顾客到达时,若所有服务台被占,就排队等待服务(包括先到先服务和优先权服务)混合制:顾客到达时,若队伍长度小于L,就排入队伍;否则就离去,永不再来;排队论基本原理

(2)排队规则到达的“顾客”按怎样的次序接受服务

29 定长分布:每一顾客服务时间都相等;负指数分布:各顾客服务时间相互独立,服从相同的负指数分布;爱尔朗分布:各顾客服务时间相互独立,服从相同的爱尔朗分布;排队论基本原理

(3)服务方式同一时刻有多少服务台可接纳顾客,每一顾客服务了多长时间。

30 等待时间:顾客到达时起到他开始接受服务时止这段时间;忙期:服务台连续繁忙的时期,关系到服务台的工作强度;队长:分为排队顾客数和排队系统顾客数,用于描述系统的状态;服务率:单位时间内被服务的顾客数;交通强度:单位时间内被服务的顾客数和请求服务的顾客数之比。排队论基本原理

3. 排队系统的主要数量指标

31 排队论基本原理

4. 排队系统的表示方法通常用如下符合表示排队系统:

M --代表泊松输入或负指数分布;

D——定长输入或定长服务;

EK——爱尔朗分布的输入或服务;

M/M/N

M/M/1

32

排队系统应用

1. M/M/1 系统及其应用举例

泊松输入、负指数分布服务,单个服务台的排队系统。

该系统中顾客源是无限的,队长也是无限的,并且到达的间隔时间与服务时间相互独立。

顾客平均达到率为:

服务后输出率为:

交通强度或利用系数:

33 排队系统应用

1. M/M/1 系统及其应用举例

常用公式

系统中没有顾客的概率:

系统中有N 个顾客的概率:

排队系统中顾客的平均数:

34 排队系统应用

1. M/M/1 系统及其应用举例常用公式

平均排队长度:

平均非零排队长度:

平均消耗时间:

平均等待时间:

35 排队系统应用2. M/M/N 系统泊松输入、负指数分布服务,多个服务台的排队系统。单路排队多通道服务多路排队多通道服务

36

排队系统应用

2. M/M/N 系统

系统中没有顾客的概率:

排队系统中顾客的平均数;

平均排队长度:

平均消耗时间: 平均等待时间

37

第四节跟驰理论简介

The Abstract of Following Theory

38

跟驰理论是运用动力学方法,探究在无法超车的单一车道上车辆列队行驶时,后车跟随前车的行驶状态,并且借助数学模式表达并加以分析阐明的一种理论。

鲁契尔(Reuschel ,1950 )和派普斯(pipes ,1953 ) 利用运筹学技术首次成功解析跟驰模型;赫尔曼和罗瑟瑞推导出跟驰模型的第一个原型;

Michaels(1963)首次提出生理—心理跟驰模型理念

Zhang,Y.L(1998等人在Michaels基础上提出了一种可应用于实践的多段模型;

20 世纪90 年代以来,研究人员试图用模糊推理系统和混沌理论来描述跟驰状态。跟驰理论概述

39

制约性:“车速条件”和“间距条件” ;延迟性:感觉—认识—判断—执行四个阶段;

传递性:依次制约,信息向后延迟传递;

车辆跟驰特性分析行驶状态:非自由行驶状态

40

线性跟驰模型

行驶状态:非自由行驶状态

41

线性跟驰模型

要使两车的间距在突然刹车事件中不发生相撞,则应有:

对t 微分,得:

a 称为反应强度系数,上式为线性跟驰模型。

42

第五节流体力学模拟理论

The Analog Theory of Fluid Mechanics

43

流体力学概述

流体力学模拟理论是1955 年英国学者莱特希尔( Lighthill )和惠特汉( Whitham) 在研究一条隧道交通流规律时提出的。

该理论应用流体力学的基本原理,模拟流体的连续性方程,建立车流的连续方程,把车流密度的稀疏变化比拟成水波而抽象成车流波。通过分析车流波的传播速度,以寻求车流流量、速度和密度之间的关系。因此该理论也被称为车流波动

理论。

44

车流连续性方程

整理得:

45

车流波动理论

1. 基本方程

在时间t内穿越S分界线的车数N为:由于q1=k1v1,q2=k2v2

则得:

