文档视界 最新最全的文档下载
当前位置:文档视界 › 绝对值问题的求解方法

绝对值问题的求解方法

绝对值问题的求解方法
绝对值问题的求解方法

绝对值问题的求解方法

一、定义法

例1 若方程只有负数解,则实数a的取值范围是:_________。

分析与解因为方程只有负数解,故,原方程可化为:

∴,

说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。

二、利用非负性

例2 方程的图象是()

(A)三条直线:

(B)两条直线:

(C)一点和一条直线:(0,0),

(D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得

即或

解之得:或

故原方程的图象为两个点(0,1),(-1,0)。

说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。

三、公式法

例3 已知,求的值。

分析与解,

∴原式

说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。

四、分类讨论法

例4 实数a满足且,那么

分析与解由可得

且。

当时,

当时,

说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。

五、平方法

例5 设实数a、b满足不等式,则

(A)且

(B)且

(C)且

(D)且

分析与解由于a、b满足题设的不等式,则有

整理得

由此可知,从而

上式仅当时成立,

∴,即且,

选B。

说明运用此法是先对不等式进行平方去掉绝对值,然后求解。

六、图示法

例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是()

(A)1 (B)2 (C)3 (D)4

分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。

由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。

说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

七、验证法

例7 是一个含有4重绝对值符号的方程,则()

(A)0、2、4全是根

(B)0、2、4全不是根

(C)0、2、4不全是根

(D)0、2、4之外没有根

分析与解从答案中给出的0、2、4容易验证都是方程的根,并且通过观察得知-2也是一根,因此可排除B、C、D,故选A。

说明运用此法是从题干出发,取符合题意的某些特殊值或特殊图形,与选择支对照检验,从而判定各个选择支的正误。

八、代数式零点法

例8 的最小值是_________。

分析与解由可确定零点为-1、2、3。

当时,

原式;

当时,

原式;

当时,

原式;

当时,

原式

综上知所求最小值为4。

说明运用此法解决含字母代数式绝对值化简方法是:(1)先求代数式零点,把数轴分为若干区间;(2)判定各区间内代数式的正负号;(3)依据绝对值的定义,去掉绝对值符号。

九、数形结合法

例9 已知二次函数的图象如图所示,并设

,则()

(A)(B)(C)(D)不能确定M为正、负或为0

分析与解令中,由图象得:;

令得

∵顶点在第四象限,

∴顶点的横坐标

又,

而,

∴,即

选C。

说明运用此法是将抽象思维和形象思维结合起来,达到以形助数,以数助形,可以使许多复杂问题获得简便的解决。

十、组合计数法

例10 方程,共有几组不同整数解

(A)16 (B)14 (C)12 (D)10

分析与解由已知条件可得

当时,;

当时,;

当时,;

当时,。

共有12组不同整数解,故选C。

说明此法具有较强的技巧性,必须认真分析条件,进行分类、归纳,从中找出解决问题的方法。

十一、枚举法

例11 已知a为整数,是质数,试确定a的所有可能值的和。

分析与解设是质数p,则仅有因子±1及。

当时,

,此时,;

当时,

,此时,;

当时,

,此时,;

