文档视界 最新最全的文档下载
当前位置:文档视界 › 辊压机水泥联合粉磨系统研磨体级配初探

辊压机水泥联合粉磨系统研磨体级配初探

辊压机水泥联合粉磨系统研磨体级配初探
辊压机水泥联合粉磨系统研磨体级配初探

辊压机联合粉磨系统节能降耗措施

辊压机联合粉磨系统节能降耗的措施 辊压机联合粉磨系统因其增产效果显著而得到了广泛应用。目前,水泥厂粉磨工艺以趋于设备大型化、系统自动化、工艺简单化、技术节能化的发展趋势。本文从郑州天瑞水泥有限公司辊压机、磨机系统改进和工艺参数控制等方面列举了联合粉磨系统的节能降耗改进措施:改进辊压机进料装置为正上部进料,并把流量调节板改为双边对称调节;调整V型选粉机内部结构;对磨机系统隔仓板、一仓衬板、二仓衬板以及磨内研磨体级配进行调整。结果表明:改进辊压机系统能够提高系统循环量,增加物料挤压次数,改善了挤压效果;合理控制料粒度、物料水分及辊压压力能够提高辊压机的辊压效果充分发挥辊压机节能优势;改进磨内结构,优化操作,能够充分发挥磨机的研磨能力保证系统节能效果;对整个系统工艺参数进行调整,合理分配其比例,以达到改善水泥性能,降低水泥工业能源消耗的效果。 关键词:粉磨系统,辊压机,磨机,节能降耗 I JOINT GRINDING SYSTEM ENERGY SAVING MEASURES ABSTRACT Roller grinding machine joint due to its increasing production system has been widely used. At present, cement grinding process to tend to be enlarged equipment, automation, process simplification, the devel opment trend of energy technology. Based TianRui cement Co., LTD. Of zhengzhou roller machine, grinder system and improve the process para meters are controlled etc enumerated joint grinding system energy sav ing measures: improve roller machine feeding device for upper feed, a nd positive bilateral symmetry circuit-adjusting board to adjust, Adj ust V classifier internal structure, For grinding machine system diap hragms, a warehouse liner board, two warehouse liner and grinding mil l body inside the gradation adjustment. The results indicate that the roller press of the roller mill system can improve circulation, incr ease the number of extrusion, improve the material extruded effect, R easonable control partical, material moisture and roller pressure rol ler machine can improve the effect of roller adequately roller machin e, energy saving, Improved grinding in structure, optimizing operatio n, can fully exert mill grind ability assurance system energy saving effect, For the whole system, KEY WORDS: shut grinding system, Roller machine, Grinding machine, Sa ving energy and reducing consumption II 目录 前言 ............................................................... .. (1) 第一章联合粉磨系统概 述 (2) 1.1 发展与现

辊压机终粉磨系统在生料制备中的应用

辊压机终粉磨系统在生料制备中的应用 发表时间:2019-12-17T09:10:48.577Z 来源:《基层建设》2019年第26期作者:文有强[导读] 摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。 中建材(合肥)粉体科技装备有限公司安徽合肥 230051摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。由于中卸烘干磨对烘干热源有较高要求,正常生产时与余热发电系统发生抢风现象,影响余热发电能力,导致产品成本偏高。为了有效节能降耗、降低成本,对生料制备系统进行技术改造,选择辊压机终粉磨技术。辊压机进行生料终粉磨是先进的生产工艺,其利用粒间 高压料床粉碎原理,高效节能,从而提高粉磨系统的粉磨效率,达到节能降耗的目的。关键词:生料制备;辊压机终粉磨系统;中卸烘干磨系统辊压机属于新型水泥节能粉磨设备,除了能够有效节能外,还能降低噪声污染,在现代水泥生产工艺中发挥着举足轻重的作用。以往辊压机主要用于水泥粉磨系统,包括水泥挤压混合粉磨、水泥联合粉磨、水泥半终粉磨等多种形式。辊压机生料终粉磨系统近几年才发展起来,已经体现出其优势,对水泥生产企业节能和降低成本的效果显著。与立磨相比,电耗低是最大优势。某公司现有一条4000t/d熟料生产线,原料粉磨系统采用两套传统的中卸烘干磨粉磨工艺。由于原料粉磨系统设备陈旧,工艺相对落后,生料粉磨电耗高(两套生料粉磨系统平均电耗~24 kwh/t)、生产维护费用高等问题,公司考虑新增两套辊压机终粉磨系统对现有生料粉磨系统进行技改。 一、生料粉磨的基本特点生料粉磨是水泥生产过程的一个重要环节,与水泥粉磨相比,具有自身的特点和要求,主要体现在处理的原料特性和产品要求方面,因此采用的系统技术要求也存在较大差别。生料配料主要包括钙质原料、硅质原料、铁质原料等,这些原料的易磨性、磨蚀性、含水量等差别很大,即使同一类原料波动范围也很宽,必须经过测试生料的邦德功指数试验才能确定合理的系统配置和技术指标,否则只能基于假设的“中等性能”确定初步方案。 二、辊压机作终粉磨工艺改造方案 1、改造前的两套生料粉磨系统的主要配置如下:表2-1 原料粉磨系统主机设备一览表 2、采用的技改方案目前先进的生料粉磨系统主要有两种,一种是采用立式磨系统,另一种是辊压机终粉磨系统。立式磨对原料水分的适应能力更强,缺点是系统热风用量大,电耗偏高;而辊压机终粉磨系统是更加节能的生料粉磨方案,同样情况下,比立磨系统电耗低约2-3kWh/t、热风用量也略少于立磨系统,缺点是当原料水分过高造成物料很黏时,其适应能力不足。因本项目所用原料综合水分可控,且没有很黏的物料,气候条件适用,为避免与已投用余热发电系统争夺热风的现象,经确定采用两套更加节能的辊压机终粉磨系统代替现有的两套生料球磨机系统。 3、生产工艺流程简述在原有生料磨两侧空地上,新增二套HFCG160-120 辊压机+V4000 型气流分级机与原有球磨机系统中现有的风路、选粉、废气处理等系统组合,形成新的辊压机终粉磨系统。工艺流程阐述:来自原料配料库的混合原料(石灰石、硅石、铁矿粉等)通过皮带机输送至辊压机车间气流分级机进料口,新鲜物料汇同辊压机挤压后的物料送入新增的气流分级机内。物料经过气流分级机的分选,粗粉通过皮带机和提升机返回辊压机稳流称重仓,细粉(半成品)被风带入原有组合式高效选粉机内,选出的粗粉也回到辊压机称重仓,细粉即为成品再由空气输送斜槽、提升机等送入生料均化库内。窑尾热风仍作为整个系统的主要烘干热源,重新安装风管后将热风直接引入新增的气流分级机内,与循环风、自然风一起通过料幕,将物料中的细粉带出进入到原组合式选粉机内,通过选粉机分离后的含尘风部分返回到气流分级机内,其余气体进入窑尾收尘器。整个风路系统仍由原组合式选粉机后的循环风机完成,在入V 型气流分级机的热风管、循环风管及冷风管上均设有电动风阀。在上述系统中,在入辊压机系统的物料皮带及V 型气流分级机粗料返回皮带机上均设有自动除铁器,以去除原料及系统中的铁,有效保护辊压机。 工艺流程图如下:

国产大型辊压机及粉磨系统的方案

国产大型辊压机及粉磨系统的方案 作者:张永龙王学敏王虔虔单位:合肥水泥研究设计院1 国产辊压机发展简介 自上世纪八十年代中期由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD公司辊压机设计制造技术以来,经过了二十年的发展历程。国产辊压机的规格,辊径由800mm发展到今天的1600mm ;辊宽由200mm发展到今天的1400mm;装机功率由90kW×2发展到今天的1120kW×2 ;整机重量由30多吨发展到今天的200多吨,产品质量逐步提高。辊压机的通过量由40t/h发展到今天的800t/h;配套磨机的产量由20t/h 发展到今天的180t/h,节能幅度达30%以上。 回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段 1986年—1992年 在此期间参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同时,相继开发出各自的国产化辊压机,并在1990年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产40%,节电15%的效果。 1.2 整改提高阶段 1993年—1999年 在此期间由于各厂家制造的辊压机在生产线上相继出现问题,使得许多看中辊压机增产节能效果的厂家想上而不敢上,一些用了辊压机的厂家也觉得是“尝到了甜头,吃尽了苦头”。合肥水泥研究设计院针对出现的问题进行了分析认为主要存在两个方面问题,一是加工件、配套件的质量问题,二是工艺系统的设计及配套问题。经国家“八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG系列辊压机。有效解决了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题,在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位的配套件质量也都大大提高,为国产化辊压机的长期安全运转做出了贡献,设备运转率达90%以上;研究、开发出具有自主知识产权的国家专利产品——SF系列打散分级机以及“V”型选粉机,使辊压机和球磨机各自的优点得以充分发挥,构成的粉磨系统工艺参数更加合理。 1.3 快速发展阶段 2000年至今 解决了国产化辊压机设备制造和工艺配套两方面的问题,为国产化辊压机的快速发展应用奠定了基础,近些年国家水泥产业结构调整,淘汰立窑,发展旋窑,加上能源紧张又为辊压机的快速发展创造了难得的机遇。近几年旋窑朝着大型化发展,5000t/d 熟料生产线已成为市场的主流,这就要求国产化辊压机也朝着大型化发展,我们抓住了机遇,及时开发出装机功率在1120kW×2的大型 HFCG160-140辊压机。近些年国产工业迅速发展,加工能力和加工质量进一步提高,为5000t/d 熟料生产线设备国产化创造了条件,同样也为大型辊压机国产化创造了条件。HFCG160-140大型辊压机配Ф4.2×13m开路水泥磨产量可达170t/h以上,配Ф4.2×13m闭路水泥磨产量可达180t/h以上,取得使磨机增产100%,节电 30%的效果。

水泥磨技术参数

【水泥磨技术参数】

4.213水泥磨的钢球级配

4.213水泥磨的钢球级配

3.0m×13m高细水泥磨提高水泥颗粒级配的效果2007-12-29 作者:

作者:王贵生 贵阳市麟山水泥厂 SA水泥厂 3.0m×13m开流高细磨生产水泥,产量45~48t/h,比表面积> 360m2/kg,3~32μm水泥颗粒含量63%~65%,混合材掺量达到40%~4 5%,其中工业废渣掺量>35%,创造了较好的经济效益和社会效益。 1 磨机工艺技术参数(表1) 主电机:YR1400-8/(1400kW/10kV) 减速机:JD×900 输送设备: 进料提升机:NE100×12.6m/11kW/90t/h 出料提升机:NE100×21.6m/11kW/90t/h 成品提升机:NE100×32.6m/22kW/90t/h 成品链式输送机:FU315×26m/11kW/80t/h MB30130高细磨共分四仓,一、二仓中间为内选粉筛,双层隔仓板结构,物料经一仓破碎冲击作用,进入二仓,在二、三仓设有筛分双层隔仓板装置,筛板篦缝孔径在5mm;三、四仓设有普通双层隔仓板,活化挡料环,磨尾出料装置与筛粉隔仓板相似;出料端采用组合式出料篦板,实现了料和球的分离。一仓、二仓装有阶梯衬板,三仓、四仓装有小波纹衬板。 2 磨机研磨体级配 入磨熟料采用新型干法窑熟料,平均入磨粒度15mm,根据入磨粒度确定平均球径:,由于没有预破碎,开路磨一仓平均球径要增大1~2mm,各仓填充率是一仓小于二仓,二仓大于三仓,三仓小于四仓,研磨体全部采用钢球级配。采用逐渐增大级配的方法,第一级小、第二级逐渐增大级配,一仓平均级配71.13mm,二仓球径41.16mm,三仓球径29.35mm,四仓球径16. 8

辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义 辊压机部分 一、工作原理和工作方式: 该设备根据高压料层粉碎能耗低的原理,采用单颗粒粉碎群体化的工作方式,脆性物料经过高压区挤压后使物料粒度迅速减小,<0.08mm的细粉含量达20%~30%,<2mm的物料含量达70%以上,在所有经挤压后的物料表面存有大量的裂纹,易磨性显著改善,使物料在进入下一工序的粉磨时所需的粉磨能耗大幅度降低,获得大幅度增产节能的效果。 辊压机的核心部分是两个辊径辊宽相同,相向转动的磨辊,辊压机采用的工作方式是在两个相向转动的磨辊之间形成高压力区,采用过饱和喂料的方式在磨辊上方设置用于保证仓内料位的称重仓,料位由称重传感器以负反馈方式控制,形成具有一定料压的料柱,通过进料装置喂入两磨辊之间,磨辊将物料拉入辊隙后在压力区以高压将物

料压成密实的料饼后从辊隙间落下进入下一工序。 由于辊压机工作时采用完全正压力对物料实施挤压,同时在辊面菱形花纹对物料的限制作用下,物料与磨辊之间无产生剪切效果的相对滑移(注:在获得相同粉碎效果的前提下,剪应变所需能量是压应变的5倍),所以上述工作方式不仅节省能耗,辊面磨损也很小。 二、设备结构: 设备由主机架、轴系、液压系统、润滑系统、进料装置、传动系统、检测系统等组成。 1、主机架: 主机架用于承受设备的挤压粉碎力,分别由上、下横梁,左、右立柱,承载销,定位销,导轨及高强度联接螺栓组等组成。上、下横梁采用工字型结构,左、右立柱则采用工字型与箱型相结合的结构形式,均具有较高的刚度,通过高强度螺栓组的联接使整个机架形成一个刚性的整体。 承载销将立柱上所受到的挤压粉碎力传递到上、下横

辊压机粉磨系统

辊压机粉磨系统 一、所属行业:建材行业 二、技术名称:辊压机粉磨系统 三、适用范围:水泥生产线原料及水泥粉磨,高炉矿渣的超细粉磨。 四、技术内容: 1.技术原理 采用高压挤压料层粉碎原理,配以适当的打散分级装置。 2.关键技术 专用磨辊堆焊及修复技术,液压、润滑、喂料、传动、自动控制技术,以及与之相配套的打散分级、球磨机改造等。 3.工艺流程 辊压机联合粉磨→半终粉磨→终粉磨。 五、主要技术指标: 5000t/d水泥生产线采用不同水泥成品粉磨系统能耗指标比较: 采用球磨机闭路系统电耗指标:38~42kWh/t; 采用辊压机粉磨系统:单套粉磨能力200t/h,系统电耗(P.O42.5级水泥)≤30kWh/t。 六、技术应用情况: 该设备1990年通过国家建材局技术鉴定,1992年荣获建材行业部级科技进步二等奖,1993年荣获国家科技进步二等奖。迄今已有400多台HFCG型辊压机及其系统水泥生产线运行,并批量出口国外。 典型用户有:台泥(英德)、河北冀东、浙江红狮、山东山水、兆山新星、山东山铝、福建水泥、广西华润、湖北华新等诸多水泥集团。目前该技术在行业内的推广比例达到60%。 七、典型用户及投资效益: (1)某5000t/d新型干法水泥生产线 项目节能技改投资额约2000万元,建设期150天。同比采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,吨水泥粉磨电耗降低8kWh/t计算,年节电效益约为800万元(按0.5元/ kWh计算),投资回收期3.0年。 (2)某2500t/d新型干法水泥生产线,老厂改造

节能技改投资额约1200万元,建设期150天。比原采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,以年产100万吨水泥,吨水泥粉磨电耗降低8kWh/t 计算,年节电效益约为400万元(按0.5元/度计算),投资回收期3.5年。 八、推广前景和节能潜力: 据“十一五”期间水泥产业结构调整政策,新型干法水泥增量相当于新建200多条5000t/d新型干法水泥生产线,需要各种规格的辊压机在800台套以上。另外,尚有大量的中、小水泥厂利用原有的球磨机改造为粉磨站。市场前景广阔,节能降耗效果显著。 “十一五”期间,该技术在行业内的普及率预计能达到80%,需总投入10亿元,可节电8亿kWh。 九、推广措施及建议: 1.参加行业推广会、技术交流会; 2.建议进一步提高耐磨材料材质,进一步延长耐磨材料使用寿命。