46

车流波动理论

集结波

消散波

前进波

后退波

速度W>0

速度WVO

47

第四章交通流理论.ppt.Convertor

Traffic Flow Theory 第四章交通流理论1 Generalization 第一节概述 2 交通流理论:运用数学和物理学的方法来描述交通特性的一个边缘科学,它用分析的方法阐述交通现象及其机理,使我们更好的理解交通现象及其本质,并使城市道路与公路的规划设计和运营管理发挥最大的功效。 3 1 初期:概率论方法(20 世纪30 年代) 1933年,金蔡(Kinzer.J.p提出了泊松分布; 2 中期:跟驰理论、交通波理论和排队理论(20 世纪50 年代) 1959 年12 月,首届交通流理论学术讨论会召开; 3 后期:迅速发展时期(20 世纪60 年代后) 丹尼尔(Daniel」.G)和马休(Marthow.J.H )1975年出版了《交通流理论》。发展历程 4 1. 交通量、速度和密度的相互关系和量测方法 2. 交通流的统计分布特性 3. 排队论的应用 4. 跟驰理论 5. 驾驶员处理信息的特性 6. 交通流的流体力学模拟理论 7. 交通流模拟主要内容 5 第二节交通流的统计分布特性 The Statistical Distribution Characteristic of Traffic Flow 6 1 、到达某一断面的车辆数:离散型分布 2、到达同一地点的两辆车的时间间隔:连续性分布 3、离散型分布:计数分布 连续性分布:间隔分布、车头时距分布、速度分布、可穿越空档分布 统计分布的含义 7 1、泊松分布 二项分布 2、 3、负二项分布 离散型分布 8 1、泊松分布 (1)适用条件:车流密度不大,其它外界干扰因素基本上不存在,车流是随机的 (2)基本公式:

交通流理论第八章

第八章无信号交叉口理论 平面交叉口把相交的道路路段连接起来,构成路网。因为在交叉口同一平面上有多股交通流动,考虑到交通安全,有时需要进行适当的交通控制。按照有无交通控制,可将交叉口分为有交通信号控制的交叉口(简称为信号交叉口)和无交通信号控制的交叉口(简称为无信号交叉口)。无信号交叉口是最普遍的交叉口类型,虽然它的通行能力可能低于信号交叉口,但它在网络交通控制中起到了非常重要的作用。一个运行情况不良的无信号交叉口,可能会影响整个信号网络或者智能运输系统的运行,并且无信号交叉口理论是信号交叉口理论的基础,因此首先对无信号交叉口进行研究是非常必要的。 无信号交叉口不像信号交叉口那样会给驾驶员确定的指示或控制,驾驶员必须自己判断何时进入交叉口是安全的。驾驶员所寻求的在交通流中进入交叉口的安全机会或“间隙”称为可插车间隙,它用时间来度量,并且等于某一车头时距。可插车间隙理论是分析无信号交叉口运行的基本理论,其它的所有分析过程在某种程度上都依赖于可插车间隙理论,或者即使没有明确地应用该理论,但也是以它为基础的。 在无信号交叉口中,必须考虑车辆的优先权问题。如果有一辆车试图进入交叉口,但此时存在优先级高于它的交通流,那么它必须让路给这些交通流。另外,低级别交通流的存在也会影响高级别交通流的运行。由此可见,无信号交叉口的车流间存在着相互作用。 本章的第一节首先讨论无信号交叉口的理论基础,着重介绍可插车间隙理论以及在该理论中用到的几种基本的车头时距分布。普通的无信号交叉口(即四路相交)可分为二路停车和四路停车两类,即主路优先控制的交叉口(包括停车控制和让路控制)和主次路不分的交叉口。在第二节中首先讨论了二路停车的无信号交叉口,第三节接着讨论了四路停车的无信号交叉口。在考虑交叉口交通运行时还用到了经验方法,并且在许多情况下经验方法的结果也是比较准确的,与实际情况差别并不大,在第四节中介绍了这些方法。 第一节理论基础 一、可插车间隙理论 1. 可利用间隙 可插车间隙理论是分析无信号交叉口的基本理论,理解该理论必须先理解可利用间隙的概念。例如,如果主路连续到达车辆间的时间间隔是10s,那么次路驾驶员能够驶离停车线吗?有多少驾驶员能够在这10s的间隔内驶离? 次要车流中所有驾驶员在相似的位置所能够接受的主要车流的最小间隙称为临界间隙,一般记为t c。根据通常假设的驾驶员行为模式,只有在主要车流的车辆间隙至少等于临界间隙t c时,次要车流的驾驶员才能进入交叉口。例如,如果临界间隙是4s,那么次要车流的驾驶员要驶入交叉口至少需要主要车流车辆间有一个4s的间隙,并且他在其它任何时候通过同一个交叉口都会需要同样的4s时间。另外,在一个非常长的间隙中会有多名驾驶员从次路上进入交叉口。可插车间隙理论中称在较长时间间隙中进入交叉口的次要车流车辆间的车头时距为“跟随时间”t f。 在描述无信号交叉口的理论中,经常假设驾驶员是具有一致性和相似性。驾驶员的一致性是指在所有类似的情况下、在任何时刻其行为方式相同,而不是先拒绝一个间隙随后