当时,

,此时,

去绝对值常用方法

. (初一)去绝对值常用“六招” (初一)六招”去绝对值常用“难度大,解绝对值问题要求高,绝对值是初中数学的一个重要概念,是后续学习的必备知识。不易把握,解题易陷入困境。下面就教同学们去绝对值的常用几招。一、根据定义去绝对值的值-│c│c = - 8时,求3│a│-2│b│例1、当a = -5,b = 2,负数的绝所以根据绝对值的意义即正数的绝对值是它本身,分析:这里给出的是确定的数,。代值后即可去掉绝对值。的绝对值是0对值是它的相反数,00 < c = -8b =2>0,解:因为:a = -5<0,[ - ( - 8 ) ] = 7 2 ×2 --5)] –所以由绝对值的意义,原式= 3 [ -(”相关信息去绝对值二、从数轴上“读取c在数轴上的a、b、例2、有理数- │a│-a│+│c-b│+│a+b│位置如图所示,且│a│=│b│,化简│c的正负性,由数轴上点的位置特征,即可去绝对、a + bc - a、c-b分析:本题的关键是确定值。- a = b b 且<c<解:由已知及数轴上点的位置特征知:a<0 b ) ] + 0 - ( - a ) = b –故原式= c - a + [ - ( c c - b<0,a + b = 0 从而 c –a >0 ,三、由非负数性质去绝对值22的值。= 0,求-25│+ ( b –2 )ab:已知例3│a 。分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”222 2 = 0 –由绝对值和非负数的性质:ab 解:因为│a-25 = 0 -25 │+ ( b – 2 )且= 0 ab = - 10 ab = 10或a = - 5 b = 2 故即a = 5 b = 2 或四、用分类讨论法去绝对值的值。abc≠0,求+ + 4例、若同为正号还是同为负号;两个同为正(负)号,另、c,所以只需 考虑a、b分析:因abc≠0一个为负(正)号,共八种情况。但因为两正(负)、一负(正)的 结果只有两种情况,所以其值只有四种情况。异号。b、、c、b、c有同为正号、同为负号和aa 解:由abc≠0可知,= 3 + + + = + 、c都为“+”时,b当a、= - 3 ---”时,+ + = c当a、b、都为“-+ + = 1 时,“-”、a、bc中两“+”一当+ + = - 1 “+”时,中两“-”一ca 当、b、五、用零点分段法去绝对值的最小值。2│+│x -3│-例5:求│x + 1│+│x 的值的符号也在变化。关键是把各式绝对值x -3–x 2、、在有理数范围变化,分析:xx + 1解 这类问题的基本步骤是:的取值进行分段讨论,为此要对符号去掉。x然后选取其最小值。. . 求零点、分区间、定性质、去符号。即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间化简求值即可。。由绝对值意义分别讨论如下:,3可确定零点为- 1,2,解:由x + 1 = 0x - 2 = 0,x - 3 = 03 + 4 = 7 >– 3 ) ] = -3 x + 4 -1时,原式= -( x + 1 ) + [ - ( x –2 ) ] + [ - ( x 当x<-2 + 6 = 4 3 ) ] = - x + 6 >时,原式= ( x + 1 ) + [ -( x –2 ) ] + [ - ( x –当-1 ≤x <2 2 + 2 = 4 x + 2 ≥= –2 ) + [ - ( x –3 ) ] 当2 ≤x <3时,原式= ( x + 1 ) + ( x - 4 = 5 4 ≥3×3 –2 ) + ( x 3 ) = 3x –x ≥3时,原式= ( x + 1 ) + ( x –当4。故所求最小值是六、平方法去绝对值-3│、解方程│x-1│=│x例6所以对所分析:对含有绝对值的方程,用平方法是去绝对值的方法之一,但可能产生增根,求解必须进行检验,舍去增根。22 x=2是原不等式的根。x=2 x经检验,- 2x +1= x - 6x + 9 有4x =8,得解:两边平方: c在数轴上的位置、b、练习1、已知实数a │a│=│c│,化简:如图,且- b│+│a││a+c

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

初 绝对值化简 知识点经典例题及练习题带答案

环球雅思教育学科教师讲义 讲义编号:副校长/组长签字:签字日期: 【考纲说明】 1、能够根据绝对值的意义、性质及非负性进行绝对值的化简; 2、灵活运用绝对值的性质进行化简和方程的解决。 【趣味链接】 由于研究的需要,人类创造了了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展.在中学数学中,常见的数学符号有以下八种:数量符号、运算符号、关系符号、结合符号、性质符号、简写符号、逻辑符号、集合论符号,其中,绝对值符号属于性质符号中的一种,常见的性质符号还有正号(+)和负号(-)。数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。我国宋朝科学家沈括说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。 【知识梳理】 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即

也就是说,|x|表示数轴上坐标为x 的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x ≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 【经典例题】 【例1】(2012毫州)若0|2|)1(2=++-b a ,则b a +=_________. 【例2】(2012曲阜)(1)已知x 是有理数,且|x|=|-4|,那么x=____; (2)已知x 是有理数,且-|x|=-|2|,那么x=____; (3)已知x 是有理数,且-|-x|=-|2|,那么x=____. 【例3】(2012徐州)若|a|=b ,求|a+b|的值. 【例4】(2012淮北)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求 y xy x 4312--的值. 【例5】(2012商丘)|m+3 |+|n-2 7|+|2p-1|=0,求p+2m+3n 的值.