辊压机主要参数确定

辊压机主要参数确定 第三节辊压机主要参数确定 一、辊径D和辊宽B及最小辊隙S min的确定 目前,在设计和使用上辊径有两种方案:一为大辊径;另一为小辊径。辊径 D 有如下简化计算式 D=Kd max(9-1) 式中K ———系数,由统计数据而得,K=10-24 ; d max———喂料最大粒度,mm。 采用大辊径有如下优点: (1)大块物料容易咬入,向上反弹情况少。 (2)由点载荷、线载荷、径向挤压三者所组成的压力区高度较大,物料受压过程较长。 (3)辊子直径大,惯性大,运转平稳。 (4)辊径大,则轴承大,轴承及机架受力情况较好,且有足够空间便于轴承的安装与维修。 (5)辊面寿命相对延长。 但辊径大,则重量和体积较大,整机重量比小辊径方案重15%左右。辊宽 B 的设计也有两种方案:一为宽辊;另一为窄辊。辊宽B可用下式计算B=K B D (9-2) 式中K B———辊宽系数,K B0.2-1.2; D ———辊径,mm 。 宽辊相应的辊径要小,窄辊相应的辊径要大。宽辊具有边缘效应小、重量轻、体积小等优点。但对喂料程度的反应较敏感,出料粒度组成及运转平稳性略差。 辊压机两辊之间的间隙称为辊隙,在两辊中心连线上的辊隙,称为最小辊隙,用S min表示。 根据辊压机的具体工作情况和物料性质的不同,在生产调试时,调整到比较合适的尺寸。在喂料情况变化时,更应及时调整。在设计时,最小辊隙S min可按下式确定S min=K s D(9-3)式中K s———最小辊隙系数,因物料不同而异,水泥熟料取K s=0.016-0.024,水泥原料取K s=0.020-0.030; D ———挤压辊外直径,mm。 二、工作压力 水泥工业用辊压机,对于石灰石和水泥熟料,平均单位压力控制在140-180MPa 之间比较经济,设计最大工作压力宜取200MPa 。这个压力值又直接控制着辊子的工作间隙和物料受压过程的压实度。为了更精确地表示辊压机的压力,用辊子的单位长度粉磨力(即线压力)F m(kN/cm)来表示,一般为80-100kN/cm。 三、辊速 辊压机的辊速有两种表示方法:一种是以辊子圆周线速度V 表示;另一种是以辊子转速表示。 辊子的圆周线速度与产量、功率消耗和运行的平稳性有关。辊速高,产量也大,但过高的转速使得辊子与物料之间的相对滑动增大,咬合不良,使辊子表面磨损加剧,对辊压机的产量也产生不利影响。 目前一般辊速在 1 - 1.75m/s 之间,也有人提出,为了保证合理的轴承使用寿命,辊速不允许超过 1.5m/s 。转速(单位:r/min )的确定公式如下 式中K ———因物料不同的系数,对回转窑熟料K=660 ; D ———辊子外径,m。 四、生产能力Q 辊压机生产能力Q(单位:t/h)的计算公式如下

国产大型辊压机及粉磨系统工艺方案

国产大型辊压机及粉磨系统工艺方案 来源:合肥水泥研究设计院 1. 国产辊压机发展简介 自上世纪八十年代中期,由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD 公司辊压机设计制造技术以来,经过二十年的不断完善,国产辊压机的辊径由800mm 发展到今天的1600mm ; 辊宽由200mm 发展到今天的1400mm ;装机功率由90kW< 2发展到今天的1120kW< 2; 整机重量由30 多吨发展到今天的200 多吨,通过量由40t/h 发展到今天的800t/h ;配套磨机的产量由 20t/h 发展到今天的180t/h ,辊压机产品质量逐步提高,节能幅度达30% 以上。回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1 研究开发阶段(1986 年—1992 年) 参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同 时,相继开发出各自的国产化辊压机,并在1990 年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产 40% ,节电15% 的效果。 1.2 整改提高阶段(1993 年—1999 年) 在此期间,由于各厂家制造的辊压机在水泥生产中相继出现问题,让一些辊压机用户“既尝到了增产节能甜头,也吃尽了频繁检修的苦头”。使得许多青睐辊压机增产节 能效果的企业想上而不敢上。合肥水泥研究设计院对此进行了分析和整改、 完善。一是注重加工件、配套件的质量提高;二是优化工艺系统及设备的选型与配套。经国家 “八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG 系列辊压机。有效解决 了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题。国内的减速机、轴承、液压元器件、耐磨堆焊材料等研发等单位的配套件质量也都大大提高,为国产辊压机的长期安全运转奠定了基础,使主机设备运转率达90% 以上,同时还开 发出具有自主知识产权的SF系列打散分级机以及“V”分级机等国家专利产品,使挤 压粉磨系统工艺更加完善,参数更加合理。 1.3 快速发展阶段(2000 年至今) 解决了大型国产化辊压机设备制造和工艺配套两方面的问题,使国产辊压机进入全面推广应

