文档视界 最新最全的文档下载
当前位置:文档视界 › 第6章 第36讲-不等式、推理与证明

第6章 第36讲-不等式、推理与证明

第6章 第36讲-不等式、推理与证明
第6章 第36讲-不等式、推理与证明

课时达标 第36讲-不等式、推理与证明

一、选择题

1.用反证法证明命题:“若a +b +c 为偶数,则自然数a ,b ,c 恰有一个偶数”时正确的反设为( )

A .自然数a ,b ,c 都是奇数

B .自然数a ,b ,c 都是偶数

C .自然数a ,b ,c 中至少有两个偶数

D .自然数a ,b ,c 中都是奇数或至少有两个偶数

D 解析 “自然数a ,b ,c 中恰有一个偶数”的否定是“自然数a ,b ,c 都是奇数或至少有两个偶数”.故选D.

2.分析法又称执果索因法,若用分析法证明:“设 a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )

A .a -b >0

B .a -c >0

C .(a -b )(a -c )>0

D .(a -b )(a -c )<0

C 解析

b 2-a

c <3a ?b 2-ac <3a 2?(a +c )2-ac <3a 2?a 2+2ac +c 2-ac -3a 2<0

?-2a 2+ac +c 2<0?2a 2-ac -c 2>0?(a -c )(2a +c )>0?(a -c )(a -b )>0.

3.(2019·焦作一中月考)若a ,b ∈R ,则下面四个式子中恒成立的是( ) A .lg(1+a 2)>0 B .a 2+b 2≥2(a -b -1) C .a 2+3ab >2b 2 D.a b <a +1b +1

B 解析 在B 项中,因为a 2+b 2-2(a -b -1)=(a 2-2a +1)+(b 2+2b +1)=(a -1)2+(b +1)2≥0,所以a 2+b 2≥2(a -b -1)恒成立.

4.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( )

A .恒为负值

B .恒等于零

C .恒为正值

D .无法确定正负

A 解析 由f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减可知f (x )是R 上的单调递减函数,由x 1+x 2>0可知x 1>-x 2,f (x 1)<f (-x 2)=-f (x 2),则f (x 1)+f (x 2)<0.

5.已知a >b >0,且 ab =1,若 0

A .p >q

B .p

C .p =q

D .p ≥q

B 解析 因为a 2+b 22>ab =1,所以p =log c a 2+b 22<0.又q =log c ? ????1a +b 2

=log c

1a +b +2ab

>log c 14ab =log c 1

4>0,所以q >p .

6.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x

y ( )

A .都大于2

B .至少有一个大于2

C .至少有一个不小于2

D .至少有一个不大于2

C 解析 因为x >0,y >0,z >0,所以????y x +y z +????z x +z y +????x z +x y =????y x +x y +????y z +z y +????

x z +z x ≥6,当且仅当x =y =z 时,等号成立,则三个数中至少有一个不小于2.故选C.

二、填空题

7.设a =3+22,b =2+7,则a ,b 的大小关系为________.

解析 a =3+22,b =2+7两式的两边分别平方,可得a 2=11+46,b 2=11+47,显然6<7.所以a <b .

答案 a <b

8.用反证法证明命题“若实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,则a ,b ,c ,d 中至少有一个是非负数”时,第一步要假设结论的否定成立,那么结论的否定是________________.

解析 “至少有一个”的否定是“一个也没有”,故结论的否定是“a ,b ,c ,d 中没有一个是非负数,即a ,b ,c ,d 全是负数”.

答案 a ,b ,c ,d 全是负数

9.(2019·启东中学期中)给出下列四个命题: ①

x 2+2

x 2+1

的最小值为2;②2-3x -4

x 的最

大值为2-43; ③log x 10+lg x 的最小值为2;④sin 2x +

4

sin 2x

的最小值为4. 其中真命题的序号是________(把所有正确结论的序号填在横线上).

解析 ①

x 2+2

x 2+1=x 2+1+1x 2+1

=x 2+1+

1x 2

+1

≥2,当且仅当

x 2+1=

1x 2

+1

,即x

=0时,等号成立,正确;②2-3x -4

x =2-????3x +4x ≤2-23x ·4

x

=2-43成立的前提为x >0,错误;③同②,缺乏前提,错误;④sin 2x +4sin 2x ≥4取得等号的条件为sin 2x =4

sin 2x ,

即sin x =±2,这与sin x ∈[-1,1]矛盾,错误.

