文档视界 最新最全的文档下载
当前位置:文档视界 › (最新整理)二次函数绝对值的问题练习及答案

(最新整理)二次函数绝对值的问题练习及答案

(最新整理)二次函数绝对值的问题练习及答案
(最新整理)二次函数绝对值的问题练习及答案

(完整)二次函数绝对值的问题练习及答案

编辑整理:

尊敬的读者朋友们:

这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数绝对值的问题练习及答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数绝对值的问题练习及答案的全部内容。

二次函数绝对值的问题练习及答案

二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明

例1 设a 为实数,函数

2()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性;

(2)求()f x 的最小值

解;(1)0a =时,

()f x 为偶函数 0a ≠时,()f x 为非奇非偶函数

(2)22222131,24()||1131,24x x a x a x a f x x x a x x a x a x a ???+-+=++-≥? ????=+-+=????-++=-++< ????? 当()min 13,24a f x a ≤-=- 当()2min 11,122a f x a -<<=+ 当()min 13,24a f x a ≥=+

例2 已知函数

1)(2-=x x f ,|1|)(-=x a x g 。 (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围;

(2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围;

(3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤)。

解:(1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程

的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a <.

(2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立,

①当1x =时,(*)显然成立,此时a ∈R ;

②当1x ≠时,(*)可变形为21|

1|x a x -≤-,令

21,(1),1()(1),(1).|1|x x x x x x x ?+>?-==?-+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-,

所以()2x ?>-,故此时2a -≤。

综合①②,得所求实数a 的取值范围是2a -≤.

(3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),

1,(1).x ax a x x ax a x x ax a x ?+--?--++-

当1,22a a >>即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增,

且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +。

当01,22a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,

经比较,知此时()h x 在[2,2]-上的最大值为33a +. 当10,02a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,

经比较,知此时()h x 在[2,2]-上的最大值为3a +。 当31,222a a -<-<-即-3≤≤时,结合图形可知()h x 在

[2,]2a -,[1,]2a -上递减, 在[,1]2a ,[,2]2a -上递增,且(2)330h a -=+<, (2)30h a =+≥,

经比较,知此时()h x 在[2,2]-上的最大值为3a +. 当3,322a a <-<-即时,结合图形可知()h x 在[2,1]-上递增,在[1,2]上递减, 故此时()h x 在[2,2]-上的最大值为(1)0h =.

综上所述,

当0a ≥时,()h x 在[2,2]-上的最大值为33a +;

当30a -<≤时,()h x 在[2,2]-上的最大值为3a +;

当3a <-时,()h x 在[2,2]-上的最大值为0.

练习:1。 已知函数2||)(2+-+=a x x x f .

(1)讨论函数)(x f 的奇偶性;(2)求函数)(x f 的最小值

2。 已知函数()221()f x x mx m R =-+∈

(1)若2m =,[]0,3x ∈,求()()max min D f x f x =-的值

(2)若[]0,2x ∈时,()8f x ≤恒成立,求m 的取值范围

3。 已知函数|21|21

)(2a x x x f -++=,其中a 是实数。

(1)判断)(x f 的奇偶性,并说明理由;

(2)当]1,1[-∈x 时,)(x f 的最小值为2

21a ,求a 的值

答案:

1.(1)0a =函数为偶函数

0a ≠非奇非偶函数

(2)()22117

,2(),

24x a f x x x a x a ≥=++-=++-

()2

2217

,224x a f x x x a x a

??<=-++=-++ ???

2min 71,4211()2,2271,42a a f x a a a a ?-≤-???=+-<

2.(1)4

(2)分类讨论二次函数对称轴与区间的关系,寻找最大值的位置

当0,m <()f x 在[]0,2上递增 ,()32804f m ≤∴-≤<

当02,m ≤≤()f x 在[]0,m 上递减,[],2m 上递增()()833428f m m f ?≥-?∴-≤≤?≤??

当2,m >()

f x 在[]0,2上递减()132824f m ≥-∴<≤ 综上所述:3134

4m -≤≤

3。(1)①当

21=a 时,||21)(2x x x f +=,有)()(-x f x f =,所以)(x f 为偶函数; ②当21≠a 时,0|21|)0(≠-=a f ,所以)(x f 不是奇函数; 又因为

2)12(21)1-2(-=a a f ,而|21|2)12(21)2-(12a a a f -+-=, 即)12()2-(1-≠a f a f ,所以)(x f 不是偶函数; 综上,当

21

≠a 时,)(x f 既不是奇函数也不是偶函数. (2)2213(1)2,2122()11(1)2,2122x a x a f x x a x a ?--+<-??=??++-≥-??

