文档视界 最新最全的文档下载
当前位置:文档视界 › 组织谐波频移成像与B超基波图像对比分析

组织谐波频移成像与B超基波图像对比分析

组织谐波频移成像与B超基波图像对比分析

谐波的基础知识谐波谐波的种类及谐波频率计算

谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 ———谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算 本文介绍谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率如何计算,哪些设备或电路容 易产生谐波,谐波的影响是什么 1 谐波的基础知识 2 (1)什么是基波? 3 电力网络中呈周期性变化的电压或电流的频率即为基波(又称一次波),我国电网规定频率是50 Hz 4 基波是50 Hz。 5 (2)什么是谐波? 6 电力网络中除基波(50 Hz)外,任一周期性的电压或电流信号,其频率高于基波(50 Hz)的,称为 7 电网或电路中,电压产生的谐波为电压谐波; 8 电流产生的谐波为电流谐波。 9 (3)谐波有几种? 10 整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波 11 偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。 12 奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。 13 正序谐波:谐波次数为3k+1(k 为正整数)即4、7、10等次谐波。 14 负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。 15 零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。 16 高频谐波:指频率为圆耀怨kHz的谐波。 17 (4)谐波频率如何计算? 18 谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊越猿 19 缘园Hz等。 20 (5)哪些设备或电路容易产生谐波? 21 1)非线性负载,例二极管整流电路(AC/DC)。 22 2)三相电压或电流不对称性负载。 23 3)逆变电路(DC/AC)。 24 4)UPS 电源(PC 机用),EPS 电源(大功率动力用),即不间断电源。

自然组织谐波成像技术的初步临床应用-中国医学影像技术

430022 武汉同济医科大学附属协和医院超声诊断科 自然组织谐波成像技术的初步临床应用 谢明星 李治安 王新房 杨 娅 刘 俐 吕 清 摘要 本文采用组织谐波成像技术,对52例因肥胖、肋间隙狭窄、胸廓畸形、肺气过多及老龄等原因致常规二维图像显示欠清晰的心脏病患者进行了检查。结果表明组织谐波成像能明显增强心肌与心内膜显示,提高对细小病变的分辨力,有助于了解心包积液的物理性状和扩张型心肌病、受压腔静脉的血流状态。同传统基波成像技术相比,组织谐波成像能获取更多的诊断信息,提高诊断正确率。 关键词 超声心动图 自然组织谐波成像 The Preliminary Clinical Experience of Native Tissue Harmonic Imaging X ie M ingx ing ,L i Zhian ,W ang X inf ang ,et al Dep ar tment of Echocar diogr ap hy ,U nion H osp ital ,T ongj i M ed ical U niver sity (W uhan 430022)Abstract 52difficult -to -ima ge patients w ith v arious hear t diseases by co nventio nal tw o -dimen-sional echo cardio gr aphy wer e ex amined by N at ive T issue Har monic Imag ing (N T HI),including indiv id-uals w ho ar e ov erw eig ht and ag ed and have o ver ly ing lung t issue ,na rr ow rib spa ces and chest w all mal-for mation.T he result s indicated that NT HI could show my ocar dium and endo car dium mo re clearly and pro mote the ability of identifying t he small lesio ns.T his metho d also help us under stand the physical character istics o f pericar dium effusion and evaluated hemodynamic state in dilated car diomy opathy and depr essed infer io r vena cav a .Co mpared w ith co nventio nal tw o -dimensio nal imag e ,N T HI could co ntain mo re diag no stic infor mation and impr ov e diagnostic co nfidence thro ugh hig h quality image,especially in diffcult-to-imag e pat ients. Key words Echocar diog raphy N at ive t issue har monic im aging 自然组织谐波成像(N ative T issue Har mo nic Imag ing )是最近发展起来的一项新技术,它采用较低频率的基波发射,接收两倍于基波频率的二次谐波进行成像,可明显增强图像的分辨力与显示力,从而提高诊断正确率。本研究对此项技术的临床应用价值进行了初步探讨。1 资料与方法 1.1 研究对象 本组共选择因肥胖、肋间隙狭窄、胸廓畸形、肺气过多及老龄等原因致常规经胸检查二维图像不理想患者52例,年龄5~86岁,平均51.2岁,其中高血压心脏病患者8例,心肌梗塞5例,心包积液8例,感染性心内膜炎4例,心肌病5例,房间隔缺损6例,F allo t 四联症4例,心房肿瘤2例,房间隔膨胀瘤3例,二尖瓣脱垂5例,左房粘液瘤2例。 1.2 仪器 A cuson Sequoia 256彩色超声诊断仪,其 内装有组织谐波成像软件。二次谐波成像时,探头发射频率为1.75M Hz ,接收频率为3.5M Hz 。 1.3 检查方法 检查时,固定好患者的最佳体位,连接好心电图显示。先用常规3.5M Hz 探头扫查所要观察的结构,并将总增益、分段增益、动态范围、边缘增强等参数调至图像显示为最佳状态,保持各参数状态不变并固定好探头的位置与方向,拨动M ultiHz 键进入二次谐波成像状态,显示2~3个心动周期后按冻结键,再利用回放功能键进行逐帧分析,选择具有诊断意义的二次谐波图像及心电图上同一时相常规3.5M Hz 频率所显示的相对应图像存入光盘,将二者进行对比分析。2 结果 2.1 高血压心脏病、心肌梗塞患者 8例高血压心脏病与5例心肌梗塞患者均为肥胖和/或老年病人,常规 3.5M Hz 频率探查时,图像较模糊,具有诊断意义的结 构改变显示欠清晰。换用组织谐波成像后,图像两侧的噪声干扰明显被抑制,心肌与心内膜的显示明显增强,