答案 ① 三、解答题

10.(2019·永州一中月考)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .

证明 欲要证2a 3-b 3≥2ab 2-a 2b 成立,只需证2a 3-b 3-2ab 2+a 2b ≥0,即证2a (a 2-b 2)+b (a 2-b 2)≥0,即证(a +b )(a -b )(2a +b )≥0.因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,所以2a 3-b 3≥2ab 2-a 2b .

11.(2019·黄石二中期中)已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.

(1)求证:SA ⊥平面ABCD ;

(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定点F 的位置;若不存在,请说明理由.

解析 (1)证明:由已知得SA 2+AD 2=SD 2,所以SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,所以SA ⊥平面ABCD .

(2)假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .因为BC ∥AD ,BC ?平面SAD ,所以BC ∥平面SAD .而BC ∩BF =B ,所以平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,所以假设不成立.所以不存在这样的点F ,使得BF ∥平面SAD .

12.已知数列{a n }满足a 1=12,且a n +1=a n

3a n +1

(n ∈N *).

(1)证明:数列????

??

1a n 是等差数列,并求数列{a n }的通项公式;

(2)设b n =a n a n +1(n ∈N *),数列{b n }的前n 项和记为T n ,证明:T n <1

6

.

解析 (1)由已知可得当n ∈N *

时,a n +1=a n 3a n +1,两边取倒数得1

a n +1

=3a n +1a n =1a n +3,

1

a n +1-1a n =3,所以数列??????1a n 是首项为1a 1=2,公差为3的等差数列,其通项公式为1

a n =2+

(n -1)×3=3n -1,所以数列{a n }的通项公式为a n =1

3n -1

.

(2)证明:由(1)知a n =13n -1,故b n =a n a n +1=1(3n -1)(3n +2)=13????1

3n -1-13n +2,故T n

=b 1+b 2+…+b n =13×????12-15+13×????15-18+…+1

3×????13n -1-13n +2=13????12-13n +2=16-

13·13n +2.因为13n +2

>0,所以T n <1

6. 13.[选做题]设a ,b 是两个实数,给出下列条件: ①a +b >1;②a +b =2;③a +b >2;④a 2 +b 2>2;⑤ab >1.

其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).

解析 若a =12,b =2

3,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b

=2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1,故③能推出.

答案 ③

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新人教A版选修45

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新 人教A 版选修45 [整合·网络构建] [警示·易错提醒] 1.比较法的一个易错点. 忽略讨论导致错误,当作差所得的结果“正负不明”时,应注意分类讨论. 2.分析法和综合法的易错点. 对证明方法不理解导致证明错误,在不等式的证明过程中,常因对分析法与综合法的证明思想不理解而导致错误. 3.反证法与放缩法的注意点. (1)反证法中对结论否定不全. (2)应用放缩法时放缩不恰当. 专题一 比较法证明不等式 比较法是证明不等式的最基本、最重要的方法,主要有作差比较法和作商比较法,含根号时常采用比平方差或立方差.基本步骤是作差(商)—变形—判断—结论,关键是变形,变形的目的是判号(与1的大小关系),变形的方法主要有配方法、因式分解法等. [例?] 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx ). 证明:因为b +c a x 2+c +a b y 2+a +b c z 2-2(xy +yz +zx )= ? ????b a x 2+a b y 2-2xy +? ?? ??c b y 2+b c z 2-2yz +