①若112-≤-a ,即0≤a ,

当]1,1[-∈x 时,a x a x x x f 221)1(212121)(22-++=-++=, 故)(x f 在]1,1[-上递增, 所以

=-=-=a f x f 221)1()(min 2

21a ,得52--=a . ②若112≥-a ,即1≥a ,

当]1,1[-∈x 时,a x a x x x f 223)1(212121)(22+--=+--=, 故)(x f 在]1,1[-上递减, 所以=+-==a f x f 223)1()(min 2

21a ,得1=a 或3=a .

③若1121<-<-a ,即10<

???????≤≤--++-<≤-+--=)112(221)1(21)121(223)1(21)(22x a a x a x a x x f 故)(x f 在]12,1[--a 上递减,在]1,1[2-a 上递增; 所以

22min 212122)12()(a a a a f x f =+-=-=,得31=a 。 综上,52--=a 或

31=a 或1=a 或3=a .

含参二次函数中绝对值问题

2016浙江高考数学含参二次函数中绝对值问题 1设函数R b a b a x x x f ∈+-=,,)(. (1)当0>a 时,讨论函数)(x f 的零点个数; (2)若对于给定的实数)01(<<-a a ,存在实数b ,使不等式2 1)(21+≤≤-x x f x 对于任意的[]12,12+-∈a a x 恒成立试将最大实数b 表示为关于a 的函数)(a m ,并求)(a m 的取值范围。 2已知函数.)(2b x x ax x f -+= (1)当1-=b 时,若不等式12)(--≥x x f 恒成立,求实数a 的最小值; (2)若0

(1)若方程x x f 2)(=恰有三个不同的实数根,求实数a 的值; (2)当0>a 时,若对任意的],0[+∞∈x ,不等式)(2)1(x f x f ≤-恒成立,求实数a 的取值范围. 4已知0≥a ,函数a a x x x f 25)(2+--=. (1)若函数)(x f 在]3,0[上单调,求实数a 的取值范围; (2)若存在实数2,1x x ,满足)()(0))((2121x f x f a x a x =<--且,求当a 变化时 21x x +的取值范围.

(1)若函数)]([)(x f f x F =与)(x f 在R x ∈时有相同值域,求实数b 的取值范围; (2)若方程21)(2=-+x x f 在)2,0(上有两个不同实数根2,1x x , ①求实数b 的取值范围; ②求证: 41121<+x x 6已知函数),()(2R b R a b ax x x f ∈∈--=+. (1) 若,2,2≥=b a 且函数)(x f 的定义域,值域均为],1[b ,求b 的值; (2) 若函数)(x f 的图像与直线1=y 在)2,0(∈x 上有2个不同的交点,试求a b 的范围.

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2 +bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)单调递减。 (2)当b<-2时,求证:在(-1,1)至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢?对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .

故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢?留给读者思考。 二、合理用公式,灵活换视角 公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。 例2 已知f(x)=x 2+ax+b 的图象与x 轴两交点的横坐标为x 1,x 2若|a|+|b|<1,求证:|x 1|<1且|x 2|<1. 解 由韦达定理,得???=-=+b x x a x x 2121 ???==+∴.|||||,|||2 121 b x x a x x 代入|a|+|b|<1,得|x 1+x 2|+|x 1x 2|<1, 又|x 1|-|x 2|≤|x 1+x 2|. 1||||||||||21212121<++≤+-∴x x x x x x x x 即|x 1|(1+|x 2|)<1+|x 2|。 又∵1+|x 2|>0,∴|x1|<1. 同理可得|x 2|<1。 例3 函数f(x)=ax 2+bx+c(a≠0),若函数f(x)的图象与直线y=x 和y=-x 均无公共点,求证:(1)4ac -b 2>1. (2)对一切实数x ,恒有| |41 ||2a c bx ax >++. 分析(1)略。

绝对值问题的求解方法

绝对值问题的求解方法 一、定义法 例1 若方程只有负数解,则实数a的取值范围是:_________。 分析与解因为方程只有负数解,故,原方程可化为: , ∴, 即 说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。 二、利用非负性 例2 方程的图象是() (A)三条直线: (B)两条直线: (C)一点和一条直线:(0,0), (D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得 即或 解之得:或 故原方程的图象为两个点(0,1),(-1,0)。 说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。 三、公式法 例3 已知,求的值。 分析与解, ∴原式 说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。 四、分类讨论法 例4 实数a满足且,那么