二次谐波的产生及其解

§2.3 二次谐波的产生及其解 二次谐波或倍频是一种很重要二阶非线性光学效应,在实践中有广泛的应用,如Nd:YAG激光器的基频光(1.064μm)倍频成0.532νm绿光,或继续将0.532μm激光倍频到0.266μm紫外区域。 本节从二阶非线性耦合波方程出发,求解出产生的二次谐波光强小信号解,并解释相位匹配对二次谐波产生的影响。 2.3.1 二次谐波的产生 设基频波的频率为,复振幅为;二次谐波的频率为,复振幅。由基频波在介质中极化产生的二阶极化强度,辐射出的二次谐波场所满足的非线性极化耦合波方程 (2.3.1-1) (2.3.1-2)注意简并度, (2.3.1-3)波矢失配量, (2.3.1-4) 写成单位矢量(光波的偏振方向或电场的振动方向)和标量的乘积形式,基频光场可能有两种偏振方向,即,两种偏振方向可以是相互平行也可以是相互垂直,并有 (2.3.1-5) 基频波与产生的二次谐波耦合产生的极化场强度,辐射出基频光场满足的非线性极化耦合波方程。 (2.3.1-6) (2.3.1-7) (2.3.1-8) 如果介质对频率为的光波都是无耗的,即远离共振区,则都是实数。 进一步考虑极化率张量的完全对易对称性和时间反演对称性可以证明: (2.3.1-10) 二次谐波的耦合波方程组为: (2.3.1-11) (2.3.1-12) 2.3.2 二次谐波的小信号解

图1 倍频边界条件 1、小信号解 在小信号近似下,基频波复振幅不随光波传输距离改变, (2.3.2-1)并由边界条件,对二次谐波的耦合波方程(2.2.1-12)积分得: (2.3.2-2)二次谐波的光强为: (2.3.2-3)利用有效倍频系数(有效非线性光学系数) (2.3.2-4) 和函数定义, (2.3.2-5) 以及 (2.3.2-6)得到小信号近似下的二次谐波解 (2.3.2-7) 小信号近似下倍频效率: (2.3.2-8)倍频效率正比于基频光束功率密度,输出倍频光强是基频波光强的平方。同时由曼利——罗关系,在产生一个二次谐波光子的同时,要湮灭两个基频波光子。转换效率正比于倍频系数的平方,即与正比于有效极化率系数的平方。 2、二次谐波解的讨论 定义相位匹配带宽:由二次谐波光强最大值一半处的宽度,定义允许的相位失配量 (2.3.2-9)定义相干长度:如果相位失配量,使倍频光强单调增长的一段距离为相干长度 (2.3.2-10)由上面的讨论知,在小信号近似下,为获得高的倍频效率,首先应满足相位匹配条件,并且选用有效倍频系数大和较长的晶体,尽可能增强基频光的强度。 §2.3.3 二次谐波的大信号解(基频波存在损耗) 产生二次谐波的耦合波方程为 (2.3.3-1)讨论在相位匹配条件下,即,此时基频波和二次谐波的折射率相等,如果基频波存在损耗,

