文档视界 最新最全的文档下载
当前位置:文档视界 › 谐波分析方法对比

谐波分析方法对比

谐波分析方法对比
谐波分析方法对比

谐波分析方法对比

随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。

在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。

谐波测量基本原理

目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。

在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。

同步采样法

顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。

频率重心法

使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。

简单对比

基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL 中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL就无法同步基波采样,谐波分析结果也就完全错误。

频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进行傅里叶变换。所以频率重心法引入了数倍于同步采样法的计算量。另外,重心法需要使用至少两根谱线,而且受窗函数主瓣宽度限制,频率重心法所能支持的频率下限只能达到频率分辨率的三倍以上。由于频率重心法没有反馈过程,不依赖于信号,模拟电路实现简单,理论上只要采样率和使用的数据点足够,就能得到正确的结果。

特别地,因为同步采样需要硬件电路,受限与成本与体积,大部分测量仪器只支持一到两个PLL源,而频率重心法无此限制,甚至可任意定义基波源(对应于PLL源,用于确定基波)。

应用实例

PA功率分析仪提供了三种谐波模式:常规谐波、谐波和IEC谐波。其中常规谐波对应频率重心法、谐波和IEC谐波对应同步采样法。谐波和IEC谐波区别在于IEC谐波完全按照IEC 61000-4-7标准规定的倍频数FFT点数进行计算,并增加了标准规定的处理流程和计算参数。下面使用实例信号对比两种方法的区别:

信号一:基波频率50Hz,含2~15次谐波,各次含量均为10%

图 1 50Hz基波2~15次含量10% 谐波波形

图 2 50Hz基波2~15次含量10% 谐波常规谐波分析结果

图 3 50Hz基波2~15次含量10% 谐波的谐波模式分析结果

如图 1所示包含谐波的50Hz信号波形,常规谐波和谐波模式谐波均能得到正确的谐波含量,并且精度很高。

信号二:基波频率50Hz,含2~15的奇次谐波,各次含量同样均为10%

图 4 50Hz基波2~15奇次含量10% 谐波波形

图 5 50Hz基波2~15奇次含量10% 常规谐波分析结果

图 6 50Hz基波2~15奇次含量10% 谐波模式分析结果

如图 4所示只包含2~15次的奇次谐波的波形,常规谐波和谐波模式结果同样精确。信号三:基波频率50,含2~15偶次谐波,各次含量均为10%

图 7 50Hz基波2~15偶次含量10% 谐波波形

图 8 50Hz基波2~15偶次含量10% 常规谐波分析结果

图 9 50Hz基波2~15偶次含量10% 谐波模式分析结果

如图 7所示只包含50Hz基波的2~15次的偶次谐波的波形,受偶次谐波的影响,每个基波周期多了两次过零,而且频率与基波相近,PLL的滤波器亦无法滤除该谐波,因此PLL 结果错误,导致谐波分析结果也完全错误,此时的常规谐波分析结果仍然正确,而且保持了很高的精度。说明常规谐波可以不受偶次谐波影响,在采样率和FFT点数足够时,具有受被测信号影响低的优势。

信号四:基波频率6kHz,含2~15次谐波,各次含量均为10%

图 10 6kHz基波2~15次含量10% 谐波波形

图 11 6kHz基波2~15次含量10% 常规谐波分析结果

图 12 6kHz基波2~15次含量10% 谐波模式分析结果

如图 10图 7所示包含6kHz基波的2~15次谐波的波形,由于已经超出谐波模式支持的频率范围,谐波模式无法测量,而常规谐波分析时使用了200kHz的采样率,6kHz的15次谐波频率为90kHz,小于采样频率的一半,因此仍然可以精确测量。

总结

由上实例看出,非同步采样拓宽了谐波的分析范围,在许多同步采样受到约束的场合可以实现互补,是一种强有力的谐波分析方法。

需要指出的是,虽然以上用例中常规谐波分析结果都正确且精度很高,但在谐波模式PLL正确时,谐波模式在高次谐波的稳定性和精度会比常规谐波高,因为常规谐波在高次谐波的频率上有累积误差,且频谱两端会受负频率的影响。特别需要注意常规谐波一个致命缺点是频率下限较高(PA5000功率分析仪的常规谐波支持基波的频率下限是15Hz),而且需要保证更新周期内有足够的采用点。