交通流理论第四章

第四章跟驰理论与加速度干扰 本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论模型,最后简要介绍一下加速度干扰问题。 跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应。车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性。跟驰理论所研究的参数之一就是车辆在给定速度u 下跟驰行驶时的平均 车头间距s ,平均车头间距则可以用来估计单车道的通行能力。在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式: C 1000 u / s (4—1)式中:C ——单车道通行能力(veh/h ); u ——速度(km/h ); s ——平均车头间距(m )。 研究表明,速度—间距的关系可以由下式表示: 2 s u u (4—2)式中系数、、可取不同的值,其物理意义如下: ——车辆长度,l ; ——反应时间,T ; ——跟驰车辆最大减速度的二倍之倒数。 2 附加项u2保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,的经验值可近似取为0.023s 2/ 英尺。一般情况下是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,的近似计算公式可取为: 11 0.5 a f a l(4 —3)式中:a f 、a l ——分别为跟车和头车的最大减速度。 跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行分析,近似得出单车道交通流的宏观特性。总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。 第一节线性跟驰模型的建立 单车道车辆跟驰理论认为,车头间距在100?125m 以内时车辆间存在相互影响。分

交通工程学交通流理论习题解答

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2 ,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。 解答:当V = 0时,j K K =, ∴ 1j b k = ; 当K =0时,f V V =,∴ f a V =; 把a 和b 代入到V = a (1 - bk )2 ∴ 2 1f j K V V K ??=- ? ? ? ? , 又 Q KV = 流量与速度的关系1j Q K V ?= ? 流量与密度的关系 2 1f j K Q V K K ??=- ? ??? 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求: (1)在该路段上期望得到的最大流量; (2)此时所对应的车速是多少 解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km ∴ V m = V f /2= 41km/h ,K m = K j /2= 辆/km , ∴ Q m = V m K m = 辆/h (2)V m = 41km/h 解答:35.9ln V k = 拥塞密度K j 为V = 0时的密度, ∴ 180 ln 0j K =

∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求: (1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数; (3)车头时距 t > 5s 车头间隔的平均值。 解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h (1)153600 3 (5)0.189Q t t t P h e e e λ- ?-?-≥==== (2)n = (5)t P h Q ≥? = 226辆/h (3)55158s t t e tdt e dt λλλλλ +∞-+∞-??=+=? 4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。 解答:(1)q = 720辆/h ,1 /s 36005 q λ= =辆,t = 2s 25 (2)0.67t t P h e e λ- -≥=== n = ×720 = 483辆/h 4-7 有优先通行权的主干道车流量N =360辆/ h ,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距=10s ,求 (1) 每小时有多少个可穿空档 (2) 若次要道路饱和车流的平均车头时距为t 0=5s ,则该路口次要道路车流穿越主要道路车流的最大车流为多少 解答: 有多少个个空挡?其中又有多少个空挡可以穿越? (1) 如果到达车辆数服从泊松分布,那么,车头时距服从负指数分布。 根据车头时距不低于t 的概率公式,t e t h p λ-=≥)(,可以计算车头时距不低于10s 的 概率是 3679.0)10(3600 10360==≥÷?-e s h p 主要道路在1小时内有360辆车通过,则每小时内有360个车头时距,而在360个车头时距中,不低于可穿越最小车头时距的个数是(总量×发生概率) 360×=132(个)