基频 谐波

基波的定义是指工频的波形,是供电系统中正常供电的电压、电流波形。例如,50Hz的基波电流,表示,电流波形的频率为50个周波/秒,换言之,基波的每个周波的时间是20毫秒。 而谐波的定义是电力系统中之电压或电流讯号,除基频(50/60Hz)外之交流、周期性成份,皆称为谐波,因此,2次谐波,其频率为基波的2倍,即100Hz. 一般来说,电流系统中很少见到2次谐波,除了钢铁厂的电弧炉可能产生2次、4次等偶次谐波外,其他的负荷倒是比较少见。 基频 fundamental frequency 定义:将非正弦周期信号按傅里叶级数展开时,原信号的频率 自由振荡系统的最低振荡频率 复合波中的最低频率 〖fundamental〗∶复合振动或波形(如声波)的谐波成分,它具有最低频率,且通常具有最大振幅——亦称“基谐波” 射频和基频的区别是什么 射频和基频是扯不到一坨的两个东西:射频指的是中高频的一个频率范围,是相对于频率高低来 说的;基频是指的研究对象的固有频率,是相对于高次谐波来说的 什么是信号的基频和谐频? 在图像怎么看?用matlab怎么求?它们的意义是什么?谢谢 一般信号(除了纯粹正弦波外)都可以分解为基波和谐波,或者把它看成是由基波和谐波组成的。具体可以参考数学里的傅立叶分析。比如一个50赫的三角波,它的基频是50赫,100,150,200赫等频率成分是它的谐频。 在matlab里有个fft函数,直接求出信号的基波和谐波。 什么是谐波啊,频谱分析的主要作用是什么? 一个非正弦的信号由一个正弦的基频信号和基频整数倍的正弦信号组成,把非基波的这些信号称做谐波。 由于波形不同,基频信号和各谐波的分量是不同的,频谱分析就是对这些分量的幅度和频率特性的描述。如在频谱分析仪上可看到一跟根不同高度不同频率的谱线。 什么叫谐波信号

倍频效应二次谐波

倍频现象的理论解释线性光学效应的特点:出射光强与入射光强成正比;不同频率的光波之间没有相互作用,没有相互作用包括不能交换能量;效应来源于介质中与作用光场成正比的线性极化。 非线性光学效应的特点:出射光强不与入射光强成正比(例如成平方或者三次方的关系);不同频率光波之间存在相互作用,可以交换能量;效应来源于介质中与作用光场不成正比的非线性极化。 倍频效应是非线性的光学效应,当介质在光波电场的作用下时,会产生极化。设P是光场E在介质中产生的极化强度。 对于线性光学过程:P=ε0χE 对于非线性光学过程:P可以展开为E的幂级数: ε=ε0χ(1)E+ε0χ(2)E2+ε0χ(3)E3+...ε0χ(ε)Eε+… 其中:ε(1)=ε0χ(1)E,ε(2)=ε0χ(2)ε2,ε(3)=ε0χ(3)ε3,…,ε(ε)= ε0χ(ε)εε分别为线性以及2,3,…,n阶非线性极化强度。χ(ε)为n阶极化率。 正是这些非线性极化项的出现,导致了各种非线性光学效应的产生。而倍频效应,就是由其中的二阶极化强度ε(2)所导致产生的: ε??[εε?ε???? ?ε???? ]+c.c. 设光场是频率为ε、波矢为ε???? 的单色波,即:ε=1 2 ε0ε(2)ε2???[2εε?2ε???? ?ε???? ]+c.c. 则ε(2)=ε0χ(2)ε2中将出现项:1 4

该极化项的出现,可以看作介质中存在频率为2ε的振荡电偶极矩,它的辐射便可能产生频率为2ε的倍频光。 介质产生非线性极化:从微观上看,非线性是由原子、分子非谐性所造成的。物质受强光作用后,电子发生位移x,具有位能V(x),对于无对称中心晶体,与电子位移+x和-x 相对应的位能并不相等,即:V(+X)≠V(-x),因而位能函数V(x)应该包含奇次项: ε(ε)=1 2 εε02ε2+ 1 3 εεε3+? 相应的,电子与核之间的恢复力为: ε=??ε(ε) ?ε =?(εεε2ε+εεε2+?) 当D>0时,正位移(ε>0)引起的恢复力大于负位移(ε<0)引起的恢复力。如果作用在电子上的电场力是正的,则会引起一个相对较小的位移;反之,则会引起一个相对较大的位移。那么,电场正方向产生的极化强度就比电场反方向产生的极化强度小。这就使得非线性极化的产生。 有了非线性极化,那么,一个给定的强光波电场对应的极化波就是一个正峰值b比负峰值b’小的非线性极化波: 而根据傅里叶分析,任何一个非正弦的周期函数,都可以分解成角频率为ε、2ε、3ε、…的正弦波。所以强光波电场在介质中引起的非线性极化波,可以分解成为角频率为ε的基频极化波,角频率为2ε的二次谐频极化波,以及常值分量等成分。而其中角频率为2ε的二次谐波,就是倍频光。

