文档视界 最新最全的文档下载
当前位置:文档视界 › 基波和谐波

基波和谐波

基波和谐波
基波和谐波

基波

定义:将非正弦周期信号按傅里叶级数展开,频率与原信号频率相同的量。

复合波的最低频率分量。

在复杂的周期性振荡中,包含基波和谐波。和该振荡最长周期相等的正弦波分量称为基波。相应于这个周期的频率称为基本频率。频率等于基本频率的整倍数的正弦波分量称为谐波。

谐波

定义:其频率为基波的倍数的辅波或分量。

定义:从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。

产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。

谐波的分类:谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。根据谐波频率的不同,可以分为:

奇次谐波:额定频率为基波频率奇数倍的谐波,被称为“奇次谐波”,如3、5、7次谐波;

偶次谐波:额定频率为基波频率偶数倍的谐波,被称为“偶次谐波”,如2、4、6、8次谐波。

一般地讲,奇次谐波引起的危害比偶次谐波更多更大。

在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等。变频器主要产生5、7次谐波。

分量谐波:频率为基波非整数倍的分量称为间谐波,有时候也将低于基波的间谐波称为次谐波,次谐波可看成直流与工频之间的间谐波。

五、谐波的参数

5.1、谐波电流:谐波电流是由设备或系统引入的非正弦特性电流。谐波电流叠加在主电源上;

5.2、谐波电压:谐波电压是由谐波电流和配电系统上产生的阻抗导致的电压降;

六、与谐波有关的参数定义

6.1、阻抗:阻抗是在特定频率下配电系统某一点产生的电阻。阻抗取决于变压器和连在系统上的用电设备,以及所采用导体的截面积和长度。

6.2、阻抗系数:阻抗系数是AF (载波)阻抗相对于50Hz (基波)阻抗的比率。

6.3、谐振:在配电系统里的设备,与它们存在的电容( 电缆,补偿电容器等) 和电感( 变压器,电抗线圈等) 形成共振电路。后者能够被系统谐波激励而成为谐振。配电系统谐波的一个原因是变压器铁芯非线性磁化的特性。在这种情况下主要的谐波是3 次的;它在全部导体内与单相分量具有相同的长度,因而在星形点上不能消除。

6.4、谐振频率:每个电感和电容的连接形成一个具有特定共振频率的谐振电路。一个网络有几个电感和电容就有几个谐振频率。

6.5、并联谐振频率:网络阻抗达到最大值的频率。在并联谐振电路中,电流分量I L 和I C 大于总电流I 。

6.6、串联谐振频率:网络的阻抗水平达到最小的频率。在串联谐振电路内分路电压U L 和U C 大于总电压U 。

6.7、串联谐振谐电路:由电感(电抗器)和电容(电容器)串联的电路。

6.8、无功功率:电动机和变压器的磁能部分,以及用于能量交换目的的功率转换器等处需要无功功率Q 。与有功功率不同,无功功率并不做功。计量无功功率的单位是Var 或kvar 。

6.9、无功功率补偿:供电部门规定一个最小功率因数以避免电能浪费。如果一个工厂的功率因数小于这个最小值,它要为无功功率的部分付费。否则它就应该用电容器提高功率因数,这就必须在用电设备上并联安装电容器。