? ????a c z 2+c a x 2-2zx =? ????b a x -a b y 2+ ? ????c b y -b c z 2+? ?? ??a c z -c a x 2≥0, 所以b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx )成立. 归纳升华 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法. [变式训练] 已知a ,b ∈R ,求证:a 2+b 2 +1≥ab +a +b . 证明:法一 因为a 2+b 2-ab -a -b +1=12 [(a -b )2+(a -1)2+(b -1)2]≥0, 所以a 2+b 2+1≥ab +a +b . 法二 a 2+b 2-ab -a -b +1=a 2-(b +1)a +b 2-b +1, 对于a 的二次三项式, Δ=(b +1)2-4(b 2-b +1)=-3(b -1)2≤0, 所以a 2-(b +1)a +b 2 -b +1≥0, 故a 2+b 2+1≥ab +a +b . 专题二 综合法证明不等式 综合法证明不等式的思维方式是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立. 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误. [例2] 设a ,b ,c 均为正数,且a +b +c =1,求证: a 2b +b 2c +c 2 a ≥1. 证明:因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2 a +a ≥2c , 故a 2b +b 2c +c 2 a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2 a ≥a +b +c . 所以a 2b +b 2c +c 2 a ≥1. 归纳升华

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

2019届高考数学考前30天基础知识专练8(不等式推理与证明)

高三数学基础知识专练 不等式 推理与证明 一.填空题(共大题共14小题,每小题5分,共70分) 1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察 2、一元二次不等式ax +bx +c >0的解集为(α,β)(α>0),则不等式cx +bx +a >0的解集为 __________________. 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线.已知直线 b ?平面α,直线a ?平面α,直线b //平面α,则直线b //直线a ”,这个结论显然是错误的,这是因为________________(填写下面符合题意的一个序号即可). (1)大前提错误 (2)小前提错误 (3)推理形式错误 (4)非以上错误 4、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (n )= . 5、在等差数列{a n }中,公差为d ,前n 项和为S n ,则有等式d n n na S n 2 )1(1-+=成立.类比上述 性质,相应地在等比数列{b n }中,公比为q ,前n 项和为T n ,则有等式_____成立. 6、下列推理中属于合情合理的序号是_____________. (1)小孩见穿“白大褂”就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯. 7、设?????≥-<=-2 ),1(log 22)(2 21x x x x f x ,则不等式2)(>x f 的解集为____________. 8、若函数13)2(2)(2≥?+++= x a x a x x x f 能用均值定理求最大值,则a 的取值范围是____. 9、设a >b >c >0,且 c a m c b b a -≥ -+-11恒成立,则m 的最大值为___________. 10、某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋 35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件 下,最少要花费____________元. 11、已知0,0>>b a 且1=+b a ,则)1 )(1(b b a a ++ 的最小值为_______________. 12、设f (x )=x 3+x ,a ,b ,c ∈R 且a +b >0,b +c >0,a +c >0, 则f (a )+f (b )+f (c )的值的符号为____(填“正数” 或“负数). 13、删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,则这个数列的第2019项为__________. 14、下面使用类比推理正确的序号是__________. (1)由“(a +b )c =ac +bc ”类比得到:“()()()a b c a c b c +?=?+?”; (2)由“在f (x )=ax 2+bx (a ≠0)中,若f (x 1)=f (x 2)则有f (x 1+x 2)=0”类比得到“在等差数列{a n }中,S n 为前n 项和,若S p =S q ,则有S p+q =0”; (3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

听课答案-第六单元-不等式、推理与证明

全品高考复习方案数学(理科) RJA 第六单元不等式、推理与证明 1.编写意图 (1)重视不等式本身的知识、方法的讲解和练习力度,以基本的选题和细致全面的讲解进行组织,使学生掌握好不等式本身的重要知识和方法,为不等式的应用打下良好的基础. (2)二元一次不等式(组)所表示的平面区域和简单的线性规划问题,是高考重点考查的两个知识点,我们不把探究点设置为简单的线性规划问题,而是设置为目标函数的最值(这样可以涵盖线性规划和非线性规划),含有参数的平面区域以及生活中的优化问题,这样在该讲就覆盖了高考考查的基本问题. (3)对于合情推理,主要在于训练学生的归纳能力,重点在一些常见知识点上展开. 2.教学建议 (1)在各讲的复习中首先要注意基础性,这是第一位的复习目标.由于各讲的选题偏重基础,大多数例题、变式题学生都可以独立完成,在基础性复习的探究点上要发挥教师的引导作用,教师引导学生独立思考完成这些探究点,并给予适度的指导和点评. (2)要重视实际应用问题的分析过程、建模过程.应用问题的难点是数学建模,本单元涉及了较多的应用题,在这些探究点上教师的主要任务就是指导学生如何通过设置变量把实际问题翻译成数学问题,重视解题的过程. (3)不等式在高考数学各个部分的应用,要循序渐进地解决,在本单元中涉及不等式的综合运用时,我们的选题都很基础,在这样的探究点上不要试图一步到位,不等式的综合运用是整个一轮复习的系统任务,在本单元只涉及基本的应用,不要拔高. (4)推理与证明是培养学生良好思维习惯,学习和运用数学思想方法,形成数学能力的重要一环.要站在数学思想方法的高度,对多年来所学习的数学知识和数学方法进行较为系统的梳理和提升.务必使学生对数学发现与数学证明方法有一个较为全面的认识. 3.课时安排 本单元共7讲,一个小题必刷卷(九),建议每讲1个课时完成,小题必刷卷1个课时完成,本单元建议用8个课时完成复习任务. 第33讲不等关系与不等式 考试说明了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 考情分析 考点考查方向考例考查热度 不等式的性 比较数、式的大小2017全国卷Ⅰ11 ★☆☆质 不等式性质 求参数的值、范围★☆☆的应用 真题再现 ■[2017-2013]课标全国真题再现 [2017·全国卷Ⅰ]设x,y,z为正数,且2x=3y=5z,则()