二次谐波-相位匹配及其实现方法

二次谐波的应用 二次谐波成像是近年发展起来的一种三维光学成像技术,具有非线性光学成像所特有的高空间分辨率和高成像深度,可避免双光子荧光成像中的荧光漂白效应。 此外二次谐波信号对组织的结构对称性变化高度敏感,因此二次谐波成像对于某些疾病的早期诊断或术后治疗监测具有很好的生物医学应用前景. 二次谐波英文名称:second harmonic component 定义:将非正弦周期信号按傅里叶级数展开,频率为原信号频率两倍的正弦分量。 SHG的一个必要条件是需要没要反演对称的介质其次是必须满足相位匹配,传播中的倍频光波和不断昌盛的倍频极化波保持了相位的一致性. 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。 SHG实验装置SHG实验装置按二次谐波信号收集方式可分为前向和后向,图2为前向和后向二次谐波产生的实验装置示意图.以图2(a)为例:由激光器产生的角频率为的入射基频光,经过物镜聚焦到样品上,产生频率为2的二次谐波,由另一个高数值孔径的物镜收集,滤光片(一般为窄带滤光片)滤掉激发光和可能产生的荧光和其他背景光,再用探测器件(如PMT)和计算机系统进行信号的采集、存储、分析和显示.要实现二次谐波微成像需要对以下因素进行最优化考虑:超短脉冲激光、高数值孑L径的显微物镜、高灵敏度的非解扫面探测器、准相位匹配和具有高二阶非线性的样品J.激光器:掺Ti蓝宝石飞秒激光器因具有高重复频率(80MHz)和高峰值功率,单脉冲能量低且町在整个近红外区(700~1000nm)内连续调谐,所以是二次谐波显微成像的理想光源.激光的重复频率对SHG也有影响,如果提高激发光的重复频率,激发光的平均功率可相应提高,二次谐波信号也得到增强.物镜:一般情况下,二次谐波主要非轴向发射,即信号收集时必须有一个足够大的数值孑L径来有效接收整个二次谐波信号.滤光片:为保证所收集的信号为二次谐波信号,必须使用滤光片.一般采用一长波滤光片和窄带滤光片(带宽10nm)组合以过滤任何干扰信号.信号收集系统:为尽晕减少二次谐波信号在系统中的损失,提高系统的探测灵敏度,最好采用非解扫(non.descanned)的信号.信号收集系统中的主要部件是PMT探测器.首先,为收集整个二次谐波信号,需要探测器的接收面足够宽.其次,对于由可调谐Ti:蓝宝石飞秒激光器,要接收的二次谐波信号处于350~500nm波段,故可采用双碱阴极光电倍增管.由于激发光波长离探测器的响应区很远,故可有效探N--次谐波信号.除了使用不同的滤光片外,二次谐波显微成像和双光子激发荧光显微成像在系统结构上是完全兼容的.已有人成功地将激光扫描共聚焦显微镜改造成双光子系统9,同样,也可以方便的用改造后的系统进行两者的复合成像 二次谐波显微成像技术的发展及其在生物医学中的应用. 细胞膜电压的测量对理解细胞信号传递过程有重要作用. 使用合适的膜染剂进行标记, 通过对染剂分子的二次谐波显微成像, 信号强度变化便能反映膜电压的大小. 近年来, 二次谐波显微成像的一个主要领域, 就是发展具有高时空分辨率及高灵敏度的活细胞中横跨膜电压的光学测量方法. SHG成像用于膜电压测量细胞膜电压的测量对理解细胞信号传递过程有重要作用.使用合适的膜染剂进行标记,通过对染剂分子的二次谐波显微成像,信号强度变化便能反映膜电压的大小.近年来,二次谐波显微成像的一个主要领域,就是发展具有高时空分辨率及高灵敏度的活细胞中横跨膜电压的光学测量方法.1993年,OBouevitch等人¨证明,所加电场可强烈地调制SHG强度.1999年,PJCampagno!a等人则证明了SHG信号随膜电压变化.实验结果表明,激发波长为