分析与解由可得 且。 当时, ; 当时, 说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。 五、平方法 例5 设实数a、b满足不等式,则 (A)且 (B)且 (C)且 (D)且 分析与解由于a、b满足题设的不等式,则有 ,

整理得 , 由此可知,从而 上式仅当时成立, ∴,即且, 选B。 说明运用此法是先对不等式进行平方去掉绝对值,然后求解。 六、图示法 例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是() (A)1 (B)2 (C)3 (D)4 分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。 由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。 说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

二次函数绝对值问题

常见绝对值类问题汇总 ——辽宁数学小丸子编辑 【题1】已知32()(0)f x ax bx cx d a =+++≠,当1x ≤时,'()f x M ≤恒成立,求a 的最大值 【题2】设1()4 2(,)x x f x a b a b R +=+?+∈,若对于1[0,1],()2x f x ?∈≤都成立,求b 【题3】2()f x x bx c =++在定区间[,]m n 上的最大值为M ,则M 有一个最小值2 ()8 m n -,当且仅【题4】设,,a b c R ∈,对任意满足1x ≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题5】设函数(),,f x x ax b a b R =--∈,若对任意实数,a b ,总存在实数0[0,4]x ∈使得不等式0()f x m ≥成立,求实数m 的取值范围 【题6】设2 ()(0)f x ax bx c a =++≠,当1x ≤时,总有()1f x ≤,求证:当2x ≤时,()7 f x ≤【推广】设2()(0)f x ax bx c a =++≠,当1x ≤时,总有()f x k ≤,求证:当x n ≤时,2()(21)f x n k ≤-【题7】已知二次函数22(),(),(1)1,(0)1,(1)1f x ax bx c g x cx bx a f f f =++=++-≤≤≤求证:当11x -≤≤时, (1)5 ()4f x ≤(2)()2 g x ≤【题8】设函数2()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有 24 ax b +≤【推广】设函数2 ()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有2(*) nax b n n N +≤∈【题9】设,,a b c R ∈,对任意满足01x ≤≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题10】设函数1()(1,)f x x c b c R x b =++<-∈-,函数()()g x f x =在区间[1,1]-上的最大值为M ,若M k ≥对任意的,b c 成立,求k 最大

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的 求解策略 This model paper was revised by the Standardization Office on December 10, 2020

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2+bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)内单调递减。 (2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f . 故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢留给读者思考。

二次函数经典难题(完整资料).doc

【最新整理,下载后即可编辑】 二次函数经典难题(含精解) 一.选择题(共1小题) 1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6 二.填空题(共12小题) 2.作抛物线C 1关于x轴对称的抛物线C 2 ,将抛物线C 2 向左平 移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C 1 所对应的函数解析式是 _________ . 3.抛物线关于原点对称的抛物线解析式为 _________ . 4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________ . 5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD 边长为10,则正方形EFGH的边长为_________ . 6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛

物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________ . 7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B (4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________ . 8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a= _________ ;若抛物线与x轴有两个交点,则a的范围是_________ .9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a= _________ . 10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________ . 11.若抛物线的顶点在x轴上方,则m的值是 _________ . 12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a?c 的值是_________ . 13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________ .

二次函数绝对值的问题练习及答案

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2 ()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, () f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)2 222 2131,24()||1131,24x x a x a x a f x x x a x x a x a x a ?? ?+-+=++-≥? ??? ?=+-+=??? ?-++=-++< ????? 当()min 13 ,24a f x a ≤-=- 当()2min 11 ,1 22a f x a -<<=+ 当()min 13 ,24a f x a ≥=+ 例2 已知函数 1)(2 -=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤). 解:(1)方程|()|()f x g x =,即 2 |1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的

5含绝对值的二次函数(教案及练习)

含绝对值的二次函数 含绝对值的二次函数其本质是分段函数,研究含绝对值的二次函数就是分段研究二次函数的局部性态.设定分类讨论的标准是问题解决的前提条件,数形结合则是问题能否正确解决的关键 所在. 例1.解下列各题: (1)(2010全国)直线1=y 与曲线a x x y +-=2有4个交点,则实数a 的取值范围是 . (2)(2008浙江)已知t 为常数,函数t x x y --=22在区间]3,0[上的最大值为2,则=t . (3)设集合{} {}2,,022<=∈<++-=x x B R a a a x x x A ,若Φ≠A 且B A ?,则实数a 的取值范 围是 . 例2.设函数R x a x x x f ∈+-+=,1)(2 (1)判断函数)(x f 的奇偶性; (2)求函数)(x f 的最小值.