交通流理论第一章

第一章绪论 交通流理论是研究交通流随时间和空间变化规律的模型和方法体系。多年来,交通流理论在交通运输工程的许多领域,如交通规划、交通控制、道路与交通工程设施设计等都被广泛地应用着,应该说交通流理论是这些研究领域的基础理论。近些年来,尤其是随着智能运输系统的蓬勃发展,交通流理论所涉及的范围和内容在不断地发展和变化,如控制理论、人工智能等新兴科学的思想、方法和理论已经用于解决交通运输研究中遇到的复杂问题,又如随着计算机技术的发展,模拟技术和方法越来越多地被用来描述和分析交通运输工程的某些过程或现象。 第一节交通流理论的沿革 交通流理论的发展与道路交通运输业的发展和科学技术的发展密切相关,在交通运输业发展的不同时期和科学技术发展的不同阶段,对交通流理论的需求和研究能力都不同,因此产生了交通流理论的不同发展阶段。 按照时间顺序,交通流理论可以划分为三个阶段。 创始阶段此阶段被界定为20世纪30年代至第二次世界大战结束。在此期间,由于发达国家汽车工业和道路建设的发展,需要摸索道路交通的基本规律,以便对其进行科学管理,道路交通产生了对交通流理论的初步需求,需要有人对其进行研究。此阶段的代表人物为格林希尔治(Bruce D.Greenshields), 其代表性成果是用概率论和数理统计的方法建立数学模型,用以描述交通流量和速度的关系,并对交叉口交通状态进行调查。正是由于其奠基性工作,人们常常称格林希尔治为交通流理论的鼻祖。 快速发展阶段此阶段被界定为第二次世界大战结束至20世纪50年代末。在这一阶段,发达国家的公路和城市道路里程迅猛增长,汽车拥有量大幅度上升,此时交通规划和交通控制已经提到日程。如何科学地进行交通规划和控制,需要交通流理论提供支持。此阶段的特点是交通流理论获得高速发展,并产生了多个分支和学术上的多个代表人物。学术分支包括:车辆跟驰(car following)理论、基于流体力学的交通波理论(traffic wave theory)和排队理论(queuing theory)等。此时期造就的本领域的代表性人物有:沃德洛尔(Wardrop)、鲁契尔(Reuschel)、派普斯(Pipes)、莱特希尔(Lighthill)、惠特汉(Whitham)、纽厄尔(Newel)、韦伯斯特(Webster)、伊迪(Edie)、佛特(Foote)、张德勒(Chandler)、赫尔曼(Herman)等。 稳步发展阶段此阶段被界定为1959年以后。此阶段由于汽车的普及,交通已经成为世界各国大中城市越来越严重的问题,需要发展交通流理论来加以解决。正是这种需求,使交通流理论得到了稳步发展。1959年举行了第一次国际研讨会(The First International Symposium on the Theory of Traffic Flow),并确定本次会议为三年一次的系列会议(Series of Triennial Symposia on the Theory of Traffic Flow and Transportation)的首次会议。除了这一系列会议以外,近些年来在世界各国又举行了许多交通运输领域的专题学术年会,这些年会都涉及到了交通流理论。 按照研究手段和方法,交通流理论可划分为两类。 传统交通流理论所谓的传统交通流理论是指以数理统计和微积分等传统数学和物理方法为基础的交通流理论,其明显特点是交通流模型的限制条件比较苛刻,模型推导过程比较严谨,模型的物理意义明确,如交通流分布的统计特性模型、车辆跟驰模型、交

第四章交通流理论(详细版)

第四章交通流理论2 §4-1概述 一、概念 ●交通流理论,是一门用以解释交通流现象或特性的理论,运用数学或物理的方法,从宏观和微观描述交通流运行 规律。 3 二、发展 ●在20世纪30年代才开始发展,概率论方法。 ●1933年,Kinzer.J.P泊松分布用于交通分析的可能性。 ●1936年,Adams.W.F发表数值例题。 ●1947年,Greenshields泊松分布用于交叉口分析。 ●20世纪50年代,跟驰理论,交通波理论(流体动力学模拟)和车辆排队理论。 ●1975年丹尼尔(DanieL lG)和马休(Marthow,J.H)出版了《交通流理论》一书。 ●1983年,蒋璜翻译为中文。人交出版社出版。 ● 4 三、种类 幻灯片5§4-1概述 ●交通流量、速度和密度的相互关系及量测方法; ●交通流的统计分布特性; ●排队论的应用; ●跟驰理论; ●驾驶员处理信息的特性; ●交通流的流体力学模拟理论;. ●交通流模拟。§4-2交通流的统计分布特性 一、交通流统计分布的含义与作用 ●离散型分布: ●在某固定时段内车辆到达某场所的波动性;(也可描述某一路段上所拥有车辆数的分布特性)。 ●泊松分布/二项分布/负二项分布 ●连续型分布: ●研究上述事件发生的间隔时间的统计特性,如车头时距的概率分布。 ●负指数分布/移位负指数分布/爱尔朗分布 7 二、离散型分布 幻灯片8§4-2交通流的统计分布特性 ●在一定的时间间隔内到达的车辆数,或在一定的路段上分布的车辆数,是所谓的随机变数,描述这类随机变数的 1. 泊松分布 统计规律用的是离散型分布4-2 交通流的统计分布特性 (1) 适用条件

交通流理论

第二节交通流理论 一、机动车交通 机动车交通是城市道路交通的主体。国外城市中的机动车大多是小汽车,车种较为单一,在一定的路段上车速基本相同,交通流相对比较简单。我国城市的机动车车种复杂,车速、性能差异较大,交通流比国外城市要复杂得多。 1.机动车流速度、流量和密度关系 (1)基本关系式 如果车流中所有车辆均以相同的车速通过某一段路程,则有下列关系: 式中:K为交通密度(辆/公里);Q为交通量 (辆/小时);V为车速(公里/小时)。 公式也经常写作: (2)车速与密度的关系 Vf为自由车速,Kj为当车速为零时的阻塞密度。 由上式及图可知,当密度逐渐增大则车速逐渐减小,当达到阻塞密度Kj时,车速为零,交通停顿。 (3)交通量与密度的关系 Ko称为最佳密度。由图可知,在Ko之前,交通量随密度的增加而增加,而在Ko之后,交通量将随密度的增加而减少。 (4)交通量与车速的关系