次谐波的产生原理

在理想的干净供电系统中,电流和电压都是正弦波的。在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。 在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。谐波频率是基频的整倍数,例如基频为50Hz,二次谐波为100Hz,三次谐波则为150Hz。因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。 有几个常见多发的问题是由谐波引起的:电压畸变、过零噪声、中性线过热、变压器过热、断路器的误动作等。 ①电压畸变:因为电源系统有内阻抗,所以谐波负荷电流将造成电压波形的谐波电压畸变(这是产生"平顶"波的根源)。此阻抗有两个组成部分:电源接口(PCC)以后的电气装置内部电缆线路的阻抗和PCC以前电源系统内的阻抗,用户处的供电变压器即是PC C的一例。 由非线性负荷引起的畸变负荷电流在电缆的阻抗上产生一个畸变的电压降。合成的畸变电压波形加到与此同一电路上所接的全部其他负荷上,引起谐波电流的流过,即使这些负荷是线性的负荷也是如此。 解决的办法是把产生谐波的负荷的供电线路和对谐波敏感的负荷的供电线路分开,线性负荷和非线性负荷从同一电源接口点开始由不同的电路馈电,使非线性负荷产生的畸变电压不会传导到线性负荷上去。 ②过零噪声:许多电子控制器要检测电压的过零点,以确定负荷的接通时刻。这样做是为了在电压过零时接通感性负荷不致产生瞬态过电压,从而可减少电磁干扰(EM I)和半导体开关器件上的电压冲击。当在电源上有高次谐波或瞬态过电压时,在过零处电压的变化率就很高且难于判定从而导致误动作。实际上在每个半波里可有多个过零点。 ③中性线过热:在中性点直接接地的三相四线式供电系统中,当负荷产生3N次谐波电流时,中性线上将流过各相3N次谐波电流的和。如当时三相负荷不平衡时,中性线上流经的电流会更大。最近研究实验发现中性线电流会可能大于任何一相的相电流。造成中性线导线发热过高,增加了线路损耗,甚至会烧断导线。 现行的解决措施是增大三相四线式供电系统中中性线的导线截面积,最低要求要使用与相线等截面的导线。国际电工委员会(IEC)曾提议中性线导线的截面应为相线导线截面的200%。 ④变压器温升过高:接线为Yyn的变压器,其二次侧负荷产生3N次谐波电流时,其中性线上除有三相负荷不平衡电流总和外,还将流过3N次谐波电流的代数和,并将谐波电流通过变压器一次侧流入电网。解决上述问题最简单的办法是采用Dyn接线的变压器,使负荷产生的谐波电流在变压器△形绕组中循环,而不致流入电网。 无论谐波电流流入电网与否,所有的谐波电流都会增加变压器的电能损耗,并增加了变压器的温升。 ⑤引起剩余电流断路器的误动作:剩余电流断路器(RCCB)是根据通过零序互感器的电流之和来动作的,如果电流之和大于额定的限值它就将脱扣切断电源。出现谐波时RCC B误动作有两个原因:第一,因为RCC B是一种机电器件,有时不能准确检测出高频分量的和,所以就会误跳闸。第二,由于有谐波电流的缘故,流过电路的电流会比计算所得或简单测得的值要大。大多数的便携式测量仪表并不能测出真实的电流均方根值而只是平均值,然后假设波形是纯正弦的,再乘一个校正系数而得出读数。在有谐波时,这样读出的结果可能比真实数值要低得多,而这就意味着脱扣器是被整定在一个十分低的数值上。 现在可以买到能检测电流均方根值的断路器,再加上真实的均方根值测量技术,校正脱扣器的整定值,便可保证供电的可靠性。

基波和谐波

什么是谐波? "谐波"一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。世界各国都对谐波问题予以充分和关注。国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics)或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。电工技术领域主要研究谐波的发生、传输、测量、危害及抑制,其频率范围一般为2≤n≤40 一、1. 何为谐波? 在电力系统中谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。 “谐波”一词起源于声学。有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。傅里叶等人提出的谐波分析 方法至今仍被广泛应用。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。 到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问