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.docsj.com/doc/2a12430839.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.docsj.com/doc/2a12430839.html,) 原文地址: https://www.docsj.com/doc/2a12430839.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课后练习 新人教A版选修4-5

2016-2017学年高中数学 第2讲 证明不等式的基本方法 1 比较法、 综合法与分析法课后练习 新人教A 版选修4-5 一、选择题 1.设02x =4x >2x , ∴只需比较1+x 与1 1-x 的大小. ∵1+x -11-x =1-x 2-11-x =-x 2 1-x <0, ∴1+x <1 1-x . 答案: C 2.已知a ,b ,c ,d ∈{正实数}且a b

答案:A

3.已知a >2,x ∈R ,P =a +1a -2,Q =? ????12x 2-2,则P ,Q 的大小关系为( ) A .P ≥Q B .P >Q C .P 2,∴a -2>0, P =a +1a -2=a -2+1a -2 +2≥2+2=4. 又Q =? ????12x 2-2≤? ?? ??12-2=4.∴P ≥Q . 答案: A 4.已知a ,b ∈R ,则“a +b >2,ab >1”是“a >1,b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: ∵a >1,b >1?a +b >2,ab >1 a + b >2,ab >1?/ a >1,b >1 举例说明a =3,b =12 . 答案: B 二、填空题 5.设a >b >0,x =a +b -a ,y =a -a -b ,则x ,y 的大小关系是x ________y . 解析: ∵a >b >0, ∴x -y =a +b -a -(a -a -b ) =b a +b +a -b a +a -b = b a -b -a +b a +b +a a +a -b <0. 答案: < 6.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若∠C =90°,则a +b c 的取值范围是________. 解析: 由题意知c 2=a 2+b 2≥2ab , 即ab c 2≤12 .

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

2019届高三数学文一轮复习:第七章 不等式 推理与证明 课时跟踪训练38含解析

课时跟踪训练(三十八) [基础巩固] 一、选择题 1.观察下面关于循环小数化分数的等式:0.3·=39=13,0.1· 8·=1899=211,0.3· 5· 2·=352999,0.0005· 9·=11000×5999=5999000,据此推测循环小数0.23·可化成分数( ) A.2390 B.9923 C.815 D.730 [解析] 0.23·=0.2+0.1×0.3·=15+110×39=730. 选D. [答案] D 2.已知数列{a n }为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规 律,则a 99+a 100的值为( ) A.3724 B.76 C.1115 D.715 [解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列 到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78, 69,∴a 99+a 100=78+69=3724,选A. [答案] A 3.观察下列各式:55=3125,56=15625,57=78125,…,则52018的末四位数字为( ) A .3125 B .5625 C .0625 D .8125