如何设计磨机研磨体级配方案

如何设计磨机研磨体级配方案 物料在磨机内磨成细粉,是通过研磨体的冲击和研磨作用的结果,因此,研磨体级配设计的好坏对磨机产质量影响很大。要设计好磨机研磨体级配,必须充分考虑研磨体装载量、各仓填充率、平均球径、物料水分、物料流动性、物料粒度、隔仓板形式、隔仓板蓖缝大小、各仓长度、粉磨流程等因素,一般按以下步骤进行。 (1)确定研磨体的填充率与装载量 磨机内研磨体填充的容积与磨机有效容积的比例百分数称为研磨体的填充 率(用j表示)。填充率设计俞高,磨机的装载量就会俞高。要提高磨机的产量,应尽可能提高磨机的装载量。但,磨机装载量不能无限提高,磨机装载量太高,磨机电机的电流会很高,有可能会烧毁电机或威胁磨机机械设备的安全。磨机研磨体填充率设计多少,应充分考虑磨机的机械设备的承受能力以及磨机电机的承受能力。为了提高磨机的产量,一般可采用液体变阻起动器和进相机等设备,降低磨机的起动电流和提高磨机电机的过载能力,从而提高磨机的装载量。在解决了磨机的起动和提高了电机的过载能力后,绝大多数磨机的装载量都可超过设计装载量。一般磨机的设计填充率为28%左右,但在加装了液体变阻起动器和进相机设备后,通常都可达到35%~38%,甚至达到40%~42%,研磨体装载量大大超过设计装载量,磨机产量也大幅度提高。 在确定了磨机的总装载量后,紧接着就是要确定各仓的填充率,也就是要确定每个仓的装载量。每个仓的填充率的确定要考虑的因素较多,主要有物料水分、物料流动性、物料粒度、隔仓板形式、隔仓板蓖缝大小、各仓长度、粉磨流程等因素。这主要靠经验和观察确定,但可以掌握一个原则:磨机各仓研磨能力的平衡。如果磨机各仓研磨能力达到平衡了,那么在此装载量的条件下,磨机也就达到最大产量了。那么如何确定磨机各仓研磨体是否达到了平衡,常用方法有听磨音、检查球料比、绘制筛余曲线法。 检查料球比:一般中、小型开路管磨的球料比以6.0左右为宜。突然停磨进行观察:如中小型二仓开路磨,第一仓钢球应露出料面半个球左右,二仓物料应刚盖过钢段面为宜。 绘制筛余曲线法:在磨机正常喂料运转的情况下,把磨机和喂料机同时突然停止,从磨头开始,每隔一定距离取样,但紧挨隔仓板前后处也要取样。然后用0.20mm和0.08mm方孔筛筛析筛余,将筛余作为纵坐标,各点距离为横坐标绘点并连成曲线。正常磨机的曲线变化应是:在一仓入料端有倾斜度较大的下降,在末端接近出磨时应趋于水平。 例如,有个磨机在正常生产时紧急停磨,不空物料打开磨门观察发现:一仓钢球露出料面半个球,二仓有10cm厚的料层。这说明该磨机二仓研磨能力不足,

辊压机联合粉磨工艺系统分析

辊压机联合粉磨工艺系统分析 辊压机联合粉磨(或半终粉磨)工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国内水泥制成工序广泛应用由辊压机+打散分级机(动态分级设备)或V型选粉机(静态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统(或由辊压机+V型选粉机(静态分级设备)+高效选粉机+管磨机组成的半终粉磨工艺系统),在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨单闭路(管磨机为开路)及双闭路系统(或半终粉磨系统)中各段常出现的工艺技术与设备故障模式进行探讨分析,并提出了相应的解决办法,仅供粉磨工程技术人员在日常工作中参考,文章中谬误之处恳望予以批评指正: 一、辊压机系统故障模式:辊压机挤压效果差 故障原因1: 1. 被挤压物料中的细粉过多,辊压机运行辊缝小,工作压力低 影响分析: 辊压机作为高压料床(流动料床)粉磨设备,其最大特点是挤压力高(>150Mpa),粉磨效率高,是管磨机的3-4倍,预处理物料通过量大,能够与分级和选粉设备配置用于生料终粉磨系统。但由于产品粒度分布窄、颗粒形貌不合理及凝结时间过快、标准稠度需水量大与混凝土外加剂相容性差等工作性能参数方面的原因,国内水泥制备工艺未采用辊压机终粉磨系统,辊压机只在水泥联合粉磨系统中承担半终粉磨(预粉磨)的任务,经施以双辊之间的高压力挤压后的物料,其内部结构产生大量的晶格裂纹及微观缺陷、<2.0mm及以下颗粒与<80um细粉含量增多(颗粒裂纹与粒度效应),分级后的入磨物料粉磨功指数显著下降(15-25%),易磨性明显改善;因后续管磨机一仓破碎功能被移至磨前,相当于延长了管磨机细磨仓,从而大幅度提高了系统产量,降低粉磨电耗。但辊压机作业过程中对入机物料粒度及均匀性非常敏感,粒状料挤压效果好、粉状料挤压效果差,即有“挤粗不挤细”的料床粉磨特性;当入机物料中细粉料量多时会造成辊压机实际运行辊缝小,主电机出力少,工作压力低,若不及时调整,则挤压效果会变差、系统电耗增加。 解决办法: 实际生产过程中应控制粒度<0.03D(D—辊压机辊径 mm)的物料比例占总量的95%以上;生产实践经验证明:入机粒度25mm~30mm且均齐性好的物料挤压效果最好。 采用套筛筛析入机物料粒度分布,简便易行。一般3天检测一次即可满足监控要求。 做好不同粒度物料的搭配,避免过多较细物料进入辊压机而影响其正常做功;同时,可根据入机物料特性对工作辊缝及入料插板及时进行调整,消除不利因素影响。 故障原因2: 2. 辊压机侧挡板磨损严重,工作间隙值变大,边缘漏料 影响分析: 辊压机自身固有的“边缘效应”是指辊子中间部位挤压效果好,细粉产生量多,而边缘挤压效果差,细粉量少甚至漏料,即旁路失效。当两端侧挡板磨损严重,工作间隙值变大时,边缘漏料更将不可避免,在显著减少挤压后物料细粉含量的同时,部分粗颗粒物料还将进入后续动态或静态分级设备,对分级机内部造成较大磨损。 解决办法: 辊压机侧挡板与辊子两端正常的工作间隙值一般为2mm~3mm之间;据走访调查,部分企业辊压机侧挡板与辊子两端之间的工作间隙值在1.8mm~2.0mm; 生产中可采用耐磨钢板或耐磨合金铸造件予以解决,应时常备用1~2套侧挡板,以应对临时性更换。在采用耐磨合金铸造件之前,应将表面毛刺打磨干净,便于安装使用; 更换安装过程中用塞尺和钢板直尺测量控制间隙尺寸即可; 实施设备故障预防机制,要求在正常生产中一般7~10天利用停机时间对侧挡板与辊子之间间隙检查测量一次,若超出允许范围,须及时调整,并做好专项记录备查;