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

基频 谐波

基波的定义是指工频的波形,是供电系统中正常供电的电压、电流波形。例如,50Hz的基波电流,表示,电流波形的频率为50个周波/秒,换言之,基波的每个周波的时间是20毫秒。 而谐波的定义是电力系统中之电压或电流讯号,除基频(50/60Hz)外之交流、周期性成份,皆称为谐波,因此,2次谐波,其频率为基波的2倍,即100Hz. 一般来说,电流系统中很少见到2次谐波,除了钢铁厂的电弧炉可能产生2次、4次等偶次谐波外,其他的负荷倒是比较少见。 基频 fundamental frequency 定义:将非正弦周期信号按傅里叶级数展开时,原信号的频率 自由振荡系统的最低振荡频率 复合波中的最低频率 〖fundamental〗∶复合振动或波形(如声波)的谐波成分,它具有最低频率,且通常具有最大振幅——亦称“基谐波” 射频和基频的区别是什么 射频和基频是扯不到一坨的两个东西:射频指的是中高频的一个频率范围,是相对于频率高低来 说的;基频是指的研究对象的固有频率,是相对于高次谐波来说的 什么是信号的基频和谐频? 在图像怎么看?用matlab怎么求?它们的意义是什么?谢谢 一般信号(除了纯粹正弦波外)都可以分解为基波和谐波,或者把它看成是由基波和谐波组成的。具体可以参考数学里的傅立叶分析。比如一个50赫的三角波,它的基频是50赫,100,150,200赫等频率成分是它的谐频。 在matlab里有个fft函数,直接求出信号的基波和谐波。 什么是谐波啊,频谱分析的主要作用是什么? 一个非正弦的信号由一个正弦的基频信号和基频整数倍的正弦信号组成,把非基波的这些信号称做谐波。 由于波形不同,基频信号和各谐波的分量是不同的,频谱分析就是对这些分量的幅度和频率特性的描述。如在频谱分析仪上可看到一跟根不同高度不同频率的谱线。 什么叫谐波信号

谐波电流及抑制

一.谐波电流 一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。 1.谐波的危害 谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 2.谐波是怎么产生的 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

基波和谐波

什么是谐波? "谐波"一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40 一、1. 何为谐波? 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。 “谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析 方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问

谐波、谐波电流、谐波电压三者的意义与区分

谐波、谐波电流、谐波电压三者的意义与区分 电力谐波就是电能中包含的谐波成分,分为谐波电压和谐波电流。接下来主要为大家介绍一下谐波、谐波电流和谐波电压的概念及区分。 一、谐波 谐波是与基波对应的一个概念。 如果有一个频率为f正弦波,那么频率为n f的正弦波就称为f正弦波的n次谐波,而频率为f的正弦波就是基波(含义为基本波形)。例如:我们的电力电压波形为50HZ的正弦波,那么3次谐波就是150HZ的正弦波,5次谐波就是250HZ的正弦波。 用数学的方法可以证明,任何一个周期性波形都可以分解为基波和谐波。因此,当电网电压发生畸变时,就表示其中包含了谐波成分。 图1是包含了5次谐波和7次谐波的波形,5次和7次谐波是工业上最典型的两种谐波。

图1含有5次和7次谐波的畸变波形 如果谐波成分是电流,就叫谐波电流。如果谐波成分是电压,就叫谐波电压。 二、谐波电流 谐波电流是导致变压器过热、电缆过热、跳闸、无功补偿装置烧毁的主要原因。 三、谐波电压 谐波电压是电子设备误动作的主要原因。在处理电子设备受干扰的问题是,更加关注电子设备接入电网的位置的谐波电压畸变率。一般要求电压畸变率小于5%。 四、谐波电流和谐波电压的区分

谐波电流与谐波电压之间的关系是很多人搞不清楚的概念。了解他们之间的关系,对于正确解决电能质量问题十分重要,下面对这两者的关系进行讲解。 谐波电流是谐波的根源,谐波电压是谐波电流的产物。因此,要彻底解决谐波导致的各种问题,就要从控制谐波电流入手。 谐波电压是谐波电流流过线路阻抗时产生的,对于特定的配电系统,谐波电流与谐波电压之间的关系如下(欧姆定律): 谐波电压=谐波电流×电网阻抗 式中:电网阻抗包括了变压器的阻抗和配电线的阻抗,如图1所示。

