文档视界 最新最全的文档下载
当前位置:文档视界 › 辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义
辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义

辊压机部分

一、工作原理和工作方式:

该设备根据高压料层粉碎能耗低的原理,采用单颗粒粉碎群体化的工作方式,脆性物料经过高压区挤压后使物料粒度迅速减小,<0.08mm的细粉含量达20%~30%,<2mm的物料含量达70%以上,在所有经挤压后的物料表面存有大量的裂纹,易磨性显著改善,使物料在进入下一工序的粉磨时所需的粉磨能耗大幅度降低,获得大幅度增产节能的效果。

辊压机的核心部分是两个辊径辊宽相同,相向转动的磨辊,辊压机采用的工作方式是在两个相向转动的磨辊之间形成高压力区,采用过饱和喂料的方式在磨辊上方设置用于保证仓内料位的称重仓,料位由称重传感器以负反馈方式控制,形成具有一定料压的料柱,通过进料装置喂入两磨辊之间,磨辊将物料拉入辊隙后在压力区以高压将物

料压成密实的料饼后从辊隙间落下进入下一工序。

由于辊压机工作时采用完全正压力对物料实施挤压,同时在辊面菱形花纹对物料的限制作用下,物料与磨辊之间无产生剪切效果的相对滑移(注:在获得相同粉碎效果的前提下,剪应变所需能量是压应变的5倍),所以上述工作方式不仅节省能耗,辊面磨损也很小。

二、设备结构:

设备由主机架、轴系、液压系统、润滑系统、进料装置、传动系统、检测系统等组成。

1、主机架:

主机架用于承受设备的挤压粉碎力,分别由上、下横梁,左、右立柱,承载销,定位销,导轨及高强度联接螺栓组等组成。上、下横梁采用工字型结构,左、右立柱则采用工字型与箱型相结合的结构形式,均具有较高的刚度,通过高强度螺栓组的联接使整个机架形成一个刚性的整体。

承载销将立柱上所受到的挤压粉碎力传递到上、下横

梁;定位销则用于确定两侧上、下横梁的中心距。

安装于两侧下横梁的导轨是活动辊轴承座的导向装置,两侧的导轨宽度稍有不同,靠近传动一侧的导轨稍宽。

高强度螺栓组是确保主机架联接的关键,不可用普通螺栓代替,同时必须保证联接紧密可靠。

2、液压系统原理和操作:

液压系统为设备的挤压粉碎力提供所必需的压力源,起液压弹簧作用,并兼有液压保护功能,其性能直接影响挤压粉碎物料的质量和设备的安全运行。液压系统采用柔性操作的方式,即在系统操作压力大致保持恒定的前提下,工作辊缝随被挤压物料粒度的变化而变化。系统中两个大容量蓄能器与主油路连通,蓄能器内的皮囊充有一定压力的氮气,在磨辊辊间进入较大粒度的物料时,部分液压油会利用气体的可压缩性进入蓄能器,暂时积蓄多余的能量,允许磨辊作暂时的退让。

液压系统中的滤油与加压油路串联布置,可以使液压油经过滤后进入主油路,避免因杂质进入主油路可能造成

的系统元件的堵塞。系统压力可根据操作需要无级调节。

系统加压进辊时液压油在系统动力源齿轮泵的作用下依次经过滤油器、三位四通电磁换向阀、电磁阀、直角单向阀进入油缸高压腔,将压力通过油缸活塞、移动辊轴承座、移动辊施加在被挤压的物料上,此时,在液压油返回油路中的电磁阀处于断电时的油路开通状态,以保证液压缸低压腔无油压形成。由于设备是在液压系统处于保压状态下连续工作,因而液压系统在加压回路设置了三道保护功能,液压油的出口压力由泵站溢流阀控制,构成第一道保护,压力值由泵站压力表读取;系统操作压力由电磁溢流阀控制,构成第二道保护,该溢流阀即可电控,也可液控,压力值由电接点压力表读取;最终安全保护压力亦即第三道保护由压力传感器控制,一旦系统由于磨辊间进入异物造成压力骤增,系统将迅速卸压使磨辊退让以保护设备。

设备需要退辊时须将液压系统卸压,然后启动退辊回路,液压油依次经过滤油器、三位四通电磁换向阀退辊通道进入油缸低压腔将磨辊拉回。此时的退辊压力由退辊回

路溢流阀控制,压力由泵站溢流阀读取。在系统实行退辊操作时,在液压油返回油路中的电磁阀处于通电时的油路闭合状态,以保证在液压油低压腔形成有效油压将磨辊拉回。设备的退辊功能多用于在坚硬的异物进入磨辊后故障的排除。

3、轴系:

主轴轴系由堆焊有一定厚度耐磨材料的磨辊主轴、双列球面滚子轴承、轴承座,以及内外轴承端盖、定位环、端面热电阻、水冷却系统等组成。轴系分为两套,一套固定,在机架内腔固装于机架立柱,称固定辊轴系;一套安装于机架内腔,可在导轨上随进入磨辊压力区的物料粒度变化作水平方向的往复移动,称活动辊轴系。

磨辊主轴采用分体式结构,由辊体和轴套两部分组成,轴套通过热装方式套装在轴体,表面堆焊高硬度耐磨层,在经过长时间运行磨损后可在磨辊表面直接补焊修复,简便易行。经多次补焊修复焊接性能逐渐恶化难以继续补焊时可更换新辊套。主轴两轴承支撑处均为圆锥段,该结构便于检修时轴承的拆卸和安装。

紧贴在主轴承外圈的端面热电阻用以检测主轴承工作温度,保证连续检测、报警,控制主轴承工作温度。

水冷却系统用以降低主轴及主轴承工作温度,保证主轴轴系能够安全稳定地连续运行。

4、进料装置:

进料装置用以保证物料能够均匀、定量地进入压力区,使物料受到有效挤压。在生产运行中,物料始终充满整个进料装置以保证必须的料压,被导入磨辊辊隙间的压力区。

进料装置由挡板、侧挡板、调节插板和侧挡板顶紧装置组成,在磨损倾向严重的侧挡板下端设置了高硬度的硬质合金材料,可以减少磨损,提高使用周期,保证物料的挤压质量。

调节插板用以控制料饼厚度以达到控制处理量的目的,由手轮、调节螺杆和焊有耐磨材料的插板组成。

侧挡板弹性顶紧装置由支架、顶紧螺杆、蝶形弹簧及弹簧座组成,用以控制侧挡板与磨辊端面的最小间隙,在

侧挡板不与磨辊端面接触的前提下减少边缘漏料,满足设备过饱和喂料的操作要求,保证物料的挤压质量。

5、传动系统:

传动系统采用行星减速机悬挂式传动方式,通过缩套联轴器将行星减速机的输出轴刚性地固定在磨辊主轴轴颈上。减速机的输出扭矩由扭矩支承装置平衡,扭矩支承装置由弹性系统和四连杆机构组成,系统中的弹性元件采用轴向尺寸小,刚度系数大的碟形弹簧。弹性系统具有均载、吸振和缓冲的作用;四连杆机构可满足活动辊的水平移动。

缩套联轴器为非标配套件,其工作原理是:拧紧高强度螺栓,使圆锥缩套紧压减速机的中空轴,中空轴发生弹性变形紧抱在主轴轴颈上,利用正压力所产生的摩擦力传递扭矩。

主电机与行星减速机之间采用万向节传动轴联接,由于万向节传动轴设置在高速端,所以所需传递的扭矩相对较小,同时还具有传动效率高、运行平稳、节点倾角大等特点。

6、润滑系统:

润滑系统用于主轴承的润滑,密封以及活动辊轴承座的润滑,保证主轴承在良好的润滑状态下安全可靠的运行;保证活动辊轴承座在良好的润滑条件下随物料的粒度变化作自如的往复移动。

润滑系统由多点润滑泵和递进式分配器组成。

多点润滑泵主要由贮油筒、柱塞式泵元件、减速电机组成。润滑泵打出的润滑脂由递进式分配器按比例分配给各个润滑点。系统中设有两个分配器,主机架两侧各一个。

系统设置的分配器在所分油路中的任何一个油路受阻,整个系统将停止工作。这样可避免在某一个或某些油路受阻时,操作人员不能及时发现的现象。分配器上配有一个滑杆,在系统正常工作时作有规律的往复移动,一旦油路受阻或润滑泵发生故障,滑杆会停止动作,显示故障征兆。