方案对比分析方法

三种方案可行性分析 正如上所述,短短十几年,顺丰速运从一个名不经转的小企业,发展到现在拥有年业务量3.1亿票的强大快递公司,成为民营速运行业的领头羊,不能不说是个奇迹。 但随着顺丰速运的迅速壮大,如何提高分拣效率以应退业务量的快速增长;如何进一步降低成本来应对国内外先进快递企业的挑战,成为当前顺丰亟待解决的问题。 下面,我们就从顺丰深圳中转场改造的角度,探索适合顺丰发展的改进方案。 根据中转场现今情况及未来业务增长的需要,我们提出了三种发展方案,即:一,维持现有工作模式不变,扩大中转场的规模;二,保持现有规模不变,进行半自动化改进;三,加大设施设备投入,进行全自动化改造。 但究竟哪一种模式是适应顺丰现在及未来一段时间内发展需要的,哪一种模式是顺风可操作性的性价比投入?接下来,我们就从三种模式的业务量可应对性、工作效率可提高性、投入产出比可接受性三个角度对此进行剖析。 首先,业务量可应对性。 顺丰速运从成立之初发展到现在覆盖全国 个省的巨大网络,每年业务增长量,无不体现着市场对顺丰的巨大需求,以下是顺丰速运近年的业务增长图表。 面对如此迅猛的发展势头,选择哪种方案,将直接关系着中转场应对业务量剧增的水平。 但随着市场竞争加剧,发展高峰渐降,业务量增长率势必有所减少,快递业务进入平稳增长阶段,顺丰将在一定时期内保持25%—30%的业务增长量。我们以09年业务量为基数,按前4年30%,后5年25%的增长速度预计深圳中转场未来十年的业务量。 表 深圳中转场未来十年业务量增长预测表(日处理量) 方案一应对业务量预测 表 方案一应对业务量预测表(日处理量) 表 应对业务量预测表备注 方案二应对业务量预测 表 方案二应对业务量预测表(日处理量) 方案三应对业务量预测 表 方案三应对业务量预测表(日处理量) 三种方案优缺点比较 方案一,维持现有工作模式不变,以扩大中转场规模的方式来应对

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

整流器件的谐波抑制仿真

整流器件的谐波抑制仿真 :The use of nonlinear loads in power system make harmonic pollution ,in order to solve the harmonic pollution ,active power filter is used. This paper introduces the basic principles of active filter ,and establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter has good compensation characteristic. 0 引言随着电力电子技术的迅速发展和电力电子装置的应用越来越广泛,电磁环境受到严重的污染,电网谐波污染问题成为一个非常严峻问题。此外电网中使用的异步电动机、变压器和电弧炉等负荷消耗大量的无功功率,若得不到及时补偿将致使电网电压波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。无源滤波器是由电容器和电抗器串联而组成的,并且调谐在某种特定的谐波频率,对它所调谐的谐波具有一个低阻抗作用;有源滤波器是产生与其所测得的畸变的谐波电流的相位相反的一组谐波电流,谐波电流因此被抵消并且最终变成一个没有畸变的正弦波。本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE仿真和分析。

1并联有源滤波器的工作原理 系统的主要组成包括:指令电流运算电路、电流跟踪控制电路、驱动电路和主电路。Is 为电网提供的电流,il 为负载电流,ic 为有源滤波器的输出电流。基本原理为当需要对非线性负载所产生谐波电流进行补偿时,由检测电路测量出补偿对象负载电流il 中的谐波电流成分iLh ,将它相位相反后当作要补偿电流的指令信号,因此由补偿电流发生电路产生的补偿电流ic 和负载电流中的谐波信号iLh 等大、反相,补偿电流与电网中的谐波和无功电流相消,因此电网的电流和负载的基波电流相等,使的电源电流变为正弦波。 2有源滤波器的Matlab 仿真研究 2.1谐波检测谐波电流检测法有很多,包含用模拟带通滤波器,傅立叶变换谐波检测分析,瞬时无功功率谐波检测等等。本文采用的办法是基于瞬时无功功率的谐波检测法,其基本原理如图2 所示。 图2 中: C=sin s t -cos s tcos s t sin 3 t , =■ 1 -1/2 -1/20 ■ 12 -■/2 其中 ia 、ib 、ic 分别为谐波补偿之前 a、b、c 的三相电流,输入电流ia、ib、ic通过C32坐标变换后使其再经过滤波器(LPF),然后再经过一次C32反变换后就可以得到基波电流分量