关于谐波的一些常识

谐波(harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。 谐波产生的原因主要有:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。 谐波原因在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(如:电阻)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。 用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。 在电力系统中,谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器会呈现比较大的背离正弦曲线波形。 谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 …。n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。 其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。 在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。 只要哪里有谐波源那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。例如,供电网络中一个用户工厂的运转可能被相邻的另一个用户设备产生的谐波所干扰。 谐波设备类型

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

什么是二次谐波。

1.什么是二次谐波? 答:谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。 2.谐波是怎样分类的? 谐波主要根据频率和相序特性进行分类。 1. 根据频率分类 2次谐波(100Hz)、3次谐波(150Hz)。非工频整数倍的谐波称为间谐波。 2. 根据相序旋转作用分类 根据相序旋转作用可负序谐波、零序谐波、正序谐波三种。分别对应2、3、4次谐波,并依次类推分别对应5、6、7次谐波,8、 9、10次谐波……。其中正序谐波包括基波频率,为正向旋转。 负序谐波为逆向旋转,产生的磁场抵消基波产生的磁场。零序谐波不旋转,但会叠加到三相四线制系统中的中性线上。在三相四线制系统中,一些谐波能够相互抵消,另一些却会相互叠加,致使谐波被放大。 理想情况下,电网电压和电流波形为频率为50Hz(有些国家为60Hz)的正弦波。但是现实情况并非如此,电压和电流波形不是完美的正弦波,这被称为“畸变”。利用傅立叶分析法,这个畸

变的波形可以分解为一系列不同频率的正弦波的叠加,其中序数为1的是我们需要的50Hz(或60Hz)的基波,其余的分量的频率是基波频率的整数倍,这些频率的电能是我们不希望看到的,被称为谐波。 二次谐波就是电网中存在的频率为100Hz(50Hz的2倍)。一般是由冶炼金属的电弧炉产生的。二次谐波的治理是比较复杂的

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法 来源:仪商网 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调

整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。 简单对比 基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL 中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL 就无法同步基波采样,谐波分析结果也就完全错误。 频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进行傅里叶变换。所以频率重心法引入了数倍于同步采样法的计算量。另外,重心法需要使用至少两根谱线,而且受窗函数主瓣宽度限制,频率重心法所能支持的频率下限只能达到频率分辨率的三倍以上。由于频率重心法没有反馈过程,不依赖于信号,模拟电路实现简单,理论上只要采样率和使用的数据点足够,就能得到正确的结果。 特别地,因为同步采样需要硬件电路,受限与成本与体积,大部分测量仪器只支持一到两个PLL源,而频率重心法无此限制,甚至可任意定义基波源(对应于PLL源,用于确定基波)。 应用实例