弥漫性肝病的组织谐波成像超声组织定征研究

弥漫性肝病的组织谐波成像超声组织定征研究 【摘要】目的:探讨组织谐波成像技术(tissueharmonic imaging,thi)对弥漫性肝病进行超声组织定征诊断的临床价值。方法:随即选取脂肪肝患者44例,肝硬化患者90例,以32例正常人作为对照。采用谐波频率分别为5.0mhz,4.8mhz和4.6mhz中心频率进行超声组织谐波成像,计算不同组织的结构参数 ctv(coefficient of varion of tissue structre),对比分析不同病变的的ctv值和不同谐波频率对ctv值的影响。结果:正常肝组织在5.0mhz,4.8mhz和4.6mhz谐波成像时的ctv值分别为0.2281±0.055,0.2525±0.044,0.3054±0.076.脂肪肝分别为0.2043±0.043,0.2099±0.056,0.2562±0.046.肝硬化分别为:0.2831± 0.060,0.2921±0.073,±0.3520±0.121.不同频率下三组比较有 显著性差异(p0.05)。 3 讨论 实时超声图像是由不同灰阶的像素组成的,其中包含组织结构的信息,不同的组织结构和0.组织成分的改变有其不同的声像图改变,此乃超声组织定征的基础。通常超声医师仅凭视觉印象不足以提取细微的组织结构的改变。因此,超声组织定征在提高超声诊断准确性方面具有重要意义。然而,现在国外广泛采用的方法是提取射频信号(rf),设备复杂昂贵,信号采集和处理所需时间长,不能用于日常的诊断工作中。组织直方图功能在大部分的超声诊断仪器中广泛应用,以往其测定结果的准确性曾受到怀疑,主要是由于测定结果

相干衍射成像--高次谐波的应用解析

毕业论文 题目:衍射成像——高次谐波的应用 学院:物理与电子工程学院 专业:物理学 毕业年限:2015年 学生姓名:杜宁 学号:201172010307 指导教师:王国利

目录 摘要 (1) 一、引言 (2) 二、高次谐波的发射 (3) 2.1高次谐波的发射机制 (3) 2.2高次谐波的特点及应用 (4) 三、实验机制 (5) 四、结果与讨论 (6) 4.1光源的产生 (6) 4.2光源的空间相干性 (7) 4.3衍射图像的采集 (8) 五、图像分析 (9) 六、总结 (11) 七、展望 (11) 参考文献 (13) 致谢 (15)

衍射成像——高次谐波的应用 摘要:高次谐波是强激光与原子分子等介质相互作用而产生的一种相干辐射波,其具有从可见光到真空紫外甚至软X 射线光辐射的宽频区域,可以用作一种非常便捷的相干光源。本文介绍了一个高次谐波在衍射成像中的应用实验。在相干衍射成像中,用高次谐波作为空间相干光源照射要研究的样品,而被电荷耦合元件CCD (Charge coupled device)照相机所记录的衍射图像通过迭代相位恢复法来重构目标物体。利用13.5 nm的谐波进行相干衍射成像,其空间分辨率可以达到200 nm。 关键字:高次谐波辐射,迭代相位恢复法,相干衍射成像 Diffractive Imaging Using High Order Harmonic Generation Abstract: High order harmonic, which occurs in the interacion between an intense laser pulse and an atomic or molecuar medium, is a coherent radiation wave. High order harmonic can be used as a very convenient coherent light source because it has a broadband range from visible light to vacuum ultraviolet even a soft X-ray soure. In this article, we will introduce an experiment about high order harmonic apply in diffractive imaging. The sample to be investigated is illuminated with high order harmonic and the object is reconstructed from the diffraction pattern recorded on a CCD camera by means of iterative phase retrieval algorithms. A spatial resolution of ~200nm can be achieved if one use harmonic around 13.5nm to proceed the coherent diffractive imaging. Keyword: high order harmonic generation;iterative phase retrieval algorithms;coherent diffractive imaging