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

比较分析的方法要点

比较分析的方法要点 比较分析方法是自然科学、社会以及日常生活中常用的分析方法之一。比较分析试图通过事物异同点的比较,区别事物,达到对各个事物深入的了解认识,从而把握各个事物。在调查资料的理论分析中,当需要通过比较两个或者两个以上事物或者对象的异同来达到某个事物的认识时,一般采用比较分析方法。 进行比较分析,应把握如下几点: 1.横向比较与纵向比较相结合 横向比较是将同一时期的相关的事物进行比较。这种比较既可在同类事物内部的不同部分之间进行。通过横向比较可以发现两类事物或同类事物不同部分之间在某一方面的差异,进而分析出造成这种差异的原因。 纵向比较是对同一对象在不同时期的具体特点进行比较。纵向比较可以揭示认识对象在不同时期不同阶段上的特点及其变化发展的趋势。 横向比较和纵向比较各有其长短。横向比较的优点是现实性强,容易理解,便于掌握,它侧重从质与量上对认识对象加以区分;缺点是一种静态比较法,难以揭示事物的本质规律及发展趋势。纵向比较的长处在于能够揭示事物之间的有机联系,认识事物之间的发展趋势;但它往往对事物之间横向联系注意不够。因此,需要将横向比较与纵向比较相结合,以达到对事物的深入了解和认识。 2.比较事物的相同点与相异点 比较可以在异类对象之间进行,也可以在同类对象之间进行,还可以在同一对象的不同部分之间进行。分析社会调查资料,重视同类对象和同一对象的不同方面、不同部分之间的比较。 比较事物或对象的同和异是比较分析的两项内容。首先是共同点的比较。确定事物或对象的共同点包括两个方面:一是找出共同性质,即同类事物的“同类”性,如男女职工的比较分析,“职工”就是共同性质,表明具有共同的劳动性质,这就是比较分析的前提条件。二是找出调查对象表现出来的共同特点。 其次是差异点的比较。这是比较分析主要的和重要的工作。确定差异点,就是找出调查对象表现出来的不同特点。 3.要对可比的事物作比较,不要在不可比的事物之间作比较。 例如,社会指标和经济指标的比较常常应当弄清指标的可比口径问题,弄清指标概念的含义和指标数值的计算方法。具有相同含义和相同计算口径的统计指标,都是可比,反之是不可比的,对于调查对象的比较来说,要选择可比的方面开展比较分析。 4.选择和制定精确的、稳定的比较标准 定量比较的计量单位应选择精确统一的标准,如长度基本单位使用米,重量基本单位使用公斤,容积基本单位使用升,等等。再比如家庭生活水平,主要看人均收入水平,用人民币为基本单位等。定性比较的标准应具有相对稳定性,比如全面普遍开展“五好家庭”的活动,其择定标准也应具有相对稳定性。只有选择和制定精确的稳定的比较标准,比较分析才有章可循,得以坚持。 比较分析示例一:传统社会的家庭和现代社会的家庭基本特征比较。

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

三次谐波与失真度

[编辑本段] 谐波失真简介 谐波失真(THD)指原有频率的各种倍频的有害干扰。放大1kHZ的频率信号时会产生2kHZ的2次谐波和3kHZ及许多更高次的谐波,理论上此数值越小,失真度越低。 由于放大器不够理想,输出的信号除了包含放大了的输入成分之外,还新添了一些原信号的2倍、3倍、4倍……甚至更高倍的频率成分(谐波),致使输出波形走样。这种因谐波引起的失真叫做谐波失真。 [编辑本段] 谐波失真解析 总谐波失真指音频信号源通过功率放大器时,由于非线性元件所引起的输出信号比输入信号多出的额外谐波成分。谐波失真是由于系统不是完全线性造成的,我们用新增加总谐波成份的均方根与原来信号有效值的百分比来表示。例如,一个放大器在输出10V的1000Hz时又加上Lv的2000Hz,这时就有1 0%的二次谐波失真。所有附加谐波电平之和称为总谐波失真。一般说来,10 00Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。但总谐波失真与频率有关,因此美国联邦贸易委员会于1974年规定,总谐波失真必须在20~20000Hz的全音频范围内测出,而且放大器的最大功率必须在负载为8欧扬声器、总谐波失真小于1%条件下测定。国际电工委员会规定的总谐波失真的最低要求为:前级放大器为0.5%,合并放大器小于等于0.7%,但实际上都可做到0.1%以下:FM立体声调谐器小于等于1.5%,实际上可做到0.5%以下;激光唱机更可做到0.01%以下。 由于测量失真度的现行方法是单一的正弦波,不能反映出放大器的全貌。实际的音乐信号是各种速率不同的复合波,其中包括速率转换、瞬态响应等动态指标。故高质量的放大器有时还注明互调失真、瞬态失真、瞬态互调失真等参数。 (l)互调失真(IMD):将互调失真仪输出的125Hz与lkHz的简谐信号合成波,按4:1的幅值输入到被测量的放大器中,从额定负载上测出互调失真系数。 (2)瞬态失真(TIM):将方波信号输入到放大器后,其输出波形包络的保持能力来表达。如放大器的转换速率不够,则方波信号即会产生变形,而产生瞬态失真。主要反映在快速的音乐突变信号中,如打击乐器、钢琴、木琴等,如瞬态失真大,则清脆的乐音将变得含混不清。