Vo称为最佳车速。由图可知在Vo之前,交通量随车速的增加而增加,而在Vo之后,交通量将随车速的增加而减少。 综上所述,将Q-K, Q-V及V-K关系图作于同一平面上,如上图,全面分析可知: (1)当密度很小时,交通量亦小,而车速很高(接近自由车速)。 (2)随着密度逐渐增加,交通量亦逐渐增加,而车速逐渐降低。当车速降至Vo时,交通量达到最大此时的车速称为临界车速,密度Ko称为最佳密度。 (3)当密度继续增大(超过Ko),交通开始拥挤,交通量和车速都降低。当密度达到最大(即阻塞密度凡)时,交通量与车速都降至为零,此时的交通状况为车辆首尾相接,堵塞于道路上。 (4)最大流量Qmax、临界车速Vo和最佳密度Ko是划分交通是否拥挤的特征值。当Q>Qmax,K>Ko,V<Vo时交通属于拥挤;当Q≤Qmax,K≤Ko,V≥Vo时,交通属于畅通。 由上述三个参数间的量值关系可知,速度和容量 (密度)不可兼得。因此,为保证高等道路(快速路、主干路)的速度,应对其密度加以限制 (如限制出入口、封闭横向路口等)。

交通流理论

交通流理论是运用数学、物理学和力学的原理描述交通流特性的一门边缘学科,是研究交通流随时间和空间变化规律的模型和方法体系,其目的是为了阐述交通现象形成的原理。 目前,对交通流理论的定义不尽相同,但归纳各种定义的主要思想,可以给交通流理论这样一个定义:交通流理论是研究在一定环境下交通流随时间和空间变化规律的模型和方法体系。根据上述定义,交通流理论设计的范围非常广泛,其研究内容很难一言以蔽之。参考各种文献资料后,将交通流理论的研究内容分为以下12部分: (1)交通流特性 主要介绍交通流的几个参数的概念和基本公式及交通调查的几种常用方法和特点。重点研究交通流参数经常用到的两类统计分布,即:离散型分布和连续型分布。 (2)交通流模型 交通流模型主要指速度—流量,速度—密度,流量—密度模型。交通流模型能实现交通流变量之间的转换,即能实现控制变量与交通性能指标之间的转换,从而在交通管理中可用于控制某个变量以使交通性能达到最优的的目的。 (3)驾驶人交通特性 在此驾驶人交通特性主要是指驾驶人对交通流的影响。包括人—车—路系统中驾驶人的驾驶任务,驾驶人的离散交通特性及根据闭环控制原理,研究驾驶传递函数及其应用,驾驶人交通特性在交通流中的应用,驾驶人交通特特性在交通流中的作用,包括坡道加速公式,可叉车间隙和合流,停车视距和交叉口视距以及速度错觉,信息干扰,实时信息等内容。 (4)车辆跟驰理论 交通流车辆跟驰理论是应用动力学方法,将交通流处理为分散的粒子组成,从围观角度探究在无法超车的单一车道上车辆列队行驶时,后车跟随前车的行驶状态,并用数学模式表达而加以分析阐明的一种理论。 (5)排队理论及应用 (6)连续交通流模型 (7)宏观交通流模型 (8)交通影响模型 (9)无信号交叉口理论 (10)信号交叉口理论 (11)交通系统仿真 (12)交通流理论的应用 城市道路信号交叉口作为城市道路网络中通行能力和交通安全的瓶颈,在道路衔接中起着举足轻重的作用,其通行能力的大小很大程度上决定或制约着整个城市路网的通行能力,影响着城市交通网络的运输能力。平面交叉口处反复地分流、合流、交叉,使其交通状况尤其复杂。 日常的交通拥堵大部分都是由于交叉口的通行能力不足造成的,因此信号交叉口成为路网规划、建设、改造和交通治理的重点。提高交叉口的通行能力,减少交叉口延误是城市道路交通追求的目标,也是改善城市道路整体状况的最有效的方法。 我国大多数城市道路信号交叉口采用多相位信号控制,基于我国城市信号交