根据设备的运行特点,各润滑点的需油量以主轴承为最多,轴承端盖位置用于密封处次之,导轨位置需油量最

少。在设备安装或检修油路后的重新安装可遵循上述规律将分配器出油口与各润滑点对应连接。

系统工艺部分

在传统的水泥粉磨工艺中引入辊压机技术,技术经济指标可在原有基础上获得显著提高,这就是在推广应用挤压粉磨技术的初期应用较多的挤压预粉磨工艺系统。但是众所周知,由于辊压机自身结构的原因,磨辊边缘漏料的问题始终存在,无法从设备上根本解决。虽然设备的进料装置设置了侧挡板弹性顶紧装置,但由于较大料压的作用,物料有将侧挡板撑开的趋势,部分未经有效挤压的物料从磨辊边缘的缝隙泻出;同时,辊压机操作规程要求,设备停机后的重新启动必须在卸压状态下进行,以避免设备在带负荷启动时对电网造成较大的冲击,因为在此时设备的进料装置中充满物料。在这种双重不利因素的作用下,会有大量未经有效挤压的物料通过辊压机,这种粒度与易磨性均未获得显著改善的物料进入球磨机,会使小规格大比面积的研磨体难以适应,使球磨系统的粉磨效率降低,系统产量发生波动,从而影响整个粉磨系统技术经济

指标的稳定发挥。因而,我们只好另辟蹊经,从工艺入手进行突破,从而研制开发了与辊压机配套使用的新型打散分级设备—具有独立知识产权的国家专利产品打散分级机。

打散分级机具有料饼打散和物料的颗粒分级两项功能,打散料饼采用的是离心冲击粉碎方式,物料分级则运用了惯性原理。密实的料饼通过对称布置的进料口连续喂入后落入高速旋转的打散盘,打散盘表面装配带有锤形凸棱的耐磨衬板,锤形凸棱部分可防止物料在盘面打滑,并对物料施以加速,使物料在脱离打散盘时具有较高的初速度,从而获得较大的动能,沿打散盘旋向的切线方向甩出后剧烈撞击反击板被粉碎,由于上述过程是连续的,撞击反击板反弹回来的物料又受到随后甩出物料的冲击被再

次粉碎,因而可以说,料饼的打散是充分的。

料饼被打散后经打散盘下方的环形通道落入分级区,打散分级机的分级功能由内置的风动系统提供,高速旋转的风轮产生的内循环风在风轮的周向形成环形分布并具

有一定厚度的风力场,亦即分级区。物料在通过分级区时,

较大颗粒的物料由于具有较大的惯性,无明显偏移以接近自由沉降的形式落入内筒体被收集返回辊压机;粒度较细的物料由于其惯性较小而产生较大的偏移在内筒体与外

筒体之间被收集,或进入球磨系统粉磨,或喂入选粉机直接分选出粒度合格的成品。

打散分级机采用的是双驱动方式,可满足不同的动力要求和操作方式,驱动风轮的动力采用变频驱动方式,分级粒径可根据需要从0.5~3.5mm连续调节,简便易行。

辊压机和打散分级机闭路构成独立回路,可以有效消除挤压预粉磨工艺系统长期存在的问题,由于磨辊边缘漏料和设备卸压启动产生未经有效挤压的物料可以在打散

分级机的作用下返回辊压机重新挤压。这样便有更多的粉磨功被移至磨外进行,由高效率的挤压打散回路承担,从而避免了更多的机械能在效率低下的球磨系统中的无谓

流失。

新技术新工艺的推广实施不仅仅在于简单的使用,还应该在使用过程中不断地总结经验,优化系统,推陈出新。在大量的粉磨功被移至磨外以后,增产节能效果更加显

著,但球磨系统的效率问题接踵而至地摆在我们面前,因此,如何提高球磨系统的粉磨效率又成为一项新的课题。

在水泥粉磨系统的改造中,高细高产磨技术的选用使我们的挤压联合粉磨工艺系统在技术上得到了进一步的完善和提高。高细高产磨技术是目前在国内较为先进的磨内改造技术,曾获得国家“六·五”科技攻关成果奖。众所周知,球磨系统的粉磨效率低下的重要原因之一就是过粉磨现象的逐仓恶化,而高细高产磨技术所特有的高效率磨内筛分装置可以有效地抑制过粉磨现象。这种筛分装置的严格筛选机制可以将不适宜下一仓小规格研磨体研磨的物料返回球仓继续粉磨,允许较细的物料进入段仓进行细磨。这样,各种不同粒径的物料在磨内由粗到细有序分布,各种不同规格的研磨群体的配置更加具有明确的针对性、有效性,过粉磨现象得到有效抑制,粉磨效率得以显著提高。同时应补充说明的是,筛分装置的作用不仅仅局限于对物料粒度的控制,同时还具有对磨内物料流速的控制功能。

以高效率的磨内筛分装置和微段研磨体为标志的高

细高产磨技术的特点在于技改措施仅在磨内进行,无须增设辅机和土建投资,投资省,见效快。由于球磨系统采用开路操作的方式,更具有系统简洁流畅,便于操作管理的特点。提到球磨系统的开路操作,我们可以说,高细高产磨技术不仅具备了上述特点,同时其特有的磨内筛分装置也具有部分闭路操作的性质。有趣的是,如果有人要问:闭路操作?选粉机在哪里?你可以回答:在球磨机的肚子里。这个选粉机的成本太低了,还无须专门设置动力。想看吗?学学孙悟空,把球磨机当成铁扇公主,钻到它肚子里好好看看。你们不觉得挺好玩儿吗?

由于在粉磨工艺系统中高效率的挤压打散回路的介入,大量的粉磨功被移至磨外,入磨物料的粒度大幅度减小,易磨性显著提高,据不完全统计,在大量场合下,在入磨的打散分级机细粉中,小于0.08mm的成品粒级颗粒占40~50%,小于0.9mm的物料颗粒占80%以上,因而可以说,在球磨系统中的粉磨作业将以段仓内的研磨功能为主,球仓的冲击粉碎功能退而具其次,这样,我们就可以将球仓适当缩短,降低平均球径,延长段仓长度,充分利用小规格大比面积的研磨群体强劲的研磨功能,在球磨系

统最终实现大幅度的增产节能。由于较多地使用了小规格研磨体,球磨系统的噪音显著降低,工作环境也有所改善。

这种将粉磨作业分段进行,由挤压打散系统和球磨系统分别承担磨外和磨内两个阶段的粉磨作业并有机衔接

而构成的全新的粉磨工艺系统就是我们现在正在大规模

推广应用的挤压联合粉磨工艺系统。也可以说挤压联合粉磨工艺系统的精髓就在于在该粉磨系统中高效率的分段

粉磨。

水泥粉磨系统的改造我们推荐球磨机开路操作的挤

压联合粉磨工艺系统,该系统不仅具有投资省,资金回收期短,工艺简洁流畅,便于操作管理的特点,同时在生产的水泥产品中粒度分布较合理,有利于早期强度的3~30μm粒级的微粉占主要部分,同时也存在少量的60μm

以上粒级的颗粒。3~30μm粒级的微粉水化反应快,有利于早期强度,但过高的细度会导致毛细管增加,孔隙滤高,影响后期强度,60μm以上粒级的颗粒可起到微集料作用,降低孔隙率,使水泥制品组织较致密,后期强度高。

在有些老线改造工程中面临这样的问题,由于原球磨

系统是圈流操作,使用方希望能保留选粉机,在这种情况下我们首选挤压联合半终粉磨工艺系统,即在系统中引入半终粉磨功能:将打散分级机的细粉直接喂入选粉机分选出成品,选粉机粗粉入球磨系统粉磨,球磨系统仍采用高细高产磨技术,开路操作。由于入磨物料均为选粉机粗粉,有别于直接入磨的打散分级机细料,细粉含量较之前者降低,粒度更加均匀,此时球磨系统的研磨体级配应根据入磨物料的粒度状况进行必要的调整,不可生硬地套用挤压联合粉磨工艺系统中高细高产磨的研磨体级配。该系统同样具有优异的技术经济指标,产量甚至稍高于挤压联合粉磨工艺系统,但水泥成品的颗粒分布状况稍逊于前者,因为直接入选粉机分选的物料产生的成品中极少有利于早

期强度的3~30μm粒级的微粉。同时系统稍复杂,管理难度略大。

在水泥生料粉磨系统的改造中,我们仅推荐双闭路的挤压联合半终粉磨工艺系统,即打散分级机细料入高效选粉机直接分选出水泥生料成品,球磨机闭路操作。高效选粉机分选出的水泥生料成品由气箱脉冲收尘器收集。由于高效选粉机需要对打散分级机细粉进行分选的同时与球

磨机圈流,因而须选用较大的规格。

在这里,我们为什么不选用高细高产磨技术呢?因为由于烧结熟料的要求,水泥生料要求成品在满足细度要求的前提下粒度均匀而无须大量的微粉,由于较宽的粒度分布中大量的微粉会增加熟料的烧失量,所以,目前的高细高产磨技术不适应这样的技术要求。由于该系统相对较复杂,因此必须加大维护管理力度。