Duncan法进行多组样本间差异显著性分析

在SPSS里用Duncan's multiple range test进行多组样本间差异显著性分析 1. 软件SPSS v17.0 2. 方法Duncan's multiple range test 3. 适用范围 比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a>0.05)。故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。方差分析可调用此过程可完成。本过程只能进行单因素方差分析,即完全随机设计资料的方差分析。 4. 数据格式 X是每组实验每次重复的数值,factor是实验分组

5. 实现方法 Analyze->Compare Means->One-Way ANOVA

点击PostHoc...选择方法,设置显著水平

6. 查看结果 看Post Hoc Tests部分的表格 按照显著性水平P<0.05分成3列,三者之间有着显著性差异(factor1,factor2,factor3和factor4),factor3和factor4之间差异不显著。

7.在表格中标明差异显著性 根据这一结果即可做表格,四组分别以a,b,c,c标明其显著性差异。 小写字母代表是在0.05水平下比较,差异显著;大写字母代表在0.01水平下比较,差异极显著。 26.24±3.07a 表示:26.24代表这一组数据的平均值,3.07代表这一组数据的方差(excel中用STDEV公式得出) 先做0.05水平下的显著性分析,用小写字母,如果都不显著,可以不用标示,在文字里面有说明即可;在做0.01水平下的显著性分析,如果不显著,可以不用标示,在文字里面有说明即可。 上图标注有误,abcd的标注由值的大小决定,a表示最大,因此从上到下应为:cbaa 参考资料 SPSS FOR WINDOWS简明教程

高次谐波-百度百科

高次谐波(high order harmonic component) 对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波。 危害 与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰,感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰,电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。 高次谐波的危害具体表现在以下几个方面: ①变压器 电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 ②感应电动机 电流和电压谐波同样使电动机铜损和铁损增加,温度升。同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。 ③电力电容器 当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。 ④开关设备 由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。 ⑤保护电器 电流中含有的谐波会产生额外转距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。 ⑥计量仪表 计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。 ⑦电力电子设备

比较研究方法

谈谈我对比较研究方法的认识 摘要:所谓比较研究方法,是根据一定的标准,对某类现象在不同情况下的不同表现,进行比较研究,找出所存在的普遍规律及其特殊本质,力求得出符合客观实际结论的方法。比较是认识事物的基础,是人类认识、区别和确定事物异同关系的最常用的思维方法。比较研究法现已被广泛运用于科学研究的各个领域。本文根据课程所学的内容,结合自身学习的实践,分析了本人对比较研究方法的认识。主要通过比较研究方法的概念、种类、作用、运用条件和一般工作步骤等几个方面出发阐述对社会主体研究方法的认识。 关键词:比较研究方法认识事物 一、比较研究方法的概念 比较研究法是对事物同异关系进行对照、比较,从而揭示事物本质的思维过程和方法。它是人们根据一定的标准或以往的经验、教训把彼此有某种联系的事物加以对照,从而确定其相同与相异之点,对事物进行分类,并对各个事物的内部矛盾的各个方面进行比较后,得出事物的内在联系,从而认清事物的本质。 比较是和观察、分析、综合等活动交织在一起的,是一种复杂的智力劳动。比较研究法是一种思维方法,也是一种具体的研究方法。它与其它研究方法不同之处在于: (一)从比较的角度把握对象特有的规定性; (二)研究对象必须具有可比较性,从而限定了研究的内容和范围; (三)研究方法上以比较分析方法为主。比较研究,方法简单、生动、鲜明。由于研究结论是从比较分析的推论中得出,其客观性程度还有待实践证明并加以检验修正。