谐波电压电流

电压谐波总畸变率定义: 在理想状况下,电压波形应是周期性标准正弦波,但由于电力系统中存在有大量非线性阻抗特性的供用电设备,这些设备向公用电网注入谐波电流或在公用电网中产生谐波电压,称为谐波源。谐波源使得实际的电压波形偏离正弦波,这种现象称为电压正弦波形畸变。通常以谐波来表征。电压波形畸变的程度用电压正弦波畸变率来衡量,也称电压谐波畸变率。电压谐波总畸变率计算方法: 电压谐波畸变率以各次谐波电压的均方根值与基波电压有效值之比的百分数来表示。电压谐波畸变率=√(U2*U2+U3*U3+...+Un*Un)*100%/ U1式中Un--第n次谐波电压有效值,U1--基波电压有效值, 谐波畸变产生的主要危害: (1)导致电力变压器发热。谐波导致电力变压器发热源于两方面原因,其一是谐波电流能增加变压器的铜损和漏磁损耗;其二是谐波电压能增加铁损。变压器的发热程度直接影响了变压器使用容量的降低程度。 (2)导致电力电缆发热。在三相对称回路中,三次谐波在三相导线中相位相同,在中性线上叠加后产生了3倍于相线的谐波电流和谐波电压,导致中性线温度升高。智能建筑中大量的OA设备及电子式荧光灯均使三次谐波在系统中的占有率增大,因此谐波引起中性线发热问题值得关注。当高频电流通过导线时,电流具有集肤效应,显然高次谐波电流的存在使线路集肤效应加重,线路外表面电流密度加大,从而导致线路(相线及中性线)发热。 (3)导致对电子设备的干扰。智能建筑中自动化及电子信息设备均要求有较高的电源质量,且都工作于低电压水平,极易受到谐波的干扰而使控制失常。控制失常可能引发三A 系统的严重故障。 (4)导致低压配电设备工作异常。谐波畸变可使配电用低压电器设备(断路器、漏电保护器、接触器、热继电器等)发生故障。谐波电流使低压电器设备铁损、铜损增加,集肤效应加剧,从而产生异常发热,误动作等故障。 谐波畸变的防范措施鉴于智能建筑对三A系统运行的高可靠性要求,应适当采取消除或抑制谐波危害的防范措施如下: (1)在根据负载确定电力变压器额定容量时,应考虑谐波畸变而留有格量。在民用建筑设计中一般应保证变压器负荷率为70%~80%左右,该负荷率的工程裕量即可防范谐波引起的变压器发热危害。 (2)在电缆截面选择中应考虑谐波引起线缆发热的危害。对于联接谐波主要扰动源设备的配线,确定线缆载流量时应日有足够裕量,可适当放大一级选择线缆截面。在三相四线制系统中,应考虑三次谐波电流和高次谐波电流引起的集肤郊应对中性线的发热危害,即在中性线截面的选择中国有足够裕量。 (3)在设计和施工阶段,建议采取以下措施抑制谐波对电子设备的干扰。 ①为该类设备设计专用回路供电,尽可能避免干扰沿供电线路窜入。 ②为易受干扰设备加装线路滤波器,消除或抑制谐波分量,达到净化电源目的。 ③使该类设备配线尽可能远离谐波电流畸变严重的线路,以避免空间电磁干扰。

什么是谐波及谐波的危害

什么是谐波?谐波的危害 一、谐波 1. 何为谐波? 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。 “谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波

电路中的谐波

电路中的谐波 在实际使用的交流电路中,由于非线形电路元件的存在,如铁心饱和工作、整流器、油机发电机组供电等的存在和影响,使得局部的交流供电回路中产生丰富的谐波,使得电源的波形、电压、频率发生改变,影响在用设备的正常使用。 矩形波含有丰富的谐波,可以分解为不同最大值的正弦基波和各奇次谐波叠加而成,其有效值、平均值和最大值相等,数学展开式如: f(x)=2Am/π*(sinx+1/3*sin3x+1/5*sin5x+1/7*sin7x+ - - - 1/k*sinkx) 其正弦基波的最大值约是其本身最大值的1.3倍;各次谐波幅值的衰减是很快的。 正弦基波是我们所需要的。在三相交流电路中,电动机在三相对称电流的作用下,产生平稳的旋转磁场,使电动机转动;3次和3倍的谐波,在三相绕组中方向相同,作用为零;5次谐波以基波的1/5转速向相反方向旋转;7次谐波以基波的1/7转速和基波同方向旋转。在变压器中,3次和3倍的谐波,在三相铁心中磁通方向相同,不能中和,通过旁边的铁构件流通,产生发热;在弱电和电子控制回路中,高次谐波对电子电路的电磁感应和电磁干扰就更加厉害。 在三相电容补偿电路中,以矩形波来解释,在额定有效电压的作用下,虽然电压值正常,但基波的有效值为测量值的1.3倍,基波电流为I1=1.3、3次谐波为测量值的1/3,电纳为基波的3倍,3次谐波电流I3=1.3、5次谐波为测量值的1/5,电纳为基波的5倍,5次谐波电流I3=1.3、7次谐波为测量值的1/7,电纳为基波的7倍,7次谐波电流I3=1.3,则流过电容器的电流有效指引等于各次谐波电流值平方和再开平方,如计算到7次谐波,则I=1.3*41/2=2.6 即流过电容器的电流可能达到正常数字的2.6倍。但实际情况电压波形不可能畸变到矩形波,不可能达到这么大,但在额定电压下,流过电容器的电流有可能到达约2倍,同普分局就出现这样的情况,造成热继电器长动作、熔断器不断熔断,这和电容器、热继电器、熔断器事无关的。(完)