交通流理论第四章

第四章 跟驰理论与加速度干扰 本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论 模型,最后简要介绍一下加速度干扰问题。 跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应。车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性。跟驰理论所研究的参数之一就是车辆在给定速度u 下跟驰行驶时的平均车头间距s ,平均车头间距则可以用来估计单车道的通行能力。在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式: s u C /1000?= (4—1) 式中:C ——单车道通行能力(veh/h ); u ——速度(km/h ); s ——平均车头间距(m )。 研究表明,速度—间距的关系可以由下式表示: 2 u u s γβα++= (4—2) 式中系数α、β、γ可取不同的值,其物理意义如下: α——车辆长度,l ; β——反应时间,T ; γ——跟驰车辆最大减速度的二倍之倒数。 附加项2 u γ保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰 撞,γ的经验值可近似取为0.023s 2 /英尺。一般情况下γ是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,γ的近似计算公式可取为: ()1 15.0---=l f a a γ (4—3) 式中:f a 、l a ——分别为跟车和头车的最大减速度。 跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行 分析,近似得出单车道交通流的宏观特性。总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。

第四章 交通流理论.ppt.Convertor

Traffic Flow Theory 第四章交通流理论 1 Generalization 第一节概述 2 交通流理论:运用数学和物理学的方法来描述交通特性的一个边缘科学,它用分析的方法阐述交通现象及其机理,使我们更好的理解交通现象及其本质,并使城市道路与公路的规划设计和运营管理发挥最大的功效。 3 1 初期:概率论方法(20世纪30年代) 1933年,金蔡(Kinzer.J.P)提出了泊松分布; 2 中期:跟驰理论、交通波理论和排队理论(20世纪50年代) 1959年12月,首届交通流理论学术讨论会召开; 3 后期:迅速发展时期(20世纪60年代后) 丹尼尔(Daniel .I.G)和马休(Marthow.J.H)1975年出版了《交通流理论》。 发展历程 4 1. 交通量、速度和密度的相互关系和量测方法 2. 交通流的统计分布特性 3. 排队论的应用 4. 跟驰理论 5. 驾驶员处理信息的特性 6. 交通流的流体力学模拟理论 7. 交通流模拟 主要内容 5 第二节交通流的统计分布特性 The Statistical Distribution Characteristic of Traffic Flow 6 1、到达某一断面的车辆数:离散型分布 2、到达同一地点的两辆车的时间间隔:连续性分布 3、离散型分布:计数分布 连续性分布:间隔分布、车头时距分布、速度分布、可穿越空档分布 统计分布的含义 7 1、泊松分布 2、二项分布 3、负二项分布 离散型分布

8 1、泊松分布 (1)适用条件:车流密度不大,其它外界干扰因素基本上不存在,车流是随机的 (2)基本公式: 令:计数间隔平均到达的车辆数,泊松分布参数。 离散型分布 9 1、泊松分布 离散型分布 10 1、泊松分布 (3)递推公式: (4)分布的均值M和方差D: 离散型分布 11 1、泊松分布 Poisson distribution belongs to discrete function with only one parameter. In traffic engineering Poisson distribution equation is used to describe the arrivals of vehicles at intersections or toll booth, as well as number of accident (crash) Poisson distribution is appropriate to describe vehicle’s arrival when traffic volume is not high. When field data shows that the mean and variance have significant difference, we can no longer apply Poisson distribution 离散型分布 12 2、二项分布 (1)适用条件:车流比较拥挤,自由行驶机会不多的车流 (2)基本公式: :独立事件发生的概率, n,p为二项分布参数。 离散型分布 13 2、二项分布 离散型分布 14 2、二项分布

第4章交通工程学交通流理论习题解答

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。 解答:当V = 0时,j K K =, ∴ 1j b k =; 当K =0时,f V V =,∴ f a V =; 把a 和b 代入到V = a (1 - bk )2 ∴ 2 1f j K V V K ??=- ? ?? ?, 又 Q KV = 流量与速度的关系1j f V Q K V V ??=- ? ??? 流量与密度的关系 2 1f j K Q V K K ??=- ? ??? 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求: (1)在该路段上期望得到的最大流量; (2)此时所对应的车速是多少? 解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km ∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km , ∴ Q m = V m K m = 2152.5辆/h (2)V m = 41km/h 4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有如下形式: 18035.9ln s V k = 式中车速s V 以 km/h 计;密度 k 以 /km 计,试问在该路上的拥塞密度是多少? 解答:18035.9ln V k = 拥塞密度K j 为V = 0时的密度, ∴ 180ln 0j K =