(三)设备和系统故障的判断和处理

拥有一套先进的生产技术,充分发挥其整体能力,为企业创造理想的经济效益是我们每一个生产企业的共同愿望。而经济效益的理想与否与系统运转率密切相关。因此,系统的维护管理水平至关重要。一项新技术、新工艺的推广应用必定经历一个从陌生到熟知,从略知一二到融会贯通这样一个过程。只要我们在使用过程中,不断地积累经验,汲取教训,就可以使我们的维护管理水平不断提高,保证我们的生产系统长时间安全稳定地运行,为企业带来理想的经济效益。

设备和系统故障的发生是不可避免的,任何一项先进

的技术都如此,就象我们每一个平时很健康的人偶尔也会感冒发烧一样,关键在于我们如何根据异常的现象表征去判断和处理,这好比医生的诊断和处方一样。故障发生后对故障源的准确判断和具有针对性的处理和维修是保证系统运转率的重要因素。

一、液压系统:

液压系统元件较多,系统构成复杂,产生异常的可能性稍大,在初次接触异常现象时可能会感到难以入手,但只要我们熟练地掌握系统油路的运行规律各种系统元件的特性,便可以由此及彼,由表及里,敏锐地捕捉并锁定故障源,采用得当的措施迅速排除故障,恢复系统的正产运行。

1、系统加压异常:

系统加压异常通常表现在系统加压困难,或压力上升缓慢且无法保压,或压力全无上升迹象。其原因是多方面的,需要根据异常现象的表现特征去分析判断和检查,有时不同种原因的表现特征完全相同,这就需要我们采用分段检查、逐一排除、最终确定的方式去锁定故障源并决定

处理措施。

压力全无上升迹象的原因是不唯一的,需要采用分段检查的方式去捕捉故障源,应以手动操作的方式首先启动液压站油泵,此时不要开启三位四通电磁换向阀,若此时压力无上升迹象,则故障源在油泵和泵站溢流阀中两者必有其一,应检查油泵是否联接失效或油泵本身故障,若确定是油泵原因建议拆卸维修或更换。若油泵无故障则确定是泵站溢流阀的原因,建议首先反复旋动溢流阀手柄,冲刷卡住阀芯的杂物,若无效则建议拆卸清洗。

若在油泵启动后油压上升正常,说明故障源在后段,应首先检查三位四通电磁换向阀电磁铁是否正常工作,若电磁铁不工作则阀芯无法接通主油路,应更换电磁铁。若电磁铁工作正常,则说明故障源在电磁溢流阀。电磁溢流阀压力控制失效原因有三,其一是卸压启动时控制系统故障,液压系统加压时电磁阀未及时断电使阀芯复位,液压油无法在液压缸高压腔形成油压而返回油箱。此时应强行切断电源将阀芯复位,避免烧坏电磁铁;其二是电磁溢流阀液控阀阀芯被异物卡死,建议拆卸清洗;其三是电磁阀

阀芯被异物卡死,建议拆卸清洗。

系统压力上升缓慢且无法保压是系统内泄漏的显著特征,液压缸缸体内壁的过度磨损和密封件的损坏都会导致内泄漏的发生,由于上述原因,缸体内部密封失效,液压油不断从高压腔经密封失效处窜入低压腔,高压腔内压力难以有效形成油压。建议拆卸检查确认,或更换密封圈或返修液压缸。

2、退辊功能失效:

首先应检查三位四通电磁换向阀负责接通退辊回路的电磁铁是否正常工作,电磁铁工作但阀芯不动作说明阀芯被异物卡死,建议拆卸清洗;若电磁铁不工作应首先检查控制系统线路,若线路无问题说明电磁铁已损坏,建议拆卸更换。

若上述问题均不存在,则应考虑液压油返回油路中的电磁阀和控制退辊回路压力的溢流阀是否工作正常。若电磁阀未通电工作,应检查控制系统线路,线路正常则说明电磁阀电磁铁已损坏,建议更换电磁铁;若电磁阀工作正常则说明控制退辊回路压力的溢流阀故障,建议首先反复

旋动溢流阀手柄,冲刷卡住阀芯的杂物,若无效则建议拆卸清洗。

3、能器频繁振动:

蓄能器频繁的振动噪音源于入口菌形阀启闭时的撞击,系统操作压力与皮囊充气压力较接近时较多出现,可根据现场实际情况和操作要求对系统操作压力与皮囊充

气压力之间的关系作适当调整,两者之间的关系为:P1 = (0.7~0.8)P

P1—皮囊充气压力

P —系统操作压力

检查蓄能器充气压力的方法是系统加压时观察电接点压力表的指针运动规律,我们可以发现在加压初始阶

段,电接点压力表指针显示压力以较快的速度上升,到某一数值后速度明显减缓,那么这个数值就是蓄能器的充气压力。

在入辊压机的物料普遍较细,但同时仍有较大颗粒物

辊压机联合粉磨系统节能降耗措施

辊压机联合粉磨系统节能降耗的措施 辊压机联合粉磨系统因其增产效果显著而得到了广泛应用。目前,水泥厂粉磨工艺以趋于设备大型化、系统自动化、工艺简单化、技术节能化的发展趋势。本文从郑州天瑞水泥有限公司辊压机、磨机系统改进和工艺参数控制等方面列举了联合粉磨系统的节能降耗改进措施:改进辊压机进料装置为正上部进料,并把流量调节板改为双边对称调节;调整V型选粉机内部结构;对磨机系统隔仓板、一仓衬板、二仓衬板以及磨内研磨体级配进行调整。结果表明:改进辊压机系统能够提高系统循环量,增加物料挤压次数,改善了挤压效果;合理控制料粒度、物料水分及辊压压力能够提高辊压机的辊压效果充分发挥辊压机节能优势;改进磨内结构,优化操作,能够充分发挥磨机的研磨能力保证系统节能效果;对整个系统工艺参数进行调整,合理分配其比例,以达到改善水泥性能,降低水泥工业能源消耗的效果。 关键词:粉磨系统,辊压机,磨机,节能降耗 I JOINT GRINDING SYSTEM ENERGY SAVING MEASURES ABSTRACT Roller grinding machine joint due to its increasing production system has been widely used. At present, cement grinding process to tend to be enlarged equipment, automation, process simplification, the devel opment trend of energy technology. Based TianRui cement Co., LTD. Of zhengzhou roller machine, grinder system and improve the process para meters are controlled etc enumerated joint grinding system energy sav ing measures: improve roller machine feeding device for upper feed, a nd positive bilateral symmetry circuit-adjusting board to adjust, Adj ust V classifier internal structure, For grinding machine system diap hragms, a warehouse liner board, two warehouse liner and grinding mil l body inside the gradation adjustment. The results indicate that the roller press of the roller mill system can improve circulation, incr ease the number of extrusion, improve the material extruded effect, R easonable control partical, material moisture and roller pressure rol ler machine can improve the effect of roller adequately roller machin e, energy saving, Improved grinding in structure, optimizing operatio n, can fully exert mill grind ability assurance system energy saving effect, For the whole system, KEY WORDS: shut grinding system, Roller machine, Grinding machine, Sa ving energy and reducing consumption II 目录 前言 ............................................................... .. (1) 第一章联合粉磨系统概 述 (2) 1.1 发展与现

新型的水泥联合粉磨工艺系统

新型的水泥联合粉磨工艺系统 本文介绍的辊压机半终粉磨系统属于优化的联合粉磨系统,开发目的是提高系统运转率和粉磨效率,解决循环风机的磨损问题,从已投产系统的运行情况看,我们实现了这一目的。当然,因为推出时间较短,实际投产的新系统还不多,我们期待更多的半终粉磨系统尽快投入运行,通过实践进一步促进辊压机粉磨系统技术的进步和发展。 联合粉磨和半终粉磨二者的区别在于联合粉磨系统中的半成品直接进入到球磨机再粉磨,而半终粉磨系统中的半成品先经过分选,细粉入成品,粗粉入球磨。联合粉磨和半终粉磨的优点是辊压机负担的粉磨任务多,单位吸收功率多,半成品比较细,故增产节能幅度较大;出辊压机的物料粒度得到控制,球磨机配球容易,粉磨效率有保证。(有的文献中对联合粉磨和半终粉磨也没有严格的区分,统称为联合粉磨,泛指出辊压机的物料经过分选的各种系统。)表1对通过式预粉磨和联合粉磨系统的具体情况进行了比较。 表1 通过式预粉磨和联合粉磨系统比较 2)联合粉磨系统情况分析 典型的联合粉磨系统如图1所示,新料与出辊压机的物料一起经提升机喂入V型选粉机进行分选,粗料落入小仓再进辊压机挤压,细料被气体带入旋风收尘器被收集作为半成品喂入球磨机再细磨。V型选粉机属于静态气力粗分选设备,具有打散和分级功能,无运动部件,抗磨性能好,选粉空气由循环风机提供。