例3.已知函数1)(,1)(2-=-=x a x g x x f . (1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围; (2)若R x ∈时,)()(x g x f ≥恒成立,求实数a 的取值范围; (3)求函数)()()(x g x f x h +=在区间]2,2[-上的最大值. 例4.设a 为实数,函数2()2()f x x x a x a =+--. (1)若(0)1f ≥,求实数a 的取值范围; (2)求()f x 的最小值.

5.含绝对值的二次函数 班级 姓名 一、综合练习 1.设b a <<0,且x x x f ++= 11)(,则下列大小关系式成立的是( ) (A ))()2()(ab f b a f a f <+< (B ))()()2(ab f b f b a f <<+ (C ))()2()(a f b a f ab f <+< (D ))()2 ()(ab f b a f b f <+< 2.已知{}n a 为等差数列,n S 是{}n a 的前n 项和,若9843=++a a a ,则9S = . 3.直线750x y +-=截圆221x y +=所得的两段弧长之差的绝对值是 . 4.函数y k x a b =--+与y k x c d =-+的图象1(k 0k )3 >≠且交于两点)3,8(),5,2(,则c a + 的值是_______________. 5.任意满足305030x y x y x -+≤??+-≥??-≤? 的实数,x y ,若不等式222()()a x y x y +<+恒成立,则实数a 的取值 范围是 . 6.已知双曲线22 221(0,0)x y a b a b -=>>,N M ,是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线PN PM ,的斜率分别为12,k k ,021≠k k ,若21k k +的最小值为1,则双曲线的离心率为 . 二、本讲练习 1.设函数c bx x x x f ++=)(给出下列四个命题: ① 0=c 时,)(x f y =是奇函数; ② 0,0>=c b 时,方程0)(=x f 只有一个实根; ③ )(x f y =的图象关于),0(c 对称; ④ 方程0)(=x f 至多有两个实根. 其中正确的命题是 ( ) (A )①④ (B )①③ (C )①②③ (D )①②④ 2.若不等式2 1x x a <-+的解集是区间()33-,的子集,则实数a 的范围为 . 3.设a 为实数,函数a x x x f -=)(,求函数)(x f 在]2,2[-上的最大值.

二次函数常用公式、结论及训练

初中函数问题涉及到的常用公式或结论及其训练 一、 常用公式或结论 (1)横线段的长 = x 大-x 小 =x 右-x 左 =横标之差的绝对值(用于情况不明)。 纵线段的长 = y 大-y 小=y 上-y 下 = 纵标之差的绝对值(用于情况不明)。 (2)点轴距离: 点P (x 0 ,y 0)到X 轴的距离为0y ,到Y 轴的距离为o x 。 (3)两点间的距离公式: 若A (x 1,y 1),B(x 2,y 2), 则 (4)点到直线的距离: 点P (x 0 ,y 0)到直线Ax+By+C=0 (其中常数A,B,C 最好化为整系数,也方便计算)的距离为: d (5)中点坐标公式: 若A(x 1,y 1),B (x 2,y 2),则线段AB 的中点坐标为(1212 ,22 x x y y ++) (6)直线的斜率公式: 若A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),则直线AB 的斜率为:12 12 =AB y y k x x --,(x 1≠x 2) (7)两直线平行的结论: 已知直线l 1: y=k 1x+b 1 ; l 2: y=k 2x+b 2 ① 若 l 12 12 1x x k -?+2 122124)(1x x x x k -+?+2 21221)()(y y x x -+-2 212221)()(x x k x x -+- 2 212))(1(x x k -+2 121x x k -?+2122124)(1x x x x k -+?+?K=030K=1±0 45 K=060-x x 大小-y y 大小(x y 标标,)y 标x 标223t t +-243t t ++x 标 标(或y )1212,2 2 x x y y ++1-32,11 32 , (1)某直线与直线y=2x+3平行,且过点(1,-1),求此直线的解析式。

(最新整理)二次函数绝对值的问题练习及答案

(完整)二次函数绝对值的问题练习及答案 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数绝对值的问题练习及答案)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数绝对值的问题练习及答案的全部内容。