电流谐波的基本知识

电流谐波的基本知识 首先我们来讲讲什么是谐波? 我们知道接在电网的负载可以分为线性负载和非线性负载,如下图1: 图1 虚线代表电压波形,我们的市电波形正常为幅值220V,频率50HZ 的正弦交流电,当负载电流的波形也是50HZ的正弦波形时,我们称此类负载为线性负载,当电流波形相位与电压一致时,我们称为阻性负载,如图1的黄色线,如常见的白帜灯、电路、电热水器。当电流相位超前于电压时,我们称此类负载为容性负载,如图1中的黑色线,纯容性负载比较少,如一般配电室常用的无功补偿柜就是纯容性负载。当负载电流相位滞后于电压波形时,此类负载称为感性负载,如图1的蓝色线,常见感性负载如电动机、变压器、电感式镇流器日光灯。

以上线性负载的特点是不管其电流相位超前或滞后于电压波形,其电流波形一直为正弦波,没有失真,这是线性负载的关键。 非线性负载是指其电流波形呈现为非50HZ正弦波,或者理解为相对50HZ正弦波有较大失真,比如目前常见的负载:电脑、彩电、电磁炉,工业上的工频UPS、变频器、电镀等,其负载电流波形都不是50HZ正弦波,如图2就是最为常见的单相电源中的电脑、彩电等的电流波形: 图2 可以看出其电流波形相对电压的正弦波形相差很大,图3是一般三相电源常见的变频器输入电流波形:

图3 图3也可以看出,其电流波形相对电压波形失真很大。这种非正弦波形的负载,我们就称之为非线性负载,其电流波形因为不是50HZ 正弦波,在电工学上可以分解为很多不同频率的正弦波组成,如3次谐波就是150HZ,5次谐波就是250HZ等,那么这些谐波有什么危害呢? 在日常生活中,有时一开大功率的电磁炉,彩电屏幕上就会出现很多干扰条纹,这就是谐波的在做怪,因为电磁炉是非线性负载。我们电网中的设备都是按照50HZ来设计的,如电动机、变压器等,一般谐波过大,则其线圈中要流过150HZ、250HZ等频率高出50HZ很多的电流,必然导致电动机、变压器要异常发热。 电网中其他设备按照50HZ供电设计,一旦同一电网中存在有谐波很大的负载,就会对其他的用电设备造成很大的干扰,因为他们的滤波一般都是按照50HZ来设计,谐波中的高频成分往往使得其他设备不能正常工作。

谐波电流的危害

谐波电流有什么危害 谐波电流是一切谐波问题的根源,谐波电压也是由于谐波电流导致的。因此,一般在研究谐波导致的危害时,主要指谐波电流的危害。谐波电流的危害主要有7个方面: 第一:导致电缆过热 谐波电流流过电缆时,会导致电缆过热。造成这种现象的原因是交流电流的趋肤效应。 趋肤效应是交流电流流过导体时,向导体的表面集中的一种物理现象,电流的频率越高,电流越向导体表面集中。由于趋肤效应,当频率较高的谐波电流流过导体时,导体的有效截面积小于导体的实际截面积。截面积小,意味着有更大的电阻,也就意味着会产生更大的热量。当频率较高的谐波电流流过导体时,导体呈现的电阻比基波电流要大,因此同样幅度的谐波电流比基波电流产生更大的热量。 导体损耗与谐波畸变率的关系如图1所示。 图1 铜线损耗与谐波畸变率的关系