图1 联合粉磨系统流程 天津振兴水泥有限公司二线(2400t/d)配套的水泥粉磨系统是投产最早的国产辊压机联合粉磨系统,天津水泥工业设计研究院有限公司提供了辊压机(TRP140/140、2×800kW)和球磨机(φ4.2×13、3150kW)等主机设备,并承担工程设计。2004年投产至今,运行情况良好,与一线φ3.8×13圈流磨系统相比,单位水泥节电近7.0kWh/t,按年产水泥90万吨计,年节电达630万度,节电费用300多万元。 图2 循环风机的磨损 辊压机挤压后的物料颗粒多呈不规则体状,棱角多,对风管、旋风收尘器、循环风机具有很强的磨蚀性,特别是循环风机,一旦发生磨损,风量降低,选粉效率下降,从而影响系统产量,这在很大程度上影响了系统的运转率。另外,旋风收尘器收集的半成品比表面积在1500cm2/g以上,<80μm的颗粒占70%~80%,<45μm的颗粒占50%~60%,将这种半成品喂入球磨机,势必影响粉磨效率。因此,消除循环风机的磨损,提高系统的运转率,并进一步提高粉磨效率,是辊压机联合粉磨系统必须解决的问题。 3、半终粉磨系统的开发研究 联合粉磨系统中,物料的分选是个关键问题,如同圈流球磨系统的物料分选一样,将影响整个系统产能的发挥和运转的稳定性。V型选粉机非常适合辊压机物料的粗分级,但是风量风速是前提,即要求供风系统稳定。循环风机的磨损主要由气体中的含尘引起,而根据旋风收尘器的工作原理可知,其收尘效率只有90%左右,如果要彻底消除风机的磨损,只有最大

辊压机及挤压联合粉磨技术讲义

辊压机及挤压联合粉磨技术讲义 辊压机部分 一、工作原理和工作方式: 该设备根据高压料层粉碎能耗低的原理,采用单颗粒粉碎群体化的工作方式,脆性物料经过高压区挤压后使物料粒度迅速减小,<0.08mm的细粉含量达20%~30%,<2mm的物料含量达70%以上,在所有经挤压后的物料表面存有大量的裂纹,易磨性显著改善,使物料在进入下一工序的粉磨时所需的粉磨能耗大幅度降低,获得大幅度增产节能的效果。 辊压机的核心部分是两个辊径辊宽相同,相向转动的磨辊,辊压机采用的工作方式是在两个相向转动的磨辊之间形成高压力区,采用过饱和喂料的方式在磨辊上方设置用于保证仓内料位的称重仓,料位由称重传感器以负反馈方式控制,形成具有一定料压的料柱,通过进料装置喂入两磨辊之间,磨辊将物料拉入辊隙后在压力区以高压将物

料压成密实的料饼后从辊隙间落下进入下一工序。 由于辊压机工作时采用完全正压力对物料实施挤压,同时在辊面菱形花纹对物料的限制作用下,物料与磨辊之间无产生剪切效果的相对滑移(注:在获得相同粉碎效果的前提下,剪应变所需能量是压应变的5倍),所以上述工作方式不仅节省能耗,辊面磨损也很小。 二、设备结构: 设备由主机架、轴系、液压系统、润滑系统、进料装置、传动系统、检测系统等组成。 1、主机架: 主机架用于承受设备的挤压粉碎力,分别由上、下横梁,左、右立柱,承载销,定位销,导轨及高强度联接螺栓组等组成。上、下横梁采用工字型结构,左、右立柱则采用工字型与箱型相结合的结构形式,均具有较高的刚度,通过高强度螺栓组的联接使整个机架形成一个刚性的整体。 承载销将立柱上所受到的挤压粉碎力传递到上、下横

辊压机终粉磨系统在生料制备中的应用

辊压机终粉磨系统在生料制备中的应用 发表时间:2019-12-17T09:10:48.577Z 来源:《基层建设》2019年第26期作者:文有强[导读] 摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。 中建材(合肥)粉体科技装备有限公司安徽合肥 230051摘要:随着阶梯电价普查的日趋严格,对于能耗较高的水泥生产企业面临着严峻的生存压力,节能改造成为近年来水泥企业的热门话题。由于中卸烘干磨对烘干热源有较高要求,正常生产时与余热发电系统发生抢风现象,影响余热发电能力,导致产品成本偏高。为了有效节能降耗、降低成本,对生料制备系统进行技术改造,选择辊压机终粉磨技术。辊压机进行生料终粉磨是先进的生产工艺,其利用粒间 高压料床粉碎原理,高效节能,从而提高粉磨系统的粉磨效率,达到节能降耗的目的。关键词:生料制备;辊压机终粉磨系统;中卸烘干磨系统辊压机属于新型水泥节能粉磨设备,除了能够有效节能外,还能降低噪声污染,在现代水泥生产工艺中发挥着举足轻重的作用。以往辊压机主要用于水泥粉磨系统,包括水泥挤压混合粉磨、水泥联合粉磨、水泥半终粉磨等多种形式。辊压机生料终粉磨系统近几年才发展起来,已经体现出其优势,对水泥生产企业节能和降低成本的效果显著。与立磨相比,电耗低是最大优势。某公司现有一条4000t/d熟料生产线,原料粉磨系统采用两套传统的中卸烘干磨粉磨工艺。由于原料粉磨系统设备陈旧,工艺相对落后,生料粉磨电耗高(两套生料粉磨系统平均电耗~24 kwh/t)、生产维护费用高等问题,公司考虑新增两套辊压机终粉磨系统对现有生料粉磨系统进行技改。 一、生料粉磨的基本特点生料粉磨是水泥生产过程的一个重要环节,与水泥粉磨相比,具有自身的特点和要求,主要体现在处理的原料特性和产品要求方面,因此采用的系统技术要求也存在较大差别。生料配料主要包括钙质原料、硅质原料、铁质原料等,这些原料的易磨性、磨蚀性、含水量等差别很大,即使同一类原料波动范围也很宽,必须经过测试生料的邦德功指数试验才能确定合理的系统配置和技术指标,否则只能基于假设的“中等性能”确定初步方案。 二、辊压机作终粉磨工艺改造方案 1、改造前的两套生料粉磨系统的主要配置如下:表2-1 原料粉磨系统主机设备一览表 2、采用的技改方案目前先进的生料粉磨系统主要有两种,一种是采用立式磨系统,另一种是辊压机终粉磨系统。立式磨对原料水分的适应能力更强,缺点是系统热风用量大,电耗偏高;而辊压机终粉磨系统是更加节能的生料粉磨方案,同样情况下,比立磨系统电耗低约2-3kWh/t、热风用量也略少于立磨系统,缺点是当原料水分过高造成物料很黏时,其适应能力不足。因本项目所用原料综合水分可控,且没有很黏的物料,气候条件适用,为避免与已投用余热发电系统争夺热风的现象,经确定采用两套更加节能的辊压机终粉磨系统代替现有的两套生料球磨机系统。 3、生产工艺流程简述在原有生料磨两侧空地上,新增二套HFCG160-120 辊压机+V4000 型气流分级机与原有球磨机系统中现有的风路、选粉、废气处理等系统组合,形成新的辊压机终粉磨系统。工艺流程阐述:来自原料配料库的混合原料(石灰石、硅石、铁矿粉等)通过皮带机输送至辊压机车间气流分级机进料口,新鲜物料汇同辊压机挤压后的物料送入新增的气流分级机内。物料经过气流分级机的分选,粗粉通过皮带机和提升机返回辊压机稳流称重仓,细粉(半成品)被风带入原有组合式高效选粉机内,选出的粗粉也回到辊压机称重仓,细粉即为成品再由空气输送斜槽、提升机等送入生料均化库内。窑尾热风仍作为整个系统的主要烘干热源,重新安装风管后将热风直接引入新增的气流分级机内,与循环风、自然风一起通过料幕,将物料中的细粉带出进入到原组合式选粉机内,通过选粉机分离后的含尘风部分返回到气流分级机内,其余气体进入窑尾收尘器。整个风路系统仍由原组合式选粉机后的循环风机完成,在入V 型气流分级机的热风管、循环风管及冷风管上均设有电动风阀。在上述系统中,在入辊压机系统的物料皮带及V 型气流分级机粗料返回皮带机上均设有自动除铁器,以去除原料及系统中的铁,有效保护辊压机。 工艺流程图如下:

辊压机粉磨系统

辊压机粉磨系统 一、所属行业:建材行业 二、技术名称:辊压机粉磨系统 三、适用范围:水泥生产线原料及水泥粉磨,高炉矿渣的超细粉磨。 四、技术内容: 1.技术原理 采用高压挤压料层粉碎原理,配以适当的打散分级装置。 2.关键技术 专用磨辊堆焊及修复技术,液压、润滑、喂料、传动、自动控制技术,以及与之相配套的打散分级、球磨机改造等。 3.工艺流程 辊压机联合粉磨→半终粉磨→终粉磨。 五、主要技术指标: 5000t/d水泥生产线采用不同水泥成品粉磨系统能耗指标比较: 采用球磨机闭路系统电耗指标:38~42kWh/t; 采用辊压机粉磨系统:单套粉磨能力200t/h,系统电耗(P.O42.5级水泥)≤30kWh/t。 六、技术应用情况: 该设备1990年通过国家建材局技术鉴定,1992年荣获建材行业部级科技进步二等奖,1993年荣获国家科技进步二等奖。迄今已有400多台HFCG型辊压机及其系统水泥生产线运行,并批量出口国外。 典型用户有:台泥(英德)、河北冀东、浙江红狮、山东山水、兆山新星、山东山铝、福建水泥、广西华润、湖北华新等诸多水泥集团。目前该技术在行业内的推广比例达到60%。 七、典型用户及投资效益: (1)某5000t/d新型干法水泥生产线 项目节能技改投资额约2000万元,建设期150天。同比采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,吨水泥粉磨电耗降低8kWh/t计算,年节电效益约为800万元(按0.5元/ kWh计算),投资回收期3.0年。 (2)某2500t/d新型干法水泥生产线,老厂改造

节能技改投资额约1200万元,建设期150天。比原采用球磨机,节电30%以上(约8~10kWh/t水泥);同比采用球磨机,以年产100万吨水泥,吨水泥粉磨电耗降低8kWh/t 计算,年节电效益约为400万元(按0.5元/度计算),投资回收期3.5年。 八、推广前景和节能潜力: 据“十一五”期间水泥产业结构调整政策,新型干法水泥增量相当于新建200多条5000t/d新型干法水泥生产线,需要各种规格的辊压机在800台套以上。另外,尚有大量的中、小水泥厂利用原有的球磨机改造为粉磨站。市场前景广阔,节能降耗效果显著。 “十一五”期间,该技术在行业内的普及率预计能达到80%,需总投入10亿元,可节电8亿kWh。 九、推广措施及建议: 1.参加行业推广会、技术交流会; 2.建议进一步提高耐磨材料材质,进一步延长耐磨材料使用寿命。

辊压机预粉联合粉磨工艺技术改造

摘要:将次序给料,逐级取出成品,磨机粗粉自循环粉磨技术应用于已有水泥生产线上,在不增加系统功率的情况下,将一段辊压机产生的合格粉取出。提高磨机的效率,提高系统产量。同时对管磨机磨内结构,进行适合喂入经辊压机挤压后的细粉物料的适应性改造,以避免研磨体级配困难,磨机跑粗现象,和混合材过粉磨现象,提高比表面积,改善因筛余难于控制,而导致的水泥台时产量偏低的情况。 关键词:提产、取出成品、节能、降耗 辊压机预粉磨工艺技术改造 作者:李宪章(北票市理想粉磨研究所所长) 地址:辽宁省北票市 邮编:122100 前言: 辊压机联合粉磨工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国际水泥制成工序广泛应用由辊压机+ V型选粉机(静态分级设备)或打散分级机(动态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统,在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨双闭路系统的工艺技术进行探讨分析,并提出我们的节能降耗的解决办法,文章中不足之处恳望予以批评指正 一、辊压机、管磨机双闭路粉磨系统的提产改造方法 1、辊压机、管磨机双闭路粉磨工艺存在的缺陷: 针对辊压机、V型选粉机,粗细粉分离器、开流管磨机粉磨工艺存在的磨机跑粗现象严重,尤其是混合材的过粉磨现象,设计部门采用了管磨机圈流粉磨工艺,出磨水泥80um筛余得到控制,磨机台时产量有所提高,但是粉磨系统增加了提升机、选粉机、除尘器,循环风机等较多的设备,以4213磨机需要增加电机功率近1000kw。我们按原生产线吨水泥电耗 35kw.h/t来计算,那么1000kw.h/t的电耗应该增加28t的磨机台时产量。其粉磨电耗没有得到根本的降低,粉磨po42.5级水泥的电耗仍然需要在 35kw.h/t以上的水平。另外圈流粉磨水泥成品存在着比表面积偏低的现象,

辊压机联合粉磨工艺系统分析

辊压机联合粉磨工艺系统分析 辊压机联合粉磨(或半终粉磨)工艺系统,其技术核心在本质上属于“分段粉磨”。目前,国内水泥制成工序广泛应用由辊压机+打散分级机(动态分级设备)或V型选粉机(静态分级设备)+管磨机开路(或配用高效选粉机组成双闭路)组成的联合粉磨工艺系统(或由辊压机+V型选粉机(静态分级设备)+高效选粉机+管磨机组成的半终粉磨工艺系统),在实际运行过程中,由于各线生产工艺流程及设备配置、物料粉磨特性、水份等方面因素不尽相同,导致系统产量、质量及粉磨电耗等技术经济指标也参差不齐,本文拟对水泥联合粉磨单闭路(管磨机为开路)及双闭路系统(或半终粉磨系统)中各段常出现的工艺技术与设备故障模式进行探讨分析,并提出了相应的解决办法,仅供粉磨工程技术人员在日常工作中参考,文章中谬误之处恳望予以批评指正: 一、辊压机系统故障模式:辊压机挤压效果差 故障原因1: 1. 被挤压物料中的细粉过多,辊压机运行辊缝小,工作压力低 影响分析: 辊压机作为高压料床(流动料床)粉磨设备,其最大特点是挤压力高(>150Mpa),粉磨效率高,是管磨机的3-4倍,预处理物料通过量大,能够与分级和选粉设备配置用于生料终粉磨系统。但由于产品粒度分布窄、颗粒形貌不合理及凝结时间过快、标准稠度需水量大与混凝土外加剂相容性差等工作性能参数方面的原因,国内水泥制备工艺未采用辊压机终粉磨系统,辊压机只在水泥联合粉磨系统中承担半终粉磨(预粉磨)的任务,经施以双辊之间的高压力挤压后的物料,其内部结构产生大量的晶格裂纹及微观缺陷、<2.0mm及以下颗粒与<80um细粉含量增多(颗粒裂纹与粒度效应),分级后的入磨物料粉磨功指数显著下降(15-25%),易磨性明显改善;因后续管磨机一仓破碎功能被移至磨前,相当于延长了管磨机细磨仓,从而大幅度提高了系统产量,降低粉磨电耗。但辊压机作业过程中对入机物料粒度及均匀性非常敏感,粒状料挤压效果好、粉状料挤压效果差,即有“挤粗不挤细”的料床粉磨特性;当入机物料中细粉料量多时会造成辊压机实际运行辊缝小,主电机出力少,工作压力低,若不及时调整,则挤压效果会变差、系统电耗增加。 解决办法: 实际生产过程中应控制粒度<0.03D(D—辊压机辊径 mm)的物料比例占总量的95%以上;生产实践经验证明:入机粒度25mm~30mm且均齐性好的物料挤压效果最好。 采用套筛筛析入机物料粒度分布,简便易行。一般3天检测一次即可满足监控要求。 做好不同粒度物料的搭配,避免过多较细物料进入辊压机而影响其正常做功;同时,可根据入机物料特性对工作辊缝及入料插板及时进行调整,消除不利因素影响。 故障原因2: 2. 辊压机侧挡板磨损严重,工作间隙值变大,边缘漏料 影响分析: 辊压机自身固有的“边缘效应”是指辊子中间部位挤压效果好,细粉产生量多,而边缘挤压效果差,细粉量少甚至漏料,即旁路失效。当两端侧挡板磨损严重,工作间隙值变大时,边缘漏料更将不可避免,在显著减少挤压后物料细粉含量的同时,部分粗颗粒物料还将进入后续动态或静态分级设备,对分级机内部造成较大磨损。 解决办法: 辊压机侧挡板与辊子两端正常的工作间隙值一般为2mm~3mm之间;据走访调查,部分企业辊压机侧挡板与辊子两端之间的工作间隙值在1.8mm~2.0mm; 生产中可采用耐磨钢板或耐磨合金铸造件予以解决,应时常备用1~2套侧挡板,以应对临时性更换。在采用耐磨合金铸造件之前,应将表面毛刺打磨干净,便于安装使用; 更换安装过程中用塞尺和钢板直尺测量控制间隙尺寸即可; 实施设备故障预防机制,要求在正常生产中一般7~10天利用停机时间对侧挡板与辊子之间间隙检查测量一次,若超出允许范围,须及时调整,并做好专项记录备查;