去绝对值符号的几种常用方法精编版

去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1.利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥??-????≤?; |x |>c (0)0(0)(0)x c x c c x c x R c <->>???≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|或||||x a x b m -+-<(m 为正常数)类型不等式。对||||ax b cx d m +++>(或

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

七年级数数学绝对值化简专题训练试题

绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉绝对值符号的方法大致有三种类型。 一、根据题设条件 例1 设化简的结果是()。 (A)(B)(C)(D) 思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去. 解 ∴应选(B). 归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于(). (A)(B)(C)(D) 思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍. 解原式 ∴应选(C).

归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3 化简 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论. 解令得零点:; 令得零点:, 把数轴上的数分为三个部分(如图) ①当时, ∴原式 ②当时,, ∴原式 ③当时,,

∴原式 ∴ 归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是: 1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个). 2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定. 3.在各区段内分别考察问题. 4.将各区段内的情形综合起来,得到问题的答案. 误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果. 练习: 请用文本例1介绍的方法解答l、2题 1.已知a、b、c、d满足且,那么 2.若,则有()。 (A)(B)(C)(D) 请用本文例2介绍的方法解答3、4题 3.有理数a、b、c在数轴上的位置如图所示,则式子化简结果为().

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

绝对值化简方法辅导

下面我们就人大附中初一学生的家庭作业进行讲解如何对绝对值进行化简 首先我们要知道绝对值化简公式: 例题1:化简代数式 |x-1| 可令x-1=0,得x=1 (1叫零点值) 根据x=1在数轴上的位置,发现x=1将数轴分为3个部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x=1时,x-1=0,则|x-1|=0 3)当x>1时,x-1>0,则|x-1|=x-1 另解,在化简分组过程中我们可以把零点值归到零点值右侧的部分 1)当x<1时,x-1<0,则|x-1|=-(x-1)=-x+1 2)当x≥1时,x-1≥0,则|x-1|=x-1 例题2:化简代数式 |x+1|+|x-2| 解:可令x+1=0和x-2=0,得x=-1和x=2(-1和2都是零点值) 在数轴上找到-1和2的位置,发现-1和2将数轴分为5个部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当x=-1时,x+1=0,x-2=-3,则|x+1|+|x-2|=0+3=3 3)当-10,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 4)当x=2时,x+1=3,x-2=0,则|x+1|+|x-2|=3+0=3 5)当x>2时,x+1>0,x-2>0,则|x+1|+|x-2|=x+1+x-2=2x-1 另解,将零点值归到零点值右侧部分 1)当x<-1时,x+1<0,x-2<0,则|x+1|+|x-2|=-(x+1)-(x-2)=-x-1-x+2=-2x+1 2)当-1≤x<2时,x+1≥0,x-2<0,则|x+1|+|x-2|=x+1-(x-2)=x+1-x+2=3 3)当x≥2时,x+1>0,x-2≥0,则|x+1|+|x-2|=x+1+x-2=2x-1 例题3:化简代数式 |x+11|+|x-12|+|x+13| 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 另解,将零点值归到零点值右侧部分 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当-13≤x<-11时,x+11<0,x-12<0,x+13≥0,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 3)当-11≤x<12时,x+11≥0,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 4)当x≥12时,x+11>0,x-12≥0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 例题4:化简代数式|x-1|+|x-2|+|x-3|+|x-4| 解:令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10