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, ()f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)22222131,24()||1131,24x x a x a x a f x x x a x x a x a x a ???+-+=++-≥? ????=+-+=????-++=-++< ????? 当()min 13,24a f x a ≤-=- 当()2min 11,122a f x a -<<=+ 当()min 13,24a f x a ≥=+ 例2 已知函数 1)(2-=x x f ,|1|)(-=x a x g 。 (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤)。 解:(1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2+bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)内单调递减。 (2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f . 故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢留给读者思考。

二次函数线段最值问题

二次函数线段最值问题 ———几何类 “最短距离”经典问题汇总 一、“两点之间线段最短”. 【基本问题】在直线l 上找一点P ,使得其到直线异侧两点A B 、的距离之和最小,如图所示.作点A (或B )关于直线l 的对称点,再连接另一点与对称点,与l 的交点即为P 点. 【变式1】直线12l l 、交于O ,P 是两直线间的一点,在直线12l l 、上分别找一点A B 、,使得 PAB ?的周长最短.如图所示,作P 点关于12l l 、的对称点12P P 、,连接12P P ,与12l l 、分别交于A B 、两点,即为所求. 【变式2】直线12l l 、交于O ,A B 、是两直线间的两点,从点A 出发,先到1l 上一点P ,再从 P 点到2l 上一点Q ,再回到B 点,求作P Q 、两点,使AP PQ QB ++最小.如图所示,作 A B 、两点分别关于直线12l l 、的对称点A B 、′′,连接A B ′′ 分别交12l l 、于P Q 、,即为所求. 【变式3】从A 点出发,先到直线l 上的一点P ,再在l 上移动一段固定的距离PQ ,再回到点B ,求作P 点使移动的距离最短,如图所示.先将A 点向右平移到A ′点,使AA ′等于PQ 的长,作点B 关于l 的对称点B ′,连接A B ′′,与直线l 的交点即为Q 点,将Q 点向左平移线段PQ 的长,即得到P 点. 【变式4】下面这个题与对称无关,但涉及到了平移的内容,与【变式4】的作法有点类似,因此放在这里,共享一下. A B 、是位于河两岸的两个村庄,要在这条宽度为d 的河上垂直建一座桥,使得从A 村庄经过桥到B 村庄所走的路程最短.如图所示,将点A 向垂直于河岸的方向向下平移距离d ,到A ′点,连接A B ′交河岸于Q 点,过Q 点作PQ 垂直于河岸,交河岸的另一端为P ,即为所求. 【变式5】在直线l 上找一点P ,使得其到直线异侧两点A B 、的距离之差的绝对值最大,如图所示.作点A (或B )关于直线l 的对称点,再连接另一点与对称点,其延长线与l 的交点即为P 点. 二、“垂线段最短”. 例题探究: 【探究1】 如图,抛物线42 1 2+--=x x y 与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . 在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; 【探究2】 已知在平面直角坐标xOy 系抛物线223y x x =--与x 轴交于A B 、两点 (点A 在点B 的左侧),与y 轴交于点C 。若一个动点P 自点C 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ), 最后运动到点C .求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长. 【探究3】 已知在平面直角坐标xOy 系抛物线223y x x =--与x 轴交于 A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,在线段BC 上是否存在一点P ,使得B 、C 两点到直线AP 的距离之和最大?若存在,请求出P 点的坐标;若不存在,请说明理由。 【探究4】 已知在平面直角坐标xOy 系抛物线223y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C 。若一个动点P 自OC 的中点M 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点C .求使点P 运动的总路径最 O B A P 2 P 1P l 2 l 1 C E D G A x y O B F

绝对值函数系列习题(二次函数)

含有绝对值符号的函数的性质 1、已知不等式| |2 2x x a +≤对x 取一切负数恒成立,则a 的取值范围是_______. 2、若关于x 的不等式||22 a x x --<至少有一个负数解,则实数a 的取值范围是_______. 3、函数2 |1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 4、设常数R ∈a ,以方程20112||=?+x a x 的根的可能个数为元素的集合=A _______. 5、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为_______. 6、对任意的120x x <<,若函数1 ()f x a x x b x =-+折线(两侧的射线均平行于x 轴), 试写出a 、b 应满足的条件 . 7、已知函数()2log f x x =,正实数,m n 满足m n <, 且()()f m f n =,若()f x 在区间2,m n ????上的最大值为则m =________,n =_________. 8、设,,a b R ∈且1b ≠.若函数1y a x b =-+的图象与直线y x =恒有公共点,则,a b 应满足的条件是_______. 9、关于x 的方程092 2=-++a x a x (R a ∈)有唯一的实数根,则=a _______. 10、若函数1log 2 )(| 3|+-=-x x f a x 无零点,则a 的取值范围为_______. 11、定义在R 上的函数()f x 的图像过点(6,2)M -和(2,6)N -,且对任意正实数k ,有 ()()f x k f x +<成立,则当不等式|()2|4f x t -+<的解集为(4,4)-时,则实数t 的值 为_______. 12、已知函数21(0)()log (0) x a x f x x x ?++≤=?>?有三个不同零点,则实数a 的取值范围为_______. 13、设关于x 的不等式4|4|2 +≤+-x m x x 的解集为A ,且A A ?∈2,0,则实数m 的取值范围是_______.