邹伟斌辊压机预粉磨系统增产调整

辊压机预粉磨系统增产降耗优化调整与探讨 邹伟斌中国建材工业经济研究会水泥专业委员会(100024) 汪海滨建筑材料工业技术情报研究所(100024) 邹捷南京工业大学粉体科学与工程研究所 (210009) 摘要:目前,国内尚有部分水泥企业应用带有辊压机通过式挤压预粉磨的水泥粉磨系统,由于该系统原配辊压机能力较小且无分级设备配置,入磨物料粒度分布范围较宽,均齐性较差,虽后续管磨机系统增产幅度一般达到20%-60%,平均节电幅度10%-20%,但系统粉磨电耗仍较高。在辊压机预粉磨系统采用机械筛分技术,降低入磨物料粒度,提高均齐性的同时,优化调整磨内研磨体级配及成品选粉机技术参数,最终达到了较理想的增产、降耗效果。 关键词:辊压机预粉磨机械筛分分级增产降耗 1.基本慨况 某公司水泥制成工序原采用Ф4.2×13m双仓水泥管磨机(主电机功率3550KW、两仓研磨体均使用钢球、一仓采用曲面阶梯衬板、二仓采用风机衬板;双层筛分隔仓板、同心圆状粗筛缝宽度10mm、内筛缝宽度4.0mm;磨尾出料同心圆状篦板缝宽度8mm)+选粉机的一级闭路粉磨系统,台时产量只有90t/h。之后,为实施磨前物料处理,配置一台120-80辊压机(电机功率500KW×2、通过量260t/h)作为预粉磨(无分级)设备,由于缺乏维护,辊压机动、静辊面及侧挡板磨损较严重、两侧边部漏料、工作压力低、挤压效果差,入磨物料中大于8mm以上颗粒比例达到30%以上,粒度分布范围较宽,系统产量较低。 磨尾为系统风机与收尘风机各自单列配置,O-SePa N-3500高效选粉机(主轴电机功率200KW、最大喂料能力630t/h、选粉能力210t/h、理论配风量210000m3/h、实际配置系统风机风量250000m3/h、风压7500Pa),粉磨P.O42.5水泥(熟料、石灰石、粉煤灰、脱硫石膏,成品比表面积≥360m2/kg)产量120t/h,系统粉磨电耗36kwh/t左右。 2.增产降耗技术措施优化探讨 为了进一步增产降耗,根据原预粉磨系统“辊压机配置小、磨机粉磨能力大”的工艺特点以及成品选粉机能力富裕量大,同时结合生产场地位置等实际状况,经技术论证,决定在辊压机系统设置物料分级回转筛并配置收尘设备,物料形成闭路循环,筛分分级后的细颗粒物料入管磨机粉磨,粗颗粒料返回称重仓再入辊压机挤压。 2.1回转筛技术参数 确定机械筛分分级回转筛筛孔宽度为5.0mm,筛子直径Ф2200mm,处理能力可达300t/h左右,端盖密封后联接一台布袋收尘器,收集的粉状料直接进入管磨机。安装调试运行后,能够有效地控制入磨物料粒度全部<5mm、颗粒分布由宽变窄、均齐性良好。 2.2辊压机工作压力与辊缝调整 为避免铁质对辊面造成损坏,配料皮带上方原有一道电磁除铁器,本次改造时又增加了一道高强磁除铁器,以除去熟料及混合材料中的铁质。 对于辊压机的处理:首先,采取堆焊方式修复辊压机辊面,恢复辊压机挤压过程中辊面对物料的牵制能力。其次,更换侧挡板(采用碳化铬复合耐磨钢板制作,

生料辊压机终粉磨说明书

原料粉磨及废气处理系统调试操作说明书

一、工艺流程介绍 来自石灰石预均化库的石灰石经胶带输送机送至原料调配站的石灰石库。 辅助原料包括砂岩、铁矿石和粉煤灰。砂岩、铁矿石由胶带输送机输送至原料调配站。在原有粉煤灰输送皮带下增加一台三通阀,对原有输送皮带进行改造,新增一座φ5m粉煤灰仓,仓底设置棒阀和定量给料机。 因原料粉磨/废气处理改造为辊压机终粉磨后系统能力加大,经核算石灰石库底定量给料机能力足够,不需调整;更换原石英砂岩库定量给料机;原石英砂岩库底定量给料机移至铁矿石库底计量铁矿石用。在定量给料机计量下实现各种物料的定量喂料,配好的混合料经除铁装置和金属探测器除铁探测后,由胶带输送机送入生料磨车间。 原料粉磨采用辊压机终粉磨系统,入磨物料粒度≤55mm。各种原料经胶带机送入V型选粉机(12.10)分级打散,其中粗粉部分经提升机(12.11)、除铁器(12.12)、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压;另一部分进入动态选粉机(12.18)分选,合格成品随一部分气流送入旋风收尘器(12.22)收集,不合格品经过重锤阀(12.18-1)、除铁器(12.19)、空气输送斜槽 (12.20) 、称重稳流仓(12.13)回辊压机 (12.16)循环再挤压。挤压后的物料经提升机(12.17)送入V选。旋风收尘器(12.22)收集下来的成品经空气输送斜槽(12.25、12.39)、斗式提升机(12.41)、空气输送斜槽(12.42)入生料库储存、均化。出旋风收尘器(12.22)的气体经循环风机(12.27),一部分气体作为循环风重新进入V型选粉机(12.10),其余气体则通过窑尾袋收尘器净化后,经尾排风机和烟囱排入大气。窑尾袋收尘器和增湿塔收下的粉尘经链式输送机、提升机(16.01)汇同生料成品一起经空气输送

大型辊压机联合粉磨技术新进展

大型辊压机联合粉磨技术新进展 1 产辊压机技术发展简介 自上世纪八十年代中期由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD公司辊压机设计制造技术以来,经过了二十多年的发展历程。投入使用的国产辊压机规格,辊径由800mm发展到今天的1800mm ;辊宽由200mm发展到今天的1600mm;装机功率由90kW×2发展到今天的1600kW×2 ;整机重量由30多吨发展到今天的290多吨,产品质量逐步提高。辊压机的通过量由40t/h发展到今天的1000t/h;配套磨机生产水泥的产量由20t/h发展到今天的200t/h以上,节能幅度达30%以上;粉磨工艺也由早期的预粉磨工艺发展到今天以配多种打散分级装置为主的联合粉磨工艺。 近年来国家产业结构调整,淘汰立窑,发展新型干法旋窑,水泥生产朝着规模化发展,5000t/d 熟料生产线已成为市场的主流。加上能源紧张又为辊压机的快速发展创造了难得的机遇。这就要求国产化辊压机也朝着大型化发展,加工能力和加工质量进一步提高,为5000t/d 熟料生产线水泥粉磨系统国产化配置创造了条件,同样也为大型辊压机国产化创造了条件。我们抓住机遇,及时开发出装机功率在1120kW×2的HFCG160-140大型辊压机。HFCG160-140辊压机配Ф4.2×13m开路水泥磨系统产量可达170t/h以上,配Ф4.2×13m闭路水泥磨系统产量可达180t/h以上,取得使磨机增产100%,节电30%的效果。已投入使用50多套,销售超过100套,成为5000t/d 熟料生产线水泥粉磨系统首选方案。 2 辊压机水泥联合粉磨最新进展 随着大批HFCG160-140辊压机配Ф4.2×13m水泥磨系统投产达标,用户对HFCG型辊压机的可靠性及系统的稳定性充满了信心,同时对进一步增产节能降耗提出新要求。为此我们开发出装机功率在1600kW×2的HFCG180-160大型辊压机配Ф4.2×13m开路水泥磨系统产量可达210t/h以上,配Ф4.2×13m闭路水泥磨系统产量可达220t/h以上。 目前水泥行业常用的挤压联合粉磨方案,生产42.5普通水泥中小型系统电耗在28~32kWh/t,大型系统电耗在30~34kWh/t。众所周知,辊压机在物料细破碎至粗粉磨方面,比传统球磨机的能量利用率高很多。根据合肥水泥研究院“九·五”国家攻关成果,辊压机终粉磨系统电耗在22~24kWh/t(由于其水泥颗粒分布及形态等指标与现有水泥尚有差别,暂不宜大范围推广),较现在常用的挤压联合粉磨系统,特别是水泥产量大于180t/h的大型粉磨系统尚有较大节电空间。因此,我们认为在同样水泥产量规模下,加大辊压机在系统中的装机功率,同时减小球磨机的装机功率,即采用大辊压机、小球磨机粉磨方案可以取得进一步节能降耗。 2.1 系统一:湖南益阳东方水泥有限公司5000t/d生产线2×180t/h水泥磨系统 湖南益阳东方水泥有限公司5000t/d生产线2×180t/h水泥磨系统,由合肥院设计,采用HFCG180-160大型辊压机配Ф3.8×13m球磨。