二、比较研究法的种类 根据不同的标准,我们可以把比较研究法分成如下几类。 (一)按属性,可分为单项比较和综合比较。 单项比较是按事物的一种属性所作的比较。综合比较是按事物的所有(或多种)属性进行的比较,单项比较是综合比较的基础。但只有综合比较才能达到真正把握事物本质的目的。因为在科学研究中,需要对事物的多种属性加以考察,只有通过这样的比较,尤其是将外部属性与内部属性一起比较才能把握事物的本质和规律。 (二)按时空,可分为横向比较(类型比较法),与纵向比较(历史比较法)横向比较就是对空间上同时并存的事物的既定形态进行比较。纵向比较即时间上的比较,就是比较同一事物在不同时期的形态,从而认识事物的发展变化过程,揭示事物的发展规律。 (三)按目的,可分为求同比较和求异比较。 求同比较是寻求不同事物的共同点以寻求事物发展的共同规律。求异比较是比较两个事物的不同属性,从而说明两个事物的不同,以发现事物发生发展的特殊性。通过对事物的“求同”、“求异”分析比较,可以使我们更好地认识事物发展的多样性与统一性。 (四)按比较方法,可分成定性比较与定量比较。 任何事物都是质与量的统一,所以在科学研究过程中既要把握事物的质,也要把握事物的量。定性比较就是通过事物间的本质属性比较来确定事物的性质。定量比较是对事物属性进行量的分析以准确地制定事物的变化。定性分析与定量分析各有长处,应追求两者的统一,而不能盲目追求量化;但也不能一点数量观念都没有,而应做到心中有“数”,并让数字来讲话。 三、比较研究法的作用 比较研究作为一种思维方法,贯穿在教育研究的全过程。通过比较研究,选定有重要价值的研究课题;通过比较分析,在搜集文献情报与资料过程中,不仅对所需要的材料进行定性鉴别,而且有助于揭示一些较专深的不易明察的资料信息,在进行教育调查和教育实验时,也需要运用比较方法对实验结果进行定性与

产品变动成本差异分析的新方法.docx

产品变动成本差异分析的新方法 产品变动成本差异包括直接材料差异、直接人工差异和变动制造费用差异。对于产品变动 成本差异的分析,目前使用的是标准成本分析法,然而,标准成本分析法只能计算出产品 变动成本差异的绝对数,因此它为企业产品成本计划和成本控制提供的信息是不全面、不 完整的。本文采用的指数双因素分析法,一方面,可以分析产品变动成本的总差异,不仅 能够计算出产品变动成本差异的绝对数,而且能够计算出产品变动成本差异的相对数;另 一方面,还可以分析产品变动成本的平均差异。因此,它可以为企业产品成本计划和成本 控制提供更加全面、更加完整的信息。一、产品变动成本差异的标准成本分析法根据标准 成本分析法,产品变动成本差异的计算公式为:变动成本差异=数量差异+价格差异=(实 际数量-标准数量)×标准价格+(实际价格-标准价格)×实际数量二、产品变动成本差 异的指数双因素分析法1、产品变动成本差异的指数双因素分析法的基本原理和模型指数 因素分析法的基本原理是将总指数分解成各构成因素连乘积的指数体系,它假定其它因素 不变,测定某一因素变动对总指数或总指标的影响程度和影响方向,若干因素指数乘积等 于总量指标变动的总指数,若干因素影响值之和等于总量指标之差。从实质上看,标准成 本分析法把产品变动成本总差异分为数量差异与价格差异这两种类型,其理论根据是数量 和价格这两个因素的共同变动导致变动成本偏离标准而产生产品变动成本差异,这说明标 准成本分析法的理论基础是指数双因素分析法。事实上,指数双因素分析法比标准成本分 析法更加全面、更加完善,这主要表现在以下四个方面:其一,分析产品变动成本的总差异,不仅能够计算出产品变动成本数量差异与价格差异的绝对数,而且能计算出产品变动 成本数量差异与价格差异的相对数,而标准成本分析法只能计算出产品变动成本数量差异 与价格差异的绝对数;其二,企业可以利用指数双因素分析法,通过调整价格指标和数量 指标来调整成本差异指标,制定出适合企业实际的目标成本控制计划,使产品成本有利差 异尽量增加,不利差异尽量减少。而标准成本分析法对企业目标成本控制计划的制定没有 多大帮助,它容易使企业仅以标准成本为目标,缺乏超越标准,增加有利差异的动力;其三,分析产品变动成本的平均差异,并可以计算出由于成本结构变化而产生的结构性差异 与由于成本水平变化而产生的水平性差异的相对数与绝对数,而标准成本分析法无此功能;其四,指数双因素分析法的计算过程比标准成本分析法方便、易懂。限于篇幅,本文仅通 过分析产品变动成本总差异来对产品变动成本差异的指数双因素分析法和标准成本分析法 进行比较。在指数双因素分析法中,产品总变动成本差异分析模型有个体现象成本差异分 析模型与总体现象成本差异分析模型两种类型,为了不失一般性,这里建立总体现象成本 差异分析模型。为了建立总体现象成本差异分析模型,我们把产品变动成本的实际成本与 标准成本之比作为成本差异总指数,并用q1来统一表示本期材料实际用量、人工实际工 时和变动制造费用实际产量所耗实际工时,p1来统一表示本期材料实际价格、人工实际工资率和变动制造费用实际分配率,q0来统一表示材料标准用量、人工标准工时和变动制造费用实际产量应耗标准工时,p0来统一表示材料标准价格、人工标准工资率和变动制造费用标准分配率。这样,总体现象成本差异分析模型为:相对数:成本差异总指数=数量差