水泥磨研磨体装载量和级配调整方法

水泥磨研磨体装载量和级配调整方法 磨体装载量和级配虽有公式可以参考,但同时还需靠经验调配。目前钢球级配还是以多级配球较多,在使用分级衬板时,磨仓内在长度方向上(进料端到出料端)各点处的物料平均粒径是逐渐降低的,钢球在各点处的平均球径也应该是逐渐降低,两条曲线的走势应该是一致的。调整钢球级配时要考虑到钢球尺寸的减小并不是一致的。 例如有文献介绍,通过试验和计算得出,当90mm的钢球磨损至80mm时,同比,80mm的钢球磨损至71.11mm,70mm的钢球磨损至63.20mm,60mm的钢球磨损至56.20mm。显然,若只补大球,则平均球径必然有变大的趋势。 研磨体装载量和级配是否合理,可通过下述四种方法在生产实践中进行检验和调整。 (1)当磨机出现产量低、产品细度粗时,说明研磨体装载量不足或研磨体磨耗太大,此时应添加研磨体。 (2)当磨机出现产量高、产品细度粗时,说明磨内研磨体的冲击力太强,研磨能力不足,物料的流速过快所致。此时应适当减少大球,增加小球和钢段以提高研磨能力,同时减少研磨体之间的空隙,使物料在磨内的流速减慢,延长物料在磨内的停留时间,以便得到充分的研磨。 (3)如磨机出现产量低、产品细度细时,其原因可能是小钢球太多、大钢球太少而造成的。磨内冲击破碎作用减弱,而相对研磨能力增强。 (4)若磨机产量高、产品细度又细时,说明研磨体的装载量和级配都是合理的。 在正常喂料的情况下,一仓钢球的冲击较强,有哗哗的声音。若第一仓钢球的冲击声音特别洪亮时,说明第一仓钢球的平均球径过大或填充率较大;若声音发闷,说明第一仓钢球的平均球径过小或填充率过低了,此时应提高钢球的平均球径和填充率。第二仓正常时应能听到研磨体的唰唰声。 在磨机正常运转、正常喂料的情况下,根据生产经验,球仓中的钢球应露出半个钢球于料面上。如钢球外露太多,说明装载量偏多或钢球平均球径太大;反之,说明装载量偏少或钢球平均球径太小。

水泥磨研磨体级配

该水泥粉磨生产线投产近半年以来,辊压机和V型选粉机预粉磨系统显得能力不足, 成为水泥粉磨台时的首要制约因素。主要的表现是:辊压机因辊缝差和电流差超高频繁跳停; 喂料增加时稳流仓持续涨仓。主要的调整措施:1.调高辊缝差和电流差高限跳停值、更换磨损的侧挡板并将间隙调至最低值约15mm,以提高辊压机对喂料粒度的适应能力,大幅减少跳停故障; 2.调整V选内部阀板开度、调整风机风门开度以增大V选的通风量同时封堵V选的短路风管(提升机、皮带机等下料点收尘风管),以便最大限度的提高V选的选出率,从而提高预粉磨的产量进而提高水泥系统的产量; 3.适当提高加载压、适当调整辊缝以强化辊压机的辊压效果,以便适当提高辊压机预粉磨的产量。以上措施实施后,水泥系统的台时逐步提高,绝对增加值约10t/h。现在,辊压机的主要矛盾已经基本解决,降为水泥系统的次要因素,而水泥磨成为系统产量的主要制约因素。目前的水泥系统台时,扣除配料秤约13.5%的计量误差,实际仍只有61.5t/h。 为了进一步提高系统的台时产量,除了实施必要的技术改造外, 水泥磨的研磨体级配无疑是需要重点调整的工艺方案。以下是我

们拟定的、正在使用的级配方案。 1.原设计方案 表1:水泥磨原设计级配 规格1仓装载量体积2仓装载量体积3仓装载量体积 60 9 1.93 50 14 2.97 40 10 2.10 30 5 1.03 18*18 7.5 1.67 16*16 10.5 2.33 14*14 7.5 1.67

12*12 37 8.22 10*10 24.5 5.44 合计38 8.04 25.5 5.67 61.5 13.67 各仓Dcp 47.1 - 16.0 - 11.2 - 各仓φ*L 3.1*3705 - 3.1*2500 - 3.1*6000 - 各仓容积27.96 - 18.87 - 45.29 - 各仓填充率(%) 28.74 - 30.03 - 30.18 - 总装量125 平均填充率29.71 2.一仓方案 表2:1#磨入磨样品筛分析 筛孔尺寸(mm) 0.9 0.2 0.08 0.08以下