去绝对值常用方法

去绝对值常用“六招”(初一) 去绝对值常用“六招” (初一) 绝对值是初中数学的一个重要概念,是后续学习的必备知识。解绝对值问题要求高,难度大,不易把握,解题易陷入困境。下面就教同学们去绝对值的常用几招。 一、根据定义去绝对值 例1、当a = -5,b = 2, c = - 8时,求3│a│-2│b│- │c│的值 分析:这里给出的是确定的数,所以根据绝对值的意义即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。代值后即可去掉绝对值。 解:因为:a = -5<0,b =2>0,c = -8<0 所以由绝对值的意义,原式= 3 [ -(-5)] – 2 ×2 - [ - ( - 8 ) ] = 7 二、从数轴上“读取”相关信息去绝对值 例2、有理数a、b、c在数轴上的 位置如图所示,且│a│=│b│,化简│c-a│+│c-b│+│a+b│-│a│ 分析:本题的关键是确定c - a、c-b、a + b的正负性,由数轴上点的位置特征,即可去绝对值。 解:由已知及数轴上点的位置特征知:a<0<c<b 且- a = b 从而 c – a >0 , c - b<0, a + b = 0 故原式= c - a + [ - ( c – b ) ] + 0 - ( - a ) = b 三、由非负数性质去绝对值 例3:已知│a2-25│+ ( b – 2 )2 = 0,求ab的值。 分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”。解:因为│a2-25│+ ( b – 2 )2 = 0 由绝对值和非负数的性质:a2-25 = 0 且b – 2 = 0 即a = 5 b = 2 或a = - 5 b = 2 故ab = 10或ab = - 10 四、用分类讨论法去绝对值 例4、若abc≠0,求+ + 的值。 分析:因abc≠0,所以只需考虑a、b、c同为正号还是同为负号;两个同为正(负)号,另一个为负(正)号,共八种情况。但因为两正(负)、一负(正)的结果只有两种情况,所以其值只有四种情况。 解:由abc≠0可知,a、b、c有同为正号、同为负号和a、b、c异号。 当a、b、c都为“+”时,+ + = + + = 3 当a、b、c都为“-”时,+ + = - - - = - 3 当a、b、c中两“+”一“-”时,+ + = 1 当a、b、c中两“-”一“+”时,+ + = - 1 五、用零点分段法去绝对值 例5:求│x + 1│+│x - 2│+│x -3│的最小值。

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

绝对值化简专题训练.doc

v1.0可编辑可修改 绝对值难题解析 绝对值的知识是初中代数的重要内容,在中考和各类竞赛中经常出现,含有绝对值符号的数 学问题又是学生遇到的难点之一,解决这类问题的方法通常是利用绝对值的意义,将绝对值 符号化去,将问题转化为不含绝对值符号的问题,确定绝对值符号内部分的正负,借以去掉 绝对值符号的方法大致有三种类型。 一、根据题设条件 例 1设化简的结果是()。 (A)(B)(C)(D) 思路分析由可知可化去第一层绝对值符号,第二次绝对值符号 待合并整理后再用同样方法化去. 解 ∴应选( B). 归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例 2实数a、b、c在数轴上的位置如图所示,则代数式的值等于(). (A)(B)(C)(D)

思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍. 解原式 ∴应选( C). 归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3化简 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可 采用零点分段讨论法,本例的难点在于的正负不能确定,由于x 是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论. 解令得零点:; 令得零点:, 把数轴上的数分为三个部分(如图) ①当时,

∴原式 ②当时,, ∴原式 ③当时,, ∴原式 ∴ 归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是: 1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个). 2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个 绝对值符号内的部分的正负能够确定. 3.在各区段内分别考察问题. 4.将各区段内的情形综合起来,得到问题的答案. 误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果. 练习: 请用文本例 1 介绍的方法解答 l 、2 题

去绝对值符号的几种常用方法

去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1.利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥??-????≤? ;|x |>c (0)0(0)(0)x c x c c x c x R c <->>???≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|或||||x a x b m -+-<(m 为正常数)类型不等式。对||||ax b cx d m +++>(或