交通流理论第六章

第六章宏观交通流模型 在城市快速发展而使交通变得拥挤的时候,城区的可达性便成为评价城市生活质量的重要方面,而交通拥挤确实已经成为当今各大城市的难题。为解决这一问题,人们采用了各种工程和技术手段,小到路口渠化、信号配时,大到道路网规划、智能运输系统,应该说各项技术均已经达到了有效、适用的地步。最近30年来,人们对应用这些技术形成的交通设施的效果进行了很多研究,并形成了对各单项设施评价的理论和方法,如干道通行能力和效果的评价,交叉口控制效果的评价等。但是如何对一个道路网络的交通效果进行评价更是人们所关心的问题,尤其是ITS快速发展的今天,有一个基于路网的交通流优化和评价模型体系,就显得更为重要了。 本章从宏观的角度介绍一些流量、速度和密集度的量测和推算方法,从而提供网络交通效果评价的基本理论和基本方法。这些方法可用于:1)同一城市不同时期的交通效果对比分析;2)不同城市同一时期的交通效果对比分析;3)路网交通设施设计评价。 第一节以CBD为中心的交通特性 这一节中重点研究不同位置的交通状况与所处城区地理位置之间的关系。 图6—1 交通强度与距市中心距离的关系 一、交通强度 交通强度是指单位面积上单位时间内通过的所有车辆(折合成标准车辆)的行驶距离总和。一般认为CBD(the central business district,商业中心区)是一个城市交通最为敏感的地区,交通强度与距CBD的距离有关。于是,研究者建立了多种以距CBD的距离为自变量的评价交通特性的模型。图6—1是对英国4个城市的研究结果,图中交通强度的单位

是103pcu/h/km 。图形符合指数模型,其模型如下: () a r A I /ex p -= (6—1) 式中: A 、a —— 待定参数; I —— 交通强度(pcu/h/km ); r —— 距CBD 的距离(km )。 式中的参数A 、a 在高峰时段和非高峰时段的标定值是不同的。此式表明,离CBD 越远,交通强度就越小。 二、平均速度 通过对英国6个城市的研究发现,车辆运行的平均速度与距离CBD 的距离有关。以市中心的放射线道路为研究对象,将道路按照一定的距离分割成若干段然后进行观测,并以观测数据建立模型,共建立了如下5种不同的模型: b ar u = (6—2) b ar c u += (6—3) br a u += (6—4) cr be a u --= (6—5) 2 22 21r cb a r b u ++= (6—6) 上述各式中a , b, c 为待定参数,u 是速度,r 的意义同上。 在上述模型中,线性模型(6—4)在应用中出现了较高的估计值,即随着r 值的增加,预测的速度增加过快,因此此式被淘汰。修正的幂函数(6—3),在应用中常常估计出负的速度值,因此也被淘汰,其余三个模型均可使用。图6—2显示的是对Nottingham 的数据分别用式(6—2)、式(6—5)、式(6—6)的拟合情况。图中,横坐标表示距中心区的距离(km ),纵坐标表示行程速度(km/h )。 0 2 (a) (b) (c)

第4章交通工程学交通流理论习题解答

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。 解答:当V = 0时,j K K =, ∴ 1j b k = ; 当K =0时,f V V =,∴ f a V =; 把a 和b 代入到V = a (1 - bk )2 ∴ 2 1f j K V V K ??=- ? ?? ? , 又 Q KV = 流量与速度的关系1j Q K V ?= ? 流量与密度的关系 2 1f j K Q V K K ??=- ? ?? ? 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求: (1)在该路段上期望得到的最大流量; (2)此时所对应的车速是多少? 解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km ∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km , ∴ Q m = V m K m = 2152.5辆/h (2)V m = 41km/h 4-3 对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系

解答:35.9ln V k = 拥塞密度K j 为V = 0时的密度, ∴ 180 ln 0j K = ∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求: (1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数; (3)车头时距 t > 5s 车头间隔的平均值。 解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h (1)153600 3 (5)0.189Q t t t P h e e e λ- ?-?-≥==== (2)n = (5)t P h Q ≥? = 226辆/h (3)55158s t t e tdt e dt λλλλλ +∞-+∞-??=+=? 4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。 解答:(1)q = 720辆/h ,1 /s 36005 q λ= =辆,t = 2s 25 (2)0.67t t P h e e λ- -≥=== n = 0.67×720 = 483辆/h 4-7 有优先通行权的主干道车流量N =360辆/ h ,车辆到达服从泊松分布,主要道路允许次要道路穿越的最小车头时距=10s ,求 (1) 每小时有多少个可穿空档? (2) 若次要道路饱和车流的平均车头时距为t 0=5s ,则该路口次要道路车流穿越主要道路车流的最大车流为多少?