国产大型辊压机及粉磨系统工艺方案

国产大型辊压机及粉磨系统工艺方案 来源:合肥水泥研究设计院 1. 国产辊压机发展简介 自上世纪八十年代中期,由合肥水泥研究设计院、天津水泥工业设计研究院、洛阳矿山机器厂、唐山水泥机械厂四家单位联合引进德国KHD公司辊压机设计制造技术以来,经过二十年的不断完善,国产辊压机的辊径由800mm发展到今天的1600mm ;辊宽由200mm发展到今天的1400mm;装机功率由90kW×2发展到今天的1120kW×2;整机重量由30多吨发展到今天的200多吨,通过量由40t/h发展到今天的800t/h;配套磨机的产量由20t/h发展到今天的180t/h,辊压机产品质量逐步提高,节能幅度达30%以上。回顾国产辊压机二十年的发展历程,大致可以分成三个阶段: 1.1研究开发阶段(1986年—1992年) 参加引进辊压机设计制造技术的四家单位在做好引进样机的转化设计和制造的同时,相继开发出各自的国产化辊压机,并在1990年前后通过鉴定。在此期间国内的减速机生产厂家、轴承生产厂家、液压元器件生产厂家、耐磨堆焊生产研发等单位也都为国产化辊压机的研制成功做出了贡献。合肥水泥研究设计院经国家“七五”重点科技攻关专题研究,推出第一台国产辊压机,并成功地应用于工业性生产,取得了使磨机增产40%,节电15%的效果。 1.2 整改提高阶段(1993年—1999年) 在此期间,由于各厂家制造的辊压机在水泥生产中相继出现问题,让一些辊压机用户“既尝到了增产节能甜头,也吃尽了频繁检修的苦头”。使得许多青睐辊压机增产节能效果的企业想上而不敢上。合肥水泥研究设计院对此进行了分析和整改、完善。一是注重加工件、配套件的质量提高;二是优化工艺系统及设备的选型与配套。经国家“八五”、“九五”重点科技攻关课题的持续研究,集十余年的应用经验,推出了具有自主知识产权,设计更合理、性能更优越,可靠性更高的第三代HFCG系列辊压机。有效解决了包括辊压机偏辊、偏载、水平振动和传动系统扭振等一系列关键性技术难题。国内的减速机、轴承、液压元器件、耐磨堆焊材料等研发等单位的配套件质量也都大大提高,为国产辊压机的长期安全运转奠定了基础,使主机设备运转率达90%以上,同时还开发出具有自主知识产权的SF系列打散分级机以及“V”型分级机等国家专利产品,使挤压粉磨系统工艺更加完善,参数更加合理。 1.3 快速发展阶段(2000年至今) 解决了大型国产化辊压机设备制造和工艺配套两方面的问题,使国产辊压机进入全面推广应用的新阶段。近年来国家水泥产业结构调整,淘汰立窑,发展新型干法旋窑,

辊压机水泥半终粉磨工艺系统调试

辊压机水泥半终粉磨工艺系统增产调试 邹伟斌中国建材工业经济研究会水泥专业委员会(100024) 邹捷南京工业大学粉体科学与工程研究所 (210009) 题要:本文总结了ZC公司5000t/d新型干法水泥熟料生产线,水泥制成工序采用辊压机、V型静态选粉机、双分离高效选粉机、双仓管磨机组成的半终粉磨闭路工艺系统增产调试过程,调整中以“分段粉磨”理论及系统工程方法为指导依据,并对粉磨系统中各段存在的技术问题进行了诊断分析,制定并实施了相应的改进措施,充分挖掘粉磨系统中每一段生产潜力,最终达到增产、降耗的目的。 关键词:辊压机 半终粉磨系统 双分离高效选粉机 增产调试 1. 水泥粉磨工艺线基本概况 ZC公司5000t/d新型干法水泥熟料生产线,两套水泥成品制备系统均配用160-140辊压机+V型静态分级机(V型选粉机)+双分离高效选粉机+Φ4.2×13m双仓管磨机组成的半终粉磨闭路工艺;其具体工艺流程为:物料经过配料站由高速板链斗式提升机输送至稳流称重仓,进入辊压机挤压后通过V型选粉机分级出细粉(<80um以下颗粒占70%-85%、<45um以下水泥成品颗粒所占比例约为55%以上),V型选粉机细粉出口联接下进风的双分离高效选粉机(负压抽吸式进入高浓度布袋收尘器收集成品),首先分离出由辊压机挤压过程中产生的成品,分选出成品后的粗粉输送至管磨机粉磨,出磨物料经输送设备由上部喂入双分离高效选粉机再次分选。在辊压机、管磨机两段正常运行后,双分离高效选粉机承受下部(V选出口)及上部(由管磨机磨尾输送的)两股料流,同时进行分选。我们可以将辊压机水泥半终粉磨工艺系统理解为:它是传统联合粉磨工艺系统的另一个变种,辊压机半终粉磨工艺系统与辊压机联合粉磨工艺系统各有其技术特点、均可使粉磨系统增产能力达到70%-200%甚至200%以上、节电幅度达 20%-30%。 该半终粉磨工艺系统与传统联合粉磨工艺系统相比,须采用一台物料处理能力较大的辊压机和一台喂料、分选能力大的下进风双分离高效选粉机,V型选粉机与双分离高效选粉机则共用一台系统风机,取消了联合粉磨系统中一台循环风机与旋风收尘器(双旋风筒或单旋风筒)及部分管道和输送设备,减少了设备数量及维护点,维修成本降低。此外,该半终粉磨系统中直接采用高浓度布袋收尘器收集由辊压

辊压机工作原理

辊压机工作原理 辊压机,又名挤压磨、辊压磨,是国际80年代中期发展起来的新型水泥节能粉磨设备,具有替代能耗高、效率低球磨机预粉磨系统,并且降低钢材消耗及噪声的功能,适用于新厂建设,也可用于老厂技术改造,使球磨机系统产量提高30—50%,经过挤压后的物料料饼中0.08mm细料占20—35%,小于2mm占65—85%,小颗粒的内部结构因受挤压而充满许多微小裂纹,易磨性大为改善。辊面采用热堆焊,耐磨层维修更为方便。 目录 粉磨系统中的几个关键设备 1.稳流称重仓 2.除铁装置 3.辊压机斜插板 4.辊压机 5.打散分级机 影响粉磨系统产量的常见因素 1.水泥原料的水分 2.物料粒度及其易磨性 3.挤压效果 辊压机的工作原理 辊压机的主要特点 单传动辊压机 1.单双传动辊压机的比较 辊压机水泥粉磨节能工艺技术应用 辊压机常见故障及处理方法 1.现场修复辊压机轴承磨损 粉磨系统中的几个关键设备 1.稳流称重仓 2.除铁装置 3.辊压机斜插板 4.辊压机 5.打散分级机 影响粉磨系统产量的常见因素 1.水泥原料的水分 2.物料粒度及其易磨性 3.挤压效果 辊压机的工作原理 辊压机的主要特点 单传动辊压机 1.单双传动辊压机的比较 辊压机水泥粉磨节能工艺技术应用 辊压机常见故障及处理方法 1.现场修复辊压机轴承磨损 展开

粉磨系统中的几个关键设备 稳流称重仓 辊压机必须满料操作,运行过程中两辊之间必须保证充满物料,不能间断, 辊压机 因此在辊压机进料口上部设置稳流作用的称重仓是必要的,称重仓的容量设计也不能太小,否则缓冲余地太小,影响辊压机的正常运行,造成辊压后料饼质量的较大波动。另外要控制好称重仓的料位,如果料位过低,辊压机上方不能形成稳定的料柱,使称重仓失去靠物料重力强制喂料的功能,且容易形成物料偏流人辊现象,引起辊压机振动或跳停。 除铁装置 辊压机辊面耐磨层容易磨损,尤其对金属异物反应敏感,因此喂人辊压机的物料应尽可能地除铁彻底。系统中除了在进料皮带上设置除铁器外,还有必要在进料皮带上设置金属探测仪。而且在生产过程中,应确保金属探测仪与进料系统连锁畅通,反应快捷,以便及时排除物料中混杂的金属异物,避免金属异物在辊压机与打散分级机组成的闭路系统中不断循环而反复损伤辊面层。 辊压机斜插板 辊压机斜插板位置不当,会造成辊压机入口内料柱压力过大或过小, 辊压机 对形成稳定料床有影响。位置过高,料柱压力过大,入辊压机物料多,辊缝大,物料会冲过辊压机或形成料饼过厚,增大下道工序负荷,挤压效果变差,成品含量低;位置过低,料柱