类型一 二次函数与线段问题(解析版)

类型一 二次函数与线段问题 例1、 如图1-1,抛物线y =x 2-2x -3与x 轴交于A 、B 两点,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点,如果△P AC 的周长最小,求点P 的坐标. 图1-1 【解析】如图1-2,把抛物线的对称轴当作河流,点A 与点B 对称,连结BC ,那么在△PBC 中,PB +PC 总是大于BC 的.如图1-3,当点P 落在BC 上时,PB +PC 最小,因此P A +PC 最小,△P AC 的周长也最小. 由y =x 2-2x -3,可知OB =OC =3,OD =1.所以DB =DP =2,因此P (1,-2). 图1-2 图1-3 例2、如图,抛物线21442 y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程. 图2-1 【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N . 在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据

相似比可以计算得到OM =83,MH =43,NH =1.所以M (83 , 0),N (4, 1). 图2-2 例3、如图3-1,抛物线248293 y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段P A 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标. 图3-1 【解析】题目读起来像绕口令,其实就是求|P A -PB |的最小值与最大值. 由抛物线的解析式可以得到A (0, 2),B (3, 6).设P (x , 0). 绝对值|P A -PB |的最小值当然是0了,此时P A =PB ,点P 在AB 的垂直平分线上(如图3-2).解方程x 2+22=(x -3)2+62,得416x =.此时P 41(,0)6 . 在△P AB 中,根据两边之差小于第三边,那么|P A -PB |总是小于AB 了.如图3-3,当 点P 在BA 的延长线上时,|P A -PB |取得最大值,最大值AB =5.此时P 3(,0)2 -. 图3-2 图3-3 例4、如图4-1,菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,求PK +QK 的最小值.

初三二次函数最值问题和给定范围最值

二次函数中的最值问题重难点复习 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数2y ax bx c =++用配方法可化成:2 ()y a x h k =-+的形式 ()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. a b ac a b x a c bx ax y 44222 2-+??? ? ?+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 二次函数常用来解决最值问题,这类问题实际上就是求函数的最大(小)值。一般而言,最大(小)值会在顶点处取得,达到最大(小)值时的x 即为顶点横坐标值,最大(小)值也就是顶点纵坐标值。 自变量x 取任意实数时的最值情况 (1)当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值; (2)当0a <时,函数在2b x a =-处取得最大值244ac b a -,无最小值. (3)二次函数最大值或最小值的求法. 第一步:确定a 的符号,0a >有最小值,0a <有最大值; 第二步:配方求顶点,顶点的纵坐标即为对应的最大值或最小值. 2.自变量x 在某一范围内的最值. 如:2y ax bx c =++在m x n ≤≤(其中m n <)的最值. 第一步:先通过配方,求出函数图象的对称轴:02b x x a ==- ; 第二步:讨论: [1]若0a >时求最小值(或0a <时求最大值),需分三种情况讨论:(以0a >时求最小值为例) ①对称轴小于m 即0x m <,即对称轴在m x n ≤≤的左侧,在x m =处取最小值2min y am bm c =++; ②对称轴0m x n ≤≤,即对称轴在m x n ≤≤的内部,在0x x =处取最小值2min 00y ax bx c =++; ③对称轴大于n 即0x n >,即对称轴在m x n ≤≤的右侧,在x n =处取最小值2min y an bn c =++. [2] 若0a >时求最大值(或0a <时求最小值),需分两种情况讨论:(以0a >时求最小值为例) ①对称轴02 m n x +≤,即对称轴在m x n ≤≤的中点的左侧,在x n =处取最大值2max y an bn c =++;

相关文档
相关文档 最新文档