辊压机预粉联合粉磨工艺技术改造

摘要:将次序给料,逐级取出成品,磨机粗粉自循环粉磨技术应用于已有水泥生产线上,在不增加系统功率的情况下,将一段辊压机产生的合格粉取出。提高磨机的效率,提高系统产量。同时对管磨机磨内结构,进行适合喂入经辊压机挤压后的细粉物料的适应性改造,以避免研磨体级配困难,磨机跑粗现象,和混合材过粉磨现象,提高比表面积,改善因筛余难于控制,而导致的水泥台时产量偏低的情况。 关键词:提产、取出成品、节能、降耗 辊压机预粉磨工艺技术改造 作者:李宪章(北票市理想粉磨研究所所长) 地址:辽宁省北票市 邮编:122100 前言: 辊压机联合粉磨工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国际水泥制成工序广泛应用由辊压机+ V型选粉机(静态分级设备)或打散分级机(动态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统,在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨双闭路系统的工艺技术进行探讨分析,并提出我们的节能降耗的解决办法,文章中不足之处恳望予以批评指正 一、辊压机、管磨机双闭路粉磨系统的提产改造方法 1、辊压机、管磨机双闭路粉磨工艺存在的缺陷: 针对辊压机、V型选粉机,粗细粉分离器、开流管磨机粉磨工艺存在的磨机跑粗现象严重,尤其是混合材的过粉磨现象,设计部门采用了管磨机圈流粉磨工艺,出磨水泥80um筛余得到控制,磨机台时产量有所提高,但是粉磨系统增加了提升机、选粉机、除尘器,循环风机等较多的设备,以4213磨机需要增加电机功率近1000kw。我们按原生产线吨水泥电耗 35kw.h/t来计算,那么1000kw.h/t的电耗应该增加28t的磨机台时产量。其粉磨电耗没有得到根本的降低,粉磨po42.5级水泥的电耗仍然需要在 35kw.h/t以上的水平。另外圈流粉磨水泥成品存在着比表面积偏低的现象,

生料辊压机终粉磨说明书

原料粉磨及废气处理系统调试操作说明书

一、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。 辅助原料包括砂岩、铁矿石和粉煤灰。砂岩、铁矿石由胶带输送机输送至原料调配站。在原有粉煤灰输送皮带下增加一台三通阀,对原有输送皮带进行改造,新增一座φ5m粉煤灰仓,仓底设置棒阀和定量给料机。 因原料粉磨/废气处理改造为辊压机终粉磨后系统能力加大,经核算石灰石库底定量给料机能力足够,不需调整;更换原石英砂岩库定量给料机;原石英砂岩库底定量给料机移至铁矿石库底计量铁矿石用。在定量给料机计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨车间。 原料粉磨采用辊压机终粉磨系统,入磨物料粒度≤55mm。各种原料经胶带机送入V型选粉机(12.10)分级打散,其中粗粉部分经提升机(12.11)、除铁器(12.12)、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压;另一部分进入动态选粉机(12.18)分选,合格成品随一部分气流送入旋风收尘器(12.22)收集,不合格品经过重锤阀(12.18-1)、除铁器(12.19)、空气输送斜槽 (12.20) 、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压。挤压后的物料经提升机(12.17)送入V选。旋风收尘器(12.22)收集下来的成品经空气输送斜槽(12.25、12.39)、斗式提升机(12.41)、空气输送斜槽(12.42)入生料库储存、均化。出旋风收尘器(12.22)的气体经循环风机(12.27),一部分气体作为循环风重新进入V型选粉机(12.10),其余气体则通过窑尾袋收尘器净化后,经尾排风机和烟囱排入大气。窑尾袋收尘器和增湿塔收下的粉尘经链式输送机、提升机(16.01)汇同生料成品一起经空气输送

不同工艺水泥磨研磨体级配与装填

不同工艺水泥磨研磨体级配与装填 新型干法水泥工艺快速发展,水泥粉磨技术也向高效、节电方向快速变化,由传统多仓管磨机组成开路、闭路系统,与我国自主研制创新的磨内筛分技术和采用微型研磨体的高细高产磨与各种类型高效选粉机组成水泥粉磨系统向管磨机、辊压机、 V 型选粉机或打散分级机、 O-SEPA 选粉机组成不同工艺技术的水泥粉磨系统。使整个粉磨系统取得了显著的增产、降耗效果。 笔者经历过由φ 4. 2 × 11m 、φ 4.2 × 13m 磨机组成的预粉磨系统,由φ 2.6 × 13m 、φ 3.0 × 11m 、φ 3.2 × 13m 、φ 3.8 × 13m 磨机组成开闭路与高细高产及联合粉磨系统,由φ 3.8 × 11m 磨机组成的联合预粉磨系统,调试与生产实践。这些不同工艺水泥粉磨系统入磨物料粒径大大的减小,粒径组成也相对较均齐,物料粗碎和中碎任务均在磨外完成,而管磨机只承担细碎和细磨及超细磨任务。所以,对水泥磨的研磨体级配与装填技术要求不是很高,但目前对管磨机成品质量要求很高, 0.08 筛的筛余 1% , 0.045 筛的筛余为 10% ,从这点意义上讲,管磨机研磨体级配与装填的合理性对系统产量、质量影响仍然是不可忽视的重要环节。现将预粉磨系统(辊压机 + 管磨机 + 高效选粉机组成),联合粉磨系统(辊压机+ 打散机或 V 型选粉机 + 管磨机),联合预粉磨系统(辊压机 +V 型选粉机 + 管磨机 + 高效选粉机组成)的管磨机研磨体级配与装填谈点探讨认识。 1 水泥磨机配球的基本原则 1.1 配球时考虑的因素 根据入磨物料(熟料)粒径大小,物料特性与系统工艺技术和辊压机能力与磨机能力相对值大小有关,磨机规格性能、转速、磨内结构(各仓长度、衬板形式、隔仓板型式与篦缝的通料率),混合材品种与配比及水份,入磨熟料温度和熟料矿物组成等综合因素。 1.2 入磨物料粒径的确定 为了解物料粒度分布状况,取入磨物料样用套筛或颗粒级配仪测定,然后进行粒径计算并作出相应的粒径组成曲线。 1.2.1 入磨物料平均粒径计算 Dcp= (1) 式中: dcp------ 物料平均粒径 mm Gi------- 各筛径筛上物重量 di--------- 各筛径上下层平均直径 mm 1.2.2 入磨物料粒度特性方程 Y=AX k (2) 式中 Y-------- 负累积百分数,即通过量累积百分数 % k ----- 直线斜率 X------ 筛孔粒径 mm k = (3)