(完整版)交通流理论第二章

第二章 交通流特性 第一节 交通调查 交通调查:在道路系统的选定点或选定路段,为了收集有关车辆(或行人)运行情况的数据而进行的调查分析工作。 意义:交通调查对搞好交通规划、道路设施建设和交通管理等都是十分重要的。 调查方法: (1)定点调查; (2)小距离调查(距离小于10m ); (3)沿路段长度调查(路段长度至少为500m ); (4)浮动观测车调查; (5)ITS 区域调查。 图2—1中,纵坐标表示车辆在行驶方向上距离始发点(任意选定)的长度,横坐标表示时间。图中的斜线代表车辆的运行轨迹,斜率为车速,直线相交表示超车。 穿过车辆运行轨迹的水平直线代表定点调查; 两条非常接近的水平平行直线表示小距离调查; 一条竖直直线表示沿路段长度调查(瞬时状态,例如空拍图片); 车辆的轨迹之一就可代表浮动车调查; ITS 区域调查类似于在不同时间、不同地点进行大量的浮动车调查。 图2—1 几种调查方法的时间—距离图示 时间(s ) 距离(m ) 高速公路车道

一、定点调查 定点调查包括人工调查和机械调查两种。 人工调查方法即选定一观测点,用秒表记录经过该点的车辆数。 机械调查方法常用的有自动计数器调查、雷达调查、摄像机调查等。 自动计数器调查法使用的仪器有电感式、环形线圈式、超声波式等检测仪器,它几乎适用于各种交通条件,特别是需要长期连续性调查的路段。 雷达调查法适用于车速高、交通量密度不大的情况。 摄像机调查法一般将摄像机安装在观测点附近的高空处,将镜头对准观测点,每隔一定的时间,如15s、30s、45s或60s,自动拍照一次,根据自动拍摄的照片上车辆位置的变化,清点出不同流向的交通量。这种方法可以获得较完全的交通资料,如流量、流向、自行车流及行人流和行驶速度、车头时距及延误等。 除这些方法以外,还有航空摄影调查法、光电管调查法等。 定点调查能直接得到流量、速度和车头时距的有关数据,但是无法测得密度。 二、小距离调查 这种调查使用成对的检测器(相隔5m或6m)来获得流量、速度和车头时距等数据。 目前常用的点式检测器,如感应线圈和微波束。调查地点车速时,将前后相隔一定距离(如5m)的检测器埋设地下,车辆经过两个检测器时发出信号并传送给记录仪,记录仪记录车辆通过两个检测器所使用的时间,那么用相隔的距离除以时间就得到地点车速。 这种调查方法还能得到占有率,占有率是指检测区域内车辆通过检测器的时间占观测总时间的百分比。由于占有率与检测区域的大小、检测器的性质和结构有关,因此同样的交通状态下,不同位置测得的占有率可能不同。 小距离调查同样无法测得密度,但可获得流量、速度、车头时距和占有率等数据。 三、沿路段长度调查 沿路段长度调查主要是指摄像调查法,适用于500m以上的较长路段。 摄像调查法首先对观测路段进行连续照像,然后在所拍摄的照片上直

交通流理论第四章

第四章 跟驰理论与加速度干扰 本章将主要讨论单车道情况下的车辆跟驰现象,介绍跟驰理论,建立相应的跟驰理论模型,最后简要介绍一下加速度干扰问题。 跟驰理论是运用动力学方法研究在限制超车的单车道上,行驶车队中前车速度的变化引起的后车反应。车辆跟驰行驶是车队行驶过程中一种很重要的现象,对其研究有助于理解交通流的特性。跟驰理论所研究的参数之一就是车辆在给定速度u 下跟驰行驶时的平均车头间距s ,平均车头间距则可以用来估计单车道的通行能力。在对速度—间距关系的研究中,单车道通行能力的估计基本上都是基于如下公式: s u C /1000?= (4—1) 式中:C ——单车道通行能力(veh/h ); u ——速度(km/h ); s ——平均车头间距(m )。 研究表明,速度—间距的关系可以由下式表示: 2 u u s γβα++= (4—2) 式中系数α、β、γ可取不同的值,其物理意义如下: α——车辆长度,l ; β——反应时间,T ; γ——跟驰车辆最大减速度的二倍之倒数。 附加项2 u γ保证了足够的空间,使得头车在紧急停车的情况下跟驰车辆不与之发生碰撞,γ的经验值可近似取为英尺。一般情况下γ是非线性的,对于车速恒定(或近似恒定)、车头间距相等的交通流,γ的近似计算公式可取为: ()1 15.0---=l f a a γ (4—3) 式中:f a 、l a ——分别为跟车和头车的最大减速度。 跟驰理论除了用于计算平均车头间距以外,还可用于从微观角度对车辆跟驰现象进行 分析,近似得出单车道交通流的宏观特性。总之,跟驰理论是连接车辆个体行为与车队宏观特性及相应流量、稳定性的桥梁。 第一节 线性跟驰模型的建立 单车道车辆跟驰理论认为,车头间距在100~125m 以内时车辆间存在相互影响。分析跟驰车辆驾驶员的反应,可将反应过程归结为以下三个阶段: 感知阶段:驾驶员通过视觉搜集相关信息,包括前车的速度及加速度、车间距离(前 车车尾与后车车头之间的距离,不同于车头间距)、相对速度等;

相关文档