三相整流电路网侧谐波分析

LC滤波的三相桥式整流电路网侧谐波分析 裴云庆姜桂宾王兆安 2006-02-20 17:06:19 西安交通大学(西安 710049) Analyze of line harmonic current of three phase rectifier with LC filter Abstract: For the 3 phase capacitive rectifier, which was widely used in the power electronics equipment, LC filter in DC is an effective structure to improve the power factor and reduce the input harmonic current. A theory equation was derived in this paper, which show the relationship between the input characteristics and the circuit parameter. It was proved by the simulation and the experiment. Key words: 3 phase rectifier harmonic power factor 1 概述 随着电力电子技术的飞速发展,其应用已经深入到电力、冶金、化工、通讯、铁路电气以及家电等各个领域,在电力电子装置中,整流器作为装置与电网的接口占有相当大的比重,采用电容滤波、二极管构成的三相不可控整流电路随着变频器、开关电源及UPS等装置的广泛应用,其所占比例越来越高。同时这种整流电路对电网的不利影响,如输入电流谐波等,也受到了广泛的重视。虽然目前可以采用PFC装置、有源滤波器等方案解决其带来的各种不利影响,但采用接入电抗器仍为最为简单和常用的一种提高功率因数、抑制谐波的方法。目前对采用电抗器改善整流器输入谐波及功率因数的分析主要采用计算机仿真,文献[1]~[3]对不同结构的整流器进行了分析,得出了一些有价值的数据及图表,但采用仿真的方法难以建立各项指标与电路参数间的理论公式。文献[4]提出了采用整流器开关函数、基于频域的分析方法,对同时含有直流侧及交流侧滤波元件的情况得到了很好求解公式,但公式形式十分

关于三次谐波

三次谐波电流主要来自于单相整流电路。 图示的是一个典型的单相整流电路,电路中的电容是平滑电容,大部分整流电路中都包含这个电容,否则直流电压的纹波很大。这个电容是导致三次谐波电流的主要原因。 熟悉电路的人都知道,平滑电容的电压被充电到交流电的峰值后,就维持在交流电峰值附近。当交流电的电压低于电容上的电压时,电网上没有电流流入负载。这时,负载的电流由电容供给,随着输出电流,电容的电压开始降低,在某个时刻,交流电的电压会高于电容上的电压,这时,电网上才会有电流流入电容(给电容充电,使电容上的电压升高)和负载中。因此,电网仅在接近电压峰值的时刻向负载输入电流,电流的形状为脉冲状。 通过付立叶分析可知,这种脉冲状的波形包含丰富的三次谐波成分。 脉冲状的电流中包含了高次谐波成分,3次谐波电流最大。传统负荷与现代符合的重要区别是,传统负荷大部分是线性负荷,现代负荷大部分是非线性负荷:

1.通信设备、UPS电源 2.电脑为代表的信息设备、办公自动化设备 3.大型医疗设备 4.电视机为代表的家用电器,特别是变频空调、电磁炉等 5.节能灯、调光灯等照明设备 6.大尺寸的LED屏幕 电视机和计算机电流波形 调光灯和节能灯电流波形

电视机和计算机的电流为很窄的脉冲波,这是很典型的单相整流电路的电流波形,实际上,任何使用开关电源作为直流电源的设备都。会产生这种电流的波形。这是三次谐波电流的主要来源。 目前大量使用的大尺寸LED屏幕,采用很多开关电源并联供电,因此LED 屏幕产生的3次谐波电流很大。 节能灯也是目前常见的负载,他的电流也是脉冲状的。实际上,现代建筑物中,节能灯导致的三次谐波电流已经成为主要的危害。 三次谐波引起跳闸 常识告诉我们,电流的持续时间短了,要保持一定的有效值,就必须具有更高的峰值。