研磨体的级配

研磨体的级配 定义:钢球直径的大小及其质量的配合称为级配。 依据:根据被粉磨物料的物理化学性质,磨级的构造以及产品细度要求等因素。 原则: 1、根据入磨物粒的粒度、硬度、易磨性及产品细度要求来配合,当入磨物料细度较小,易磨性较好时,产品细度要求细时,就需要加强对物料的研磨作用,装入研磨体的直径应小些;反之,当入磨物料粒度较大,易磨性较差时,就应加强对物料的冲击作用,研磨体的球径应大些。 2、大型磨机和小型磨机,生料磨和水泥磨的钢球应有区别,由于小型磨机的筒体短,物料在磨内停留的时间短,所以在入磨粒度、硬度相同的情况下,为延长物粒在磨内的停留时间,其平均球径应比大型磨机小。在规格和入磨粒度,易磨性相同的情况下,由于生料细度较水泥粗,加之粘土和铁粉的粒度小,所以生料磨应加强破碎作用,在破碎仓应减小研磨作用。 3、磨内只用大钢球,则钢球之间的间隙率大,物料流速快,出磨物料粗,为了控制物料流速,满足细度要求,经常是大小球配合使用,减少钢球的空隙率,使物料流速减慢,延长物料在磨内的停留时间。 4、各仓研磨体级配时,一般大球和小球都应少,而中间规格的球应多。“中间大,两头小”,如果物料的粒度大、硬度大,则可增加大球,而减少小球。

5、单仓球磨应全部装钢球,不装钢段,双仓磨的头仓用钢球,后仓用钢段,三仓以上的磨机一般是前两仓装钢球,其余装钢段。为了提高粉磨效率,一般不允许球和段混合使用。 6、闭路磨机由于有回料入磨,钢球的冲击力由于缓冲作用会减弱,因此钢球的平均球径要大些。 7、由于衬板的选用使带球能力不足,冲击力减小,应适当增加大球。 8、研磨体的总装载量不应超过设计允许的装载量。 粉磨介质的调整 1、粉磨介质的调整 粉磨介质的装填与配合是否适宜,应通过实践来检验,检验方法有:计算磨机产量、听磨音、检查磨内物粒量、检验产品细度和绘制筛余曲线等。 当磨机出现产量低产品细度粗时,说明介质装载量不足或磨耗大,此时要加介质。 当磨机产量很高,但产品较粗,可能由于磨内介质的冲击过强,磨剥能力不足,料流快所致。此时适当减少大球,增加小球和钢段,从而增加研磨能力。 当磨机出现产量低及产品细度细,可能是大球太少,小球过多,填充率太大,致使冲击作用减弱,此时适当增加大球,减少小球及填充率。 当球仓钢球冲击声强,说明破碎能力大,细磨仓的声音弱而发闷,

研磨体的级配的意义与原则

研磨体的级配的意义与原则 1.级配的意义 钢球直径的大小及其质量的配合称为研磨体的级配。其级配的优劣直接影响磨机的产质量和研磨体的消耗。级配的依据主要根据被磨物料的物理化学性质、磨机的构造以及产品的细度要求等因素确定。物料在粉磨过程中,开始块度较大,需用较大直径的钢球冲击破碎。随着块度变小,需用小钢球粉磨物料,以增加对物料的研磨能力。 在研磨体装载量不变的情况下,缩小研磨体的尺寸,就能增加研磨体的接触面积,提高研磨能力。选用钢球的规格与被磨物料的粒度有一定的关系。物料粒度越大,钢球的平均直径也应该大。由此可见,磨内完全用大直径和完全用小直径的研磨体都不合适,必须保证既有一定的冲击能力,又有一定的研磨能力,才能达到优质、高产、低消耗的目的。 2.级配的原则 ①根据入磨物料的粒度、硬度、易磨性及产品细度要求来配合。当入磨物料粒度较小、易磨性较好、产品细度要求细时,就需加强对物料的研磨作用,装入研磨体直径应小些。 ②大型磨机和小型磨机、生料磨和水泥磨的钢球级配应有区别。由于小型磨机的筒体短,因而物料在磨内停留的时间也短,为延长物料在磨内的停留时间,其平均球径应较大型磨机小(但不等于不用大球)。由于生料细度较水泥粗,加之粘土和

铁粉的粒度小,所以生料磨应加强破碎作用,在破碎仓应减小研磨作用。 ③磨内只用大钢球,则钢球之间的空隙率大。物料流速快,出磨物料粗。为了控制物料流速,满足细度要求,经常是大小球配合使用,减小钢球的空隙率,使物料流速减慢,延长物料在磨内的停留时间。 ④各仓研磨体级配时,一般大球和小球都应少,而中间规格的球应多,即所谓的“两头小,中间大”。如果物料的粒度大,硬度大,则可增加大球,而减少小球。 ⑤单仓球磨应全部装钢球,不装钢段;双仓磨的头仓用钢球,后仓用钢段;三仓以上的磨机一般是前两仓装钢球,其余装钢段。为了提高粉磨效率,一般不允许球和段混合使用。 ⑥闭路磨机由于有回料入磨,钢球的冲击力由于“缓冲作用”会减弱,因此钢球的平均球径应大些。 ⑦由于衬板的磨损使带球能力不足,冲击力减小,应适当增加大球。 ⑧研磨体的总装载量不应超过设计允许的装载量。 研磨体的级配的主要内容包括:各磨仓研磨体的类型、配合级数、球径(最大、最小、平均球径)的大小、不同规格的球(棒、钢段)所占的比例及装载量。级配好后,需进行生产检验,并结合实际情况进行合理的调整。 参考资料:https://www.docsj.com/doc/d57830735.html,/qiye/index.html

相关文档
相关文档 最新文档