对于谐波电流产生更大热量的问题必须重视。因为我们在进行线路设计时,导体的截面积是按照基波频率设计的,而当这些导体中流过谐波电流时,呈现更大的电流密度,导致更大的电阻损耗(I2R),从而导致导体发热。导体过热会导致电缆早期老化、甚至诱发火灾。 第二:导致变压器过热 谐波电流流过变压器时,会导致变压器发出额外的热量,使变压器在没有达到额定功率时便出现温度过高的现象,导致变压器的实际容量降低。在工业上,一些变压器的负荷主要是变频器、中频炉等谐波源设备,这时,发现变压器仅仅达到50%负荷时,就温度过高。在商业上,随着一些建筑物中的节能灯、以PC机为代表的信息设备等非线性负荷增加,变压器过热的现象也十分常见。 过高的温度会缩短变压器的寿命。为了避免变压器过热,当负载是谐波源时,必须降额选用变压器(使变压器不工作在额定功率下)。一种专门用于谐波条件下的变压器称为k等级变压器,这种变压器的绕组和铁心都按照更大功率的情况进行设计,能够承受谐波电流产生的额外的热量。 谐波电流造成变压器过热的原因是谐波电流增加了线圈绕组的电阻损耗(称为铜损)和铁心的损耗(称为铁损)。谐波电流导致导线产生更大的损耗的原因是趋肤效应。 谐波电流导致铁心损耗增加的原因是铁心的涡流损耗和磁滞损耗。涡流损耗的含义是,线圈产生的交流磁场在铁心上感应出电流,电流在铁心的电阻上发热而产生的能量损耗。电磁炉就是利用这个原理。另一个是磁滞损耗,它是铁心内部的磁畴在磁场作用下不断翻转消耗的能量。 这两部分损耗都与频率有关,频率越高,损耗越大。 第三:导致变无功补偿装置损坏 谐波电流对无功补偿装置的影响也很常见,这实际已经成为企业进行节能技术改造中不可回避的问题。节能改造中大量使用变频器,而变频器产生严重的谐波电流。这些谐波电流对原来的无功补偿装置造成了不同程度的损坏,常见的现象包括: 无功补偿装置不能投切:这一般发生在无功补偿控制器中包含谐波保护装置的场合,当检测到谐波电流过大时,装置进入保护状态,同时会显示谐波过大的提示信息; 无功补偿装置中的保险丝烧断:这是流过补偿装置的电流过大导致的; 无功补偿装置中的电容炸裂:这是流过补偿电容的电流过大,导致电容过热引起的。

关于电流谐波的常识

关于电流谐波的常识 大家知道,接在电网上的负载可以分为线性负载和非线性负载,线性负载如图1所示。 虚线代表电压波形,正常时为电压220V、频率50Hz的正弦交流电,当负载电流的波形也是50Hz正弦波形时,称此类负载为线性负载。当负载电流波形相位与电压一致时,称为阻性负载,见图1中的1线,例如常见的白炽灯、电炉、电热水器。当负载电流相位超前于电压时,称此类负载为容性负载,见图1中的2线,纯容性负载比较少,如一般配电室常用的无功补偿柜就是纯容性负载。当负载电流相位滞后于电压波形时,此类负载称为感性负载,见图1中的3线,常见的感性负载如电动机、变压器、电感式镇流器等。 以上线性负载的特点是无论其电流相位超前或滞后于电压波形,其电流波形一直为正弦波,没有失真,电压与电流的关系符合欧姆定律,这是线性负载的关键。 非线性负载是指其电流波形呈现为非正弦波,或者理解为相对于正弦波有较大失真,比如目前常见的负载:电脑、彩电、电磁炉,工频UPS、变频器、电镀设备等,其负载电流波形都不是正弦波,如图2所示,这是最为常见的单相电源中的电脑、彩电等设备的电流波形。 可以看出其电流波形相对于电压的正弦波形相差很大。 图3是一般三相电源常见的变频器输入电流波形。从中可以看出,其电流波形相对电压波形失真很大。这种非正弦波形的负载,称之为非线性负载,其电流波形因为不是正弦波,其电压与电流的关系不符合欧姆定律。这种电流在电工学上可以分解为很多不同频率的正弦波,如3次谐波就是150Hz,5次谐波就是250Hz等,那么这些谐波有什么危害呢?