水泥粉磨系统优化探讨一

水泥粉磨系统优化分析与探讨 邹伟斌中国建材工业经济研究会水泥专业委员会(100831) ( 连载一) 随着水泥生产技术与国际同行的不断交流,我国水泥工业得到了长足的发展与进步。国内水泥设计研究院、大专院校的工程技术及科研人员开发出多项具有自主知识产权的专利技术及装备,并成功应用于出口生产线EPC工程,获得了良好的国际赞誉。就水泥粉磨技术而言,国内不同规模的新型干法线与粉磨站,由于粉磨主机设备及预处理设备选型等因素,其工艺流程各有特点,系统产量与粉磨电耗指标也有所不同。即使是相同的主机配置,因物料的粉磨特性不同、工艺参数调整方法不合理等,导致系统产量参差不齐、悬殊较大,粉磨电耗也高低不均。 本文以笔者走访调查了解的生产数据及部分粉磨技术资料显示的实际案例为依据,针对国内水泥粉磨系统存在的技术问题进行了分析与探讨,并结合自身的心得与体会,提出了系统增产过程中的部分针对性调整措施,涉及的问题不可能面面俱到,仅一孔之见,供水泥粉磨工程技术人员参考。因水平有限,文中谬误之处在所难免,恳望予以批评指正: 一、国内在运行的水泥粉磨工艺系统 据笔者调查了解,除采用串联粉磨及物料分别粉磨(分别计量配制)工艺外,目前国内尚有以下20余种在生产运行的水泥粉磨工艺(物料共同粉磨)系统: 1.无磨前物料预处理(预破碎或预粉磨)工艺的粉磨系统 1.1普通双仓或三仓开路粉磨系统(只有管磨机与除尘器、风机单独作业) 1.2普通双仓或三仓闭路粉磨系统(由管磨机+高效选粉机+除尘器+风机组成的<一级> 闭路粉磨系统) 2.有磨前物料预处理(预破碎或预粉磨)工艺的粉磨系统 2.1挤压(或碾压、破碎)处理后的物料没有分级而直接入磨的通过式预粉(碎)磨的粉磨工艺系统 2.1.1辊压机+管磨机(双仓或三仓)+除尘器+风机组成的开路粉磨系统 2.1.2辊压机+管磨机(双仓或三仓)+高效选粉机+除尘器+风机组成的<一级>闭路粉磨系统 (该系统管磨机以使用双仓为多数,三仓磨较少) 2.1.3 CKP立磨(或其它形式立磨) +管磨机(单仓或双仓)+高效选粉机+除尘器+风机组成的<一级>闭路粉磨系统 (该系统管磨机以使用双仓为多,三仓磨较少)

水泥工业挤压联合粉磨工艺中辊压机重载轴承的润

水泥工业挤压联合粉磨工艺中辊压机重载轴承的润 滑 ?作者:田晓如单位:克鲁勃润滑剂上海有限公司[2008-7-7] 关键字:克鲁勃-润滑油 ?摘要: 前言 辊压机是上个世纪八十年代中期在国际上发展起来的新型粉碎设备,以辊压机为主组成的挤压联合粉磨工艺应用于水泥、采矿等行业在增产、节能方面效果显著,顺应了节能、减排的环保要求。因此,在水泥行业大力发展的背景下,辊压机得到越来越广泛的应用。 采用辊压机和球磨机组合成一体的粉磨系统,其有效性能关键在于:设备运行的可靠性,包括其运行故障率和耐磨损性能,设备运行的粉磨效率直接关系到节能效果。辊压机的重载轴承处于低速、重载、有冲击负荷的工况条件,该系统的稳定运行与否直接影响设备运行的可靠性,本文从专业润滑的角度分析了辊压机重载轴承的工况特点及其润滑建议。 一、辊压机工作原理 辊压机是根据高压料层粉碎原理,通过一对相向旋转的辊子(其中一只是固定辊,另一只是活动辊),将液压力经过活动辊作用在进入两辊间的物料上,把物料压实粉碎。 在辊子的作用下,除了与辊面接触的物料颗粒受到辊面直接压力外,物料颗粒之间也产生相互压力作用,将物料压实和粉碎。第一阶段中以“挤满给料”方式给入物料,在辊面的作用下,受到加速,辊子间的间距逐渐减少,物料产生压实和预粉碎,同时颗粒间重新排列,使颗粒间空隙减少。在第二阶段物料进入压实区,压实区从与水平成角度为7o的扇形区开始,压力在该区域达到峰值,颗粒间相互挤压使全部颗粒受力而粉碎。 二、辊压机重载轴承工况特点及润滑要求 辊压机重载轴承的摩擦副是轴承的内外圈、滚动体和保持架,其工况条件主要是低速、重载、冲击载荷和振动。在该工况条件下,摩擦副处于典型的混合摩擦范围,摩擦副表面会部分接触,油膜并未将接触面完全分开,如下图所示: 1、辊压机轴承工作在严酷的工况条件下:

水泥粉磨设备之辊压机

本文介绍了辊压机及挤压粉磨技术装备与工艺,如耐磨辊面的全套修复方案,挤压联合粉磨及半终粉磨工艺的优化设计,挤压终粉磨工艺的研究与实践,水泥颗粒分布及形态的比较分析;大型水泥粉磨系统工艺方案的比较等方面的最新研究成果及其应用实践。­ 我国辊压机及挤压粉磨技术经过近二十年的研究与应用已日趋成熟,可以说基本解决了应用的一系列关键技术问题,尤其是通过工艺系统的深入研究和主机可靠性的提高,辊压机系统运转率已达到球磨机系统的水平,挤压粉磨的高效节能特点更加充分地以发挥。从1999年至2002年7月间近50条水泥生产线相继应用的效果看,这一技术已成为1000t/d、2000t/d、2500t/d熟料等大型水泥生产线水泥粉磨系统的优选方案。由于辊压机可以和打散分级机、球磨机、选粉机等构成多种粉磨工艺流程,满足不同生产线产品产量和质量的要求,因此,更符合水泥企业实施水泥新标准的要求。本文就此阐述如下,供参考。­ 辊压机在我国已经历十余年的研究与应用,一方面体现出其高效节能的特点,另一方面由于设备的不成熟和我们对其固有特性认识不足,给早期的用户带来维护上的麻烦,使辊压机的推广应用受到较大阻力,其中辊压机辊面的耐磨设计及其修复;辊压机设备的振动;辊压机工艺参数的设计与调整等成为辊压机设备中急待解决的问题。­ 对于辊压机辊面耐磨技术,国内外各大水泥装备公司均投入大量的资金和精力加以研究,先后开发出整体铸造式、整体堆焊式、堆焊镶套式、硬质合金柱钉式、分块式以及硬质合金烧结式等。其中整体铸造、整体堆焊属于早期技术;硬质合金柱钉式和硬质合金烧结式,因对物料中异物的敏感性强或因造价昂贵,未被广泛使用;分块式辊面由于受力的不合理性,在1996年以后即被否定;目前从耐磨设计的合理性以及使用、维护、更换等诸多因素综合考虑后,被认为适应强、综合性能最好的是堆焊镶套式。­ 由于堆焊镶套式辊面实现了磨辊母体与辊面耐磨层的分离,因此,就可以使用不同的材料和热处理工艺,以分别满足磨辊主轴的综合机械性能和辊面耐磨堆焊性能的需要。其技术应包括以下几方面:­ a、根据被挤压物料的物理性能,选择适当的耐磨材料和辊面花纹形式,即新辊面的制造技术;­ a、辊压机辊面的磨损为高应力磨粒磨损,所选用的耐磨材料,须综合考虑表面硬度、耐磨性与韧性的有机结合。针对上述情况,开发出新型耐磨焊接材料,这种材料的主要合金元素是铬—钼—钒类型,通过调整碳—铬—钼—钒的不同配比获得具有不同硬度和韧性的堆焊材料,以满足不同抗磨损要求和堆焊层厚度方向上硬度梯度变化的要求,并通过焊前和焊后处理,使辊面在提高耐磨性的同时,确保在使用过程中不出现大面积剥落现象。并且要求这种材料与日后修复使用的现场补焊材料具有良好的相容性。新磨辊的堆焊一般采用药芯焊丝埋弧自动堆焊工艺。­ b、多年实践证明,辊面花纹形式对辊面耐磨寿命的影响是较大的。众所周知,磨损的产生须同时具备两个要素,即压力和相对滑动。粉碎物料所需的压力是由被粉碎物料的性能所决定,不可改变,减小物料在挤压过程中与辊面的相对滑动,是减小磨损、延长辊面寿命的有效途径。国内早期使用的“人”字形花纹虽然能够阻止物料的圆周方向滑动,但并未制约对物料在挤压过程中的轴向滑动,尤其在挤压物料颗粒较小如生产新型干法矿渣水泥时,两“人”之间的磨损较严重。因此,目前在HFCG系列辊压机辊面上广泛采用“棱”形花纹中间加硬质点的耐磨表面,取得了良好的使用效果,图1不同花纹形式的磨辊表面磨损情况;图2为在大连华能—小野田水泥有限公司RPV100—63型辊压机使用HFCG型耐磨辊套的情况。­ ­ ­ ­

相关文档