区域差异分析方法

专题复习《区域差异分析》 作者:杨村一中金玉玲 指导教师:宋印海顾启凤一、教学目标 (一)知识与技能 了解区域,比较区域的不同点,掌握区域差异分析的方法。解决区域发展方面的问题。(二)过程与方法 1、通过对材料、图片的分析,进一步培养学生从材料、图片中提取、认定、加工处理各种信息的能力,最终进行讨论分析,得出结论。 2、通过对习题总结和分析,培养学生举一反三的能力,学会解决不同区域可持续发展的问题。 (三)情感态度与价值观 通过不同区域差异的分析,培养学生的辩证唯物观,充分认识到人类对区域可持续发展方面做出贡献。 二、课程标准要求 1、了解区域的含义 2、以两个不同区域为例,比较自然环境、人类活动的区域差异 3、以某区域为例,比较不同发展阶段地理环境对人类生产和生活方式的影响 三、重点难点 运用区域差异分析的方法解决不同区域异同及其区域发展问题。 四、教学方法 对比分析法、综合程序法、讨论探究法相结合,充分发挥学生的主体作用,加强教学过程中师生互动,重视学生的探究活动。 五、教学用具 自制幻灯片、相关材料和图片 六、课时安排 1课时

七、教学过程: 【导入】最近我收到了两位好朋友的来信,信上的邮票吸引了我。(呈现出两幅邮票的画面)同学们能判断出我的朋友是来自哪里的吗?你是判断的依据是什么? 【学生回答】一个朋友是来自江南地区,另一位来自内蒙古。我们可以通过不同地区的民居判断出来。 【承接】建筑是不同地区区域特征的缩影,而建筑形式、风格都充分反映了当地地理环境的特点。 【提问】请同学们试着分别说明,两处的建筑怎样反映当地地理环境的特点?当地地理环境的特征究竟是什么那? 【学生讨论并回答,老师提问并总结】 1、江南水乡属于亚热带季风气候,夏季高温多雨,湿度大,通风散热是建筑房屋首先要考虑的问题,屋脊高,房间空间大,利于通风;屋檐宽,利于遮挡阳光,降低室内的温度。南方房屋顶坡度陡是为了容易排水,屋檐宽也是为了雨水排得更远。 2、温带大陆性气候,日夜温差大,风也很大,这里的居民以游牧为主要生产方式,所以便于移动又可以御风保温——蒙古包。 【小结】 民居只是反映不同地区区域特征的一部分,而一个区域的主要差别体现在自然地理环境和人文地理环境方面。我们具体来讨论一下区域特征与区域差异。 【教师承接提问】 区域是人为按一定的指标和方法划分的,我们怎么分析一个区域的特征,应该从哪些方面入手? 【板书】一、描述区域特征。 (请同学们讨论一下,时间为两分钟)

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

整流器件的谐波抑制仿真-精选资料

整流器件的谐波抑制仿真 : The use of nonlinear loads in power system make harmonic pollution , in order to solve the harmonic pollution , active power filter is used. This paper introduces the basic principles of active filter establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter compensation characteristic. 0 引言 随着电力电子技术的迅速发展和电力电子装置的应用越来 越广泛, 电磁环境受到严重的污染, 电网谐波污染问题成为一个 非常严峻问题。 此外电网中使用的异步电动机、 变压器和电弧炉 等负荷消耗大量的无功功率, 若得不到及时补偿将致使电网电压 波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前 的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。 无源滤波器 是由电容器和电抗器串联而组成的, 并且调谐在某种特定的谐波 频率,对它所调谐的谐波具有一个低阻抗作用; 有源滤波器是产 生与其所测得的畸变的谐波电流的相位相反的一组谐波电流, 波电流因此被抵消并且最终变成一个没有畸变的正弦波。 本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE 仿真和分析。 , and has good

HANS时间序列谐波分析法

HANTS(the Harmonic analysis of time series)——时间序列谐波 分析法 时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS)是平滑和滤波两种方法的综合,它能够充分利用遥感图像存在时间性和空间性的特点,将其空间上的分布规律和时间上的变化规律联系起来。时间序列谐波分解法进行影像重构时充分考虑了植被生长周期性和数据本身的双重特点,能够用代表不同生长周期的植被频率曲线重新构建时序NDVI影像,真实反映植被的周期性变化规律。时间序列谐波分析法是对快速傅立叶变换的改进,它不仅可以去除云污染点,而且对时序图像的要求不象快速傅立叶变换(FFT)那么严格,它可以是不等时间间隔的影像。因此同快速傅立叶变换相比,HANTS在频率和时间系列长度的选择上具有更大的灵活性。时间序列谐波分析法进行时序影像的重构也是基于云对NDVI的负值影响,但是它与最大值去除云污染的影响是两个完全不同的方法。它是首先通过傅立叶变换得到非零频率的振幅和相位,然后将所有的点进行最小二次方拟合。通过观测资料与拟合曲线的比较,对于那些明显低于拟合曲线的点被作为云污染点通过把它们的权重赋为零而拒绝参与曲线的拟合。建立在剩余点上进行新的曲线拟合,通过这种反复进行的迭代过程实现图像的重构。 HANTS的核心算法是最小二乘法和傅立叶变换,通过最小二乘法的迭代拟合去除时序NDVI值中受云污染影响较大的点,借助于傅立叶在时间域和频率域的正反变换实现曲线的分解和重构,从而达到时序遥感影像去云重构的目的。 采用时间序列谐波分析法(HANTS)可以对时间谱数据进行平滑。其核心算法是傅立