在日常生活中,有时在启动大功率电磁炉时,彩电屏幕上就会出现很多干扰条纹,这就是谐波所致,因为电磁炉是非线性负载。电网上的设备都是按照50Hz来设计的,例如电动机、变压器等,若谐波过大,其线圈中要流过150Hz、250Hz等频率高出50Hz很多的电流,必然导致电动机、变压器异电网上的其他设备按照50Hz供电设计,一旦同一电网中存在谐波电流很大的负载,就会对其他的用电设备造成干扰,因为它们的滤波器一般都是按照50Hz来设计的,谐波中的高频成分往往使得其他设备不能正常工作。 谐波电流较大时,必然造成功率因数不高,电网在传输一般有功功率时也要额外传输无功功率,造成传输线路容量浪费,变压设备容量下降等。 谐波电流的存在会造成很多危害,目前各国都很重视这一问题,陆续出台相关法规,对进入电网的设备严格规定其输入功率因数和电流谐波分量。 在UPS行业,称高输入功率因数和低输入电流谐波的机型为绿色电源,如科华公司的KR系列,输入功率因数可以达到0.99,输入电流谐波可以达到5%以下,是真正的绿色电源,对于大功率的工频UPS,通过采用非常成熟的12脉波整流技术后,也可以将输入电流谐波降低到10%以下,所以一般也称其为绿色电源。 最后总结:产生“无功功率”主要的因素可以理解为负载电流波形与电压波形的相位差,相位差越大,说明无功功率越大。“谐波”可以理解为负载电流波形与50Hz电压波形的失真度,失真度越大,说明谐波越大。 常发热。

谐波知识

谐波知识 一、谐波的定义 谐波是指电压中所含有的频率为50HZ正弦基波的整数倍的电量,50HZ称为基波频率,大于基波频率3倍=150HZ的波称之为三次谐波,基波频率5倍250HZ 的波称之为五次谐波,以此类推。不管几次谐波,他们都是正弦波。 一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。 二、谐波的产生 产生的原因:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。主要非线性负载有UPS、开关电源、整流器、变频器、逆变器、中频炉、电焊机等。 用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。 在电力系统中,谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器比较大的背离正弦曲线波形。 谐波电流的产生是与功率转换器的脉冲数相关的。6脉冲设备仅有5、7、11、13、17、19 ….n倍于电网频率。功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。 其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。 在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲 线的电压降。在供电网络阻抗下产生谐波电压的振幅等于相应谐波电流和对应于该电流频率的供电网络阻抗Z的乘积。次数越高,谐波分量的振幅越低。 只要哪里有谐波源那里就有谐波产生。也有可能,谐波分量通过供电网络到达用户网络。

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识谐波谐波的种类及谐波频率计 算 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz,所以 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为谐波。 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。 25 5)晶闸管调压装置或调速电路。 26 6)电镀设备。 27 7)电弧炉、矿热炉、锰矿炉、磷矿炉、电石炉、硅铁炉。 28 8)电解槽。 29 9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。 30 10)电池充电机。 31 11)变频器(低压或高压变频器)。 32 12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。 33 13)谐波的次数与整流电路的相数有关,例三相、六相、十二相、十八相、二十四相,当相数越多并通过移相方式就可

基波和谐波

"谐波"一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40 一、1. 何为谐波? 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。 “谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析 方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 谐波研究的意义,道德是因为谐波的危害十分严重。谐波使电能的生产、传输和利用的效率降

相关文档
相关文档 最新文档