[解析]∵55=3125,56=15625,57=78125, 58=390625,59=1953125,…,∴最后四位应为每四个循环,2018=4×504+2,∴52018最后四位应为5625. [答案] B 4.(2017·安徽合肥一中模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形 如以下形式的等式具有“穿墙术”:22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15, 55 24=5 5 24,…,则按照以上规律,若9 9 n=9 9 n具有“穿墙术”,则n= () A.25 B.48 C.63 D.80 [解析]由22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15,5 5 24=5 5 24,…, 可得若99 n=9 9 n具有“穿墙术”,则n=9 2-1=80,故选D. [答案] D 5.(2017·湖北宜昌一中、龙泉中学联考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考得好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是() A.甲丙B.乙丁 C.丙丁D.乙丙 [解析]如果甲对,则丙、丁都对,与题意不符,故甲错,乙对;如果丙错,则丁错,因此只能是丙对,丁错,故选D. [答案] D 6.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4), 此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a1 1= a2 2= a3 3= a4 4=k,

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

(通用版)201X版高考数学一轮复习 不等式选讲 2 第2讲 不等式的证明教案 理

第2讲 不等式的证明 1.基本不等式 定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则 a +b 2 ≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a 、b 、c 为正数,则 a + b +c 3 ≥3 abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向. 对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2, 所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3. 若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1 b 2≥8. 证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0, 所以1 a 2+1 b 2= (a +b )2 a 2 + (a +b )2 b 2 =1+2b a + b 2a 2+1+2a b +a 2b 2=2+? ????2b a +2a b +? ?? ?? b 2a 2+a 2 b 2≥2+

第六章质量检测不等式推理与证明

第六章不等式推理与证明 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1 .不等式(x + 1) x — 1> 0的解集是 A . {x|x > 1} 解析:■/ x — 1> 0, /? x > 1. 同时 x + 1> 0,即卩 x > — 1.二 x > 1. 答案:B 2 .下列命题中的真命题是 答案: x w 0 x 2> 1,从而得 x > 1 或 x W — 1. 答案:D 2x + 1 4 .若集合 A = {x||2x — 1|v 3}, B = {x| v 0},贝V A Q B 是 3 — x 1 A . {x|— 1 v x v — 2或 2v x v 3} B . {x|2v x v 3} 1 1 C . {x|—v x v 2} D . {x|— 1v x v — ^} 解析:T I2X — 1|v 3, ??? — 3v 2x — 1v 3.A — 1v x v 2. 2x + 1 又v 0, (2x + 1)(x — 3) > 0, 3 — x … 1 1 …x > 3 或 x v — 2* - - A Q B = {x| — 1 v x v — 2). {x|x > 1} C . {x|x > 1 或 x =— 1} {x|x >— 1 或 x = 1} A 门. .右 C .若 a > b , c > d ,贝U ac > bd a > b ,贝U a 2 > b 2 解析: 由 a >|b|,可得 a >|b|>0? 2 2 B .若 |a|> b ,则 a > b D .若 a > |b|,贝U a 2> b 2 a 2> b 2. x 2, x w 0 3 .已知函数 f(x) = 2x — 1, x >0 若f(x)> 1,则x 的取值范围是 A . ( — m,— 1] B . [1 ,+m ) C . ( — m, 0] U [1,+m ) ( — m, — 1] U [1 ,+m ) 解析:将原不等式转化为: x > 0 检测

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

人教版高数选修4-5第2讲:证明不等式的基本方法(教师版)

证明不等式的基本方法 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点: 掌握比较法、综合法和分析法、反证法和放缩法的方法; 教学难点: 理解放缩法的解题及应用。 1、比较法:所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 2、分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。 3、综合法:从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。 4、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反正法.用反证法证明不等式时,必须将命题结论的反面的各种情形一一导出矛盾这里作一简单介绍。 反证法证明一个命题的思路及步骤: 1) 假定命题的结论不成立; 2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; 3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4) 肯定原来命题的结论是正确的。 5.放缩法:放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明.放缩法的目的性强,必须恰到好处, 同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及.否则不能达到目的。 类型一: 比较法、分析法和综合法去证明不等式 例1. 求证:x 2 + 3 > 3x 解析:∵(x 2 + 3) - 3x = 04 3 )23(3)23()23 (32222>+ -=+-+-x x x ∴x 2 + 3 > 3x 答案:见解析 练习1. 已知a , b , m 都是正数,并且a < b ,求证: b a m b m a >++

相关文档
相关文档 最新文档