谐波标准评述

谐波标准评述 解绍锋1,2,李群湛1 (1.西南交通大学电气工程学院,四川成都610031;2.铁道第一勘察设计院电化处,陕西西安710043) 摘要:通过对关于谐波的三个国际标准和技术文件——IEC61000-3-6、G5/4和IEEE Std519-1992从几个方面进行了对比分析,包括系统规划水平、用户谐波发射限值的分配方法、评估方法和电力系统谐波阻抗,为掌握目前国际上谐波标准的发展动向提供帮助,为提高我国谐波标准的科学性提供参考。 关键词:谐波;IEC61000-3-6;G5/4;IEEE Std519-1992 0引言 随着电力电子技术的迅速发展,特别是冶金、电力牵引和高压直流输电等领域采用大功率电力电子器件,产生了大量谐波注入电力系统,使电网中的谐波电压水平逐年增高,并引起了一系列问题,如局部谐波共振、有功损耗加大、并联电容器过热和损坏、计量误差、继电保护装置误动等。为了保证系统设备的安全和电网的安全运行,必须对注入电力系统的谐波加以限制,主要手段之一即制定相应谐波标准。 限制电力系统谐波水平主要通过限制用户的谐波发射水平来实现,而限制用户谐波发射水平的依据是相关谐波标准。制定谐波标准时应根据电网的实际情况,并遵循对电网和用户公平的原则。合理的谐波标准能使用户谐波发射水平受到限制,减少谐波的不良影响,保证电网的安全运行,提高供电质量。若制定的标准过于宽松,就可能造成谐波水平严重超过电力系统的承受能力,引起供电质量下降;反之,则可能使非线性用户即使采取技术措施也难以达到制定的标准,造成不必要的浪费。由于目前各国对高压电力系统认识的一致性远低于低压电力系统,因此本文主要针对高压电力系统进行讨论。 目前很多电力电子和电力工程领域的国际组织均成立了专门的机构对谐波进行广泛深入的研究,如国际电工委员会(IEC)、英国电力协会(EA)和美国电气与电子工程师学会(IEEE)。 作为管理谐波国际技术标准的机构,IEC陆续出版了IEC61000电磁兼容系列标准和技术报告,其中涉及中高压电网谐波及其限值的是IEC61000-3-6[1],其性质为第3类技术报告。IEC61000-3-6主要以CIGRE的2个文件[2-4]为基础制定而成,其最主要的特点在于设置了电力系统任意一点兼容水平,并指出规划水平要低于兼容水平。我国已经将IEC61000-3-6等同采用为GB/Z17625.4-2000[5]。 英国是对电力系统谐波问题认识比较早的国家之一。英国早在1976年就颁布了Engineering Recommendation G5/3作为对电力系统谐波限制标准之一[6],为我国和其它国家的谐波标准制定提供了实际经验,具有很大参考价值。我国的GB/T14549-93就是在参考英国的G5/3基础上制定的[7]。另外,英国基于G5/3于2001年正式颁布了Engineering Recommendation G5/4[8]。与G5/3相比,G5/4在高压电力系统谐波规划值和新用户接入电网的评估方法方面均有所变化。 美国IEEE工业应用协会自1973年起开始制定谐波标准,并于1981年发布了第一版IEEE Std519-1981“IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters”[9]。1986年电力工程师协会加入到工业应用协会,并将IEEE Std519-1981由“导则”更新为“推荐惯例”。这就是目前国际上广泛使用的IEEE Std519-1992“IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems”[10]。 鉴于上述三个有关谐波的技术文件均有比较广泛的应用,具有一定的代表性,因此将这三个谐波技术文件做一比较分析将有利于掌握目前国际上有关谐波的最新研究成果和谐波标准的发展动向,为提高我国谐波标准的合理性提供参考。1规划水平 1.1IEC61000-3-6 表1IEC61000-3-6总谐波电压畸变率(THD)规划水平公共连接点(PCC)电压U n≤35kV35kV

相关文档