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

绝对值的化简

“绝对值的化简”例题解析 无论是从绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说任何一个有理数的绝对值都是非负数,即:无论a取任意有理数都有 。 下面关于绝对值的化简题作一探讨。 一、含有一个绝对值符号的化简题 1. 已知未知数的取值或取值范围进行化简。 如,当时化简(根据绝对值的意义直接化简) 解:原式。 2. 没有告诉未知数的取值或取值范围进行化简。 如,化简(必须进行讨论) 我们把使绝对值符号内的代数式为0的未知数的值叫做界值,显然绝对值符号内代数式是,使的未知数的值是5,所以我们把5叫做此题的界值,确定了界值后,我们就把它分成三种情况进行讨论。 (1)当时,则是一个正数,则它的绝对值应是它本身,所以原式。 (2)当时,则,而0的绝对值为0,所以原式或 。 (3)当时,则,是一个负数,而负数的绝对值应是它的相反数,所以原 式。 又如,化简 此题虽含有一个绝对值符号,但绝对值符号内出现了两个未知数,在这种情况下,我们把含有两个未知数的式子看作一个整体,即把2x+y看作一个整体未知数,找出界值,使 的整体未知数的值是,我们把6叫做此题的界值,这样又可分三种情况进行讨论。 (1)当时,

(2)当时 (3)当时 二、含有两个绝对值符号的化简题 1. 已知未知数的取值或取值范围,进行化简也应根据绝对值的意义直接化简。如:当时,化简 解:原式 2. 没有告诉未知数的取值或取值范围进行化简也必须进行讨论 如:化简 的界值为-3,的界值为 所以对此类化简题,我们仍从三个方面进行讨论。

解:(1)当时(界值为较大界值,讨论的第(1)种情况为大于大的界值) 原式 (2)当时,(第(2)种情况为小于小的界值) 原式 (3)当时(第(3)种情况大于小界值小于大界值) 原式 又如,化简 此题含有两个绝对值符号,且每个绝对值符号内含有两个未知数,且未知数对应项系数相等或成比例,在这种情况下,我们把含有未知数较小的那个式子看作一个整体 即把看作一个整体分别求出每个绝对值符号内的界值,仍从三个方面进行讨论。 的界值为2,的界值为-2。 解:(1)当时, 原式 (2)当时, 原式

高中数学解题方法之分离变量法(含答案)

七、分离变量法 分离变量法是近年来发展较快的思想方法之一.高考数学试题中,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系.其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高.随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法. 分离变量法:是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法.两个变量,其中一个范围已知,另一个范围未知. 解决问题的关键: 分离变量之后将问题转化为求函数的最值或值域的问题.分离变量后,对于不同问题我们有不同的理论依据可以遵循.以下定理均为已知x 的范围,求a 的范围: 定理1 不等式()()f x g a ≥恒成立?[]min ()()f x g a ≥(求解()f x 的最小值);不等式()()f x g a ≤恒成立?[]max ()()f x g a ≤(求解()f x 的最大值). 定理2 不等式()()f x g a ≥存在解?[]max ()()f x g a ≥(求解()f x 的最大值);不等式()()f x g a ≤存在解?[]min ()()f x g a ≤(即求解()f x 的最小值). 定理3 方程()()f x g a =有解?()g a 的范围=()f x 的值域(求解()f x 的值域). 解决问题时需要注意:(1)确定问题是恒成立、存在、方程有解中的哪一个;(2)确定是求最大值、最小值还是值域. 再现性题组: 1、已知当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立,求实数a 的取值范围。 2、若f(x)=2 33x x --在[1,4]x ∈-上有()21f x x a ≥+-恒成立,求a 的取值范围。 3、若f(x)=233x x --在[1,4]x ∈-上有2 ()251f x x a a ≥+--恒成立,求a 的取值范围。 4、若方程42210x x a -+= 有解,请求a 的取值范围 5、已知32 11132 y x ax x = -++是(0,)+∞上的单调递增函数,则a 的取值范围是( ) .0A a < .22B a -≤≤ .2C a < .2D a ≤ 6、求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。 再现性题组答案: 1、解:原不等式4sin cos 25x x a ?+<-+当x ∈R 时,不等式a+cos2x<5-4sinx 恒成立max a+5>(4sinx+cos2x)?-,设f(x)=4sinx+cos2x 则 22f(x)= 4sinx+cos2x=2sin x+4sinx+1=2(sinx 1)+3 --- ∴a+5>3a<2-∴

相关文档
相关文档 最新文档