什么是二次谐波。

1.什么是二次谐波? 答:谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、1 4,6、8等为偶次谐波,如基波为50Hz时,2次谐波为lOOHz,3次谐波则是150Hz。 2.谐波是怎样分类的? 谐波主要根据频率和相序特性进行分类。 1. 根据频率分类 2次谐波(100Hz)、3次谐波(150Hz)。非工频整数倍的谐波称为间谐波。 2. 根据相序旋转作用分类 根据相序旋转作用可负序谐波、零序谐波、正序谐波三种。分别对应2、3、4次谐波,并依次类推分别对应5、6、7次谐波,8、 9、10次谐波……。其中正序谐波包括基波频率,为正向旋转。 负序谐波为逆向旋转,产生的磁场抵消基波产生的磁场。零序谐波不旋转,但会叠加到三相四线制系统中的中性线上。在三相四线制系统中,一些谐波能够相互抵消,另一些却会相互叠加,致使谐波被放大。 理想情况下,电网电压和电流波形为频率为50Hz(有些国家为60Hz)的正弦波。但是现实情况并非如此,电压和电流波形不是完美的正弦波,这被称为“畸变”。利用傅立叶分析法,这个畸

变的波形可以分解为一系列不同频率的正弦波的叠加,其中序数为1的是我们需要的50Hz(或60Hz)的基波,其余的分量的频率是基波频率的整数倍,这些频率的电能是我们不希望看到的,被称为谐波。 二次谐波就是电网中存在的频率为100Hz(50Hz的2倍)。一般是由冶炼金属的电弧炉产生的。二次谐波的治理是比较复杂的

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

二次谐波相位匹配及其实现方法

二次谐 波的应用 二次谐波成像是近年发展起来的一种三维光学成像技术,具有非线性光学成像所特有的高空间分辨率和高成像深度,可避免双光子荧光成像中的荧光漂白效应。 此外二次谐波信号对组织的结构对称性变化高度敏感,因此二次谐波成像对于某些疾病的早期诊断或术后治疗监测具有很好的生物医学应用前景. 二次谐波英文名称:second harmonic component 定义:将非正弦周期信号按傅里叶级数展开,频率为原信号频率两倍的正弦分量。SHG的一个必要条件是需要没要反演对称的介质其次是必须满足相位匹配,传播中的倍频光波和不断昌盛的倍频极化波保持了相位的一致性. 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

SHG实验装置SHG实验装置按二次谐波信号收集方式可分为前向和后向,图2为前向和后向二次谐波产生的实验装置示意图.以图2(a)为例:由激光器产生的角频率为的入射基频光,经过物镜聚焦到样品上,产生频率为2的二次谐波,由另一个高数值孔径的物镜收集,滤光片(一般为窄带滤光片)滤掉激发光和可能产生的荧光和其他背景光,再用探测器件(如PMT)和计算机系统进行信号的采集、存储、分析和显示.要实现二次谐波微成像需要对以下因素进行最优化考虑:超短脉冲激光、高数值孑L径的显微物镜、高灵敏度的非解扫面探测器、准相位匹配和具有高二阶非线性的样品J.激光器:掺Ti蓝宝石飞秒激光器因具有高重复频率(80MHz)和高峰值功率,单脉冲能量低且町在整个近红外区(700~1000nm)内连续调谐,所以是二次谐波显微成像的理想光源.激光的重复频率对SHG也有影响,如果提

医学超声谐波成像技术研究进展

第36卷 第5期2004年5月  哈 尔 滨 工 业 大 学 学 报 JOURNA L OF H ARBI N I NSTIT UTE OF TECH NO LOGY   V ol 136N o 15M ay ,2004 医学超声谐波成像技术研究进展 刘贵栋,沈 毅,王 艳 (哈尔滨工业大学航天学院,黑龙江哈尔滨,150001,E 2mail :gtomasd @https://www.docsj.com/doc/1811152960.html, ) 摘 要:对目前所采用的谐波成像技术作了简要的叙述,并探讨了应用前景.由于在组织和造影剂成像中利用了谐波频率,明显地改善了超声图像质量.超声中的谐波是由组织和造影剂产生.造影谐波来源于所注入的造影剂对超声的反射,与组织的反射无关.当不使用造影剂时,谐波是由非线性传播产生的.组织和造影剂的谐波成像在图像分辨力和对比度之间的折衷使得非线性信号大打折扣.关键词:医学超声;对比谐波成像;组织谐波成像;脉冲反相谐波成像中图分类号:R312 文献标识码:A 文章编号:0367-6234(2004)05-0599-04 The technical progress of medical ultrasonic harmonic imaging LI U G ui 2dong ,SHE N Y i ,W ANG Y an (S ch ool o f As tr onautics ,H arbin Ins titute o f T echn ology ,H arbin 150001,China ,E 2m ail :g tom asd @https://www.docsj.com/doc/1811152960.html, ) Abstract :Medical ultras ound scanners are widely used in hospitals all over the w orld for diagnostic purposes.While many technological im provements have been achieved over the years that resulted in better images ,a large number of patients are still difficult to image due to inhom ogeneous skin layers and limited penetration.In recent years ,harm on 2ic frenquency is adopted in tissue imaging and contrast agents imaging ,which im proves the image quality.Harm onics in ultras ound are generated by tissue or by contrast agents.C ontrast 2agent harm onics are generated by reflections from the injected contrast agent and not from reflections from tissue.When no contrast is em ployed ,harm onics are generated by tissue itself as a result of nonlinear propagation.Harm onic imaging of tissues or contrast agent forces an inherent com promise between image res olution and contrast that limits its sensitivity to nonlinear signals.This paper describes the technical progress of harm onic imaging briefly.Its clinical application prospect has been discussed al 2s o. K ey w ords :medical ultras ound ;contast harm onic imaging ;tT issue harm onic imaging ;pulse inversion harm onic imaging 收稿日期:2003-05-29. 基金项目:跨世纪优秀人才培养计划资助项目;高等学校骨干教 师资助计划资助项目;哈尔滨工业大学校基金资助项目(HIT.2002.11). 作者简介:刘贵栋(1976-),男,博士研究生; 沈 毅(1965-),男,博士,教授,博士生导师. 医学超声在医学诊断中起着十分重要的作用.但是,医学超声所包含的诊断技术,无论是B 型成 像还是血流检测,都沿用了线性声学的规律.但是线性是相对的、局部的,非线性是绝对的、全面的.实际上医学超声中存在着非线性现象[1].过去它处 于次要地位而被忽略,但是,随着人们对超声研究的深入,研究医学超声中非线性现象将有助于人们 进一步提高现有的诊断水平.近年来产生的谐波成像技术就是非线性声学在超声诊断中的一项卓有成效的新技术.传统的超声影像设备是接收和发射频率相同的回波信号成像,称为基波成像(funda 2mental imaging ).实际上回波信号受到人体组织的非线性调制后产生基波的二次三次等高次谐波,其中二次谐波幅值最强,为此利用人体回声的二次等高次谐波构成人体器官的图像,可提高图像清晰分辨率.这种用回波的二次等高次谐波成像的方法叫

谐波、谐波电流、谐波电压三者的意义与区分

谐波、谐波电流、谐波电压三者的意义与区分 电力谐波就是电能中包含的谐波成分,分为谐波电压和谐波电流。接下来主要为大家介绍一下谐波、谐波电流和谐波电压的概念及区分。 一、谐波 谐波是与基波对应的一个概念。 如果有一个频率为f正弦波,那么频率为n f的正弦波就称为f正弦波的n次谐波,而频率为f的正弦波就是基波(含义为基本波形)。例如:我们的电力电压波形为50HZ的正弦波,那么3次谐波就是150HZ的正弦波,5次谐波就是250HZ的正弦波。 用数学的方法可以证明,任何一个周期性波形都可以分解为基波和谐波。因此,当电网电压发生畸变时,就表示其中包含了谐波成分。 图1是包含了5次谐波和7次谐波的波形,5次和7次谐波是工业上最典型的两种谐波。

图1含有5次和7次谐波的畸变波形 如果谐波成分是电流,就叫谐波电流。如果谐波成分是电压,就叫谐波电压。 二、谐波电流 谐波电流是导致变压器过热、电缆过热、跳闸、无功补偿装置烧毁的主要原因。 三、谐波电压 谐波电压是电子设备误动作的主要原因。在处理电子设备受干扰的问题是,更加关注电子设备接入电网的位置的谐波电压畸变率。一般要求电压畸变率小于5%。 四、谐波电流和谐波电压的区分

谐波电流与谐波电压之间的关系是很多人搞不清楚的概念。了解他们之间的关系,对于正确解决电能质量问题十分重要,下面对这两者的关系进行讲解。 谐波电流是谐波的根源,谐波电压是谐波电流的产物。因此,要彻底解决谐波导致的各种问题,就要从控制谐波电流入手。 谐波电压是谐波电流流过线路阻抗时产生的,对于特定的配电系统,谐波电流与谐波电压之间的关系如下(欧姆定律): 谐波电压=谐波电流×电网阻抗 式中:电网阻抗包括了变压器的阻抗和配电线的阻抗,如图1所示。

相关文档
相关文档 最新文档