文档视界 最新最全的文档下载
当前位置:文档视界 › 高三数学不等式、推理与证明训练试题_题型归纳

高三数学不等式、推理与证明训练试题_题型归纳

高三数学不等式、推理与证明训练试题_题型归纳
高三数学不等式、推理与证明训练试题_题型归纳

高三数学不等式、推理与证明训练试题_题型归纳

一、选择题:本大题共12小题,每小题5分,共60分.

1.下列符合三段论推理形式的为()

A.如果pq,p真,则q真

B.如果bc,ab,则ac

C.如果a∥b,b∥c,则a∥c

D.如果a>b,c>0,则ac>bc

解析:由三段论的推理规则可以得到B为三段论.

答案:B

2.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是()

①各棱长相等,同一顶点上的任意两条棱的夹角都相等;

②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任意两条棱的夹角都相等.

A.①B.②C.①②③D.③

解析:由类比原理和思想,①②③都是合理、恰当的.

答案:C

3.用反证法证明命题“2+3是无理数”时,假设正确的是()

A.假设2是有理数B.假设3是有理数

C.假设2或3是有理数D.假设2+3是有理数

解析:假设结论的反面成立,2+3不是无理数,则2+3是有理数.

答案:D

4.已知ai,biR(i=1,2,3,…,n),a12+a22+…+an2=1,b12+b22+…+bn2=1,则a1b1+a2b2+…+anbn的最大值为()

A.1 B.2 C.n2 D.2n

解析:此结论为“a,b,c,dR,a2+b2=1,c3+d2=1,则ac+bda2+c22+b2+d22=1”的推广,类比可得a1b1+a2b2+…+anbna12+b122+a22+b222+…+an2+bn22=1.

答案:A

5.在下列函数中,最小值是2的是()

A.y=x2+2x

B.y=x+2x+1(x>0)

C.y=sinx+1sinx,x(0,2)

D.y=7x+7-x

解析:A中x的取值未限制,故无最小值.

D中,∥y=7x+7-x=7x+17x2,等号成立的条件是x=0.

B、C选项均找不到等号成立的条件.

答案:D

6.一元二次不等式ax2+bx+1>0的解集为{x|-1<x<13},则ab的值为()

A.-6 B.6 C.-5 D.5

解析:∥ax2+bx+1>0的解集是{x|-1<x<13},

-1,13是方程ax2+bx+1=0的两根,

-1+13=-ba-113=1ab=-2,a=-3,ab=-3(-2)=6.

答案:B

7.已知a>0,b>0,则1a+1b+2ab的最小值是()

A.2 B.22 C.4 D.5

解析:因为1a+1b+2ab21ab+2ab=21ab+ab4,当且仅当1a=1b,且1ab=ab,即a=b =1时,取“=”.

答案:C

8.在直角坐标系中,若不等式组y0,y2x,yk(x-1)-1,表示一个三角形区域,则实数k 的取值范围是()

A.(-,-1) B.(-1,2)

C.(-,-1)(2,+) D.(2,+)

解析:先作出y0,y2x,的平面区域如图:

若k=0时,显然不能与阴影部分构成三角形.

若k>0,将阴影部分的点如(0,0)代入yk(x-1)-1,有0-k-1,显然不能与阴影部分构成三角形,所以k<0;又y=k(x-1)-1是过定点(1,-1)的直线,由图知,若与阴影部分构成三角形,则有-k-1>0,

故k<-1时,原不等式组能构成三角形区域.

答案:A

9.如果a>b,给出下列不等式,其中成立的是()

(1)1a<1b;(2)a3>b3;

(3)a2+1>b2+1; (4)2a>2b.

A.(2)(3)B.(1)(3)C.(3)(4)D.(2)(4)

解析:∥a、b符号不定,故(1)不正确,(3)不正确.

∥y=x3是增函数,a>b时,a3>b3,故(2)正确.

y=2x是增函数,a>b时,2a>2b,故(4)正确.

答案:D

10.设函数f(x)=-3(x>0),x2+bx+c (x0),若f(-4)=f(0),f(-2)=0,则关于x的不等式f(x)1的解集为()

A.(-,-3][-1,+) B.[-3,-1]

C.[-3,-1](0,+) D.[-3,+)

解析:当x0时,f(x)=x2+bx+c且f(-4)=f(0),故对称轴为x=-b2=-2,b=4.

又f(-2)=4-8+c=0,c=4,

令x2+4x+41有-3-1;

当x>0时,f(x)=-21显然成立.

故不等式的解集为[-3,-1](0,+).

答案:C

11.若直线2ax+by-2=0(a>0,b>0)平分圆x2+y2-2x-4y-6=0,则2a+1b的最小值是()

A.2-2 B.2-1 C.3+22 D.3-22

解析:由x2+y2-2x-4y-6=0得

(x-1)2+(y-2)2=11,

若2ax+by-2=0平分圆,

2a+2b-2=0,a+b=1,

2a+1b=2(a+b)a+a+bb=3+2ba+ab

3+2 2baab=3+22,

当且仅当2ba=ab,且a+b=1,即a=2-2,b=2-1时取等号.

答案:C

12.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与仓库到车站的距离成正比,如果在距离车站10 km处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站()

A.5 km处B.4 km处

C.3 km处D.2 km处

解析:由题意可设y1=k1x,y2=k2x,k1=xy1,k2=y2x,

把x=10,y1=2与x=10,y2=8分别代入上式得k1=20,k2=0.8,

y1=20x ,y2=0.8x(x为仓库到车站的距离),

费用之和y=y1+y2=0.8x+20x2 0.8x20x=8,

当且仅当0.8x=20x,即x=5时等号成立,故选A.

答案:A

第∥卷(非选择共90分)

二、填空题:本大题共4个小题,每小题5分,共20分.

13.如下图,对大于或等于2的自然数m的n次幂进行如下方式的“分裂”:

仿此,52的“分裂”中最大的数是,53的“分裂”中最小的数是.

解析:由已知中“分裂”可得

故“52”的“分裂”中最大的数是9,53的“分裂”中最小的数是21.

答案:921

14.由图①有面积关系:S∥PABS∥PAB=PAPBPAPB,则由图②有体积关系:VP-ABCVP-ABC =__________.

解析:设三棱锥C-PAB的高为h,

15.已知等比数列{an}中,a2>a3=1,则使不等式a1-1a1+a2-1a2+a3-1a3+…+an-

1an0成立的最大自然数n是__________.

解析:∥a2>a3=1,0<q=a1a2<1,a1=1q2>1,

a1-1a1+a1-1a2+a3-1a1+…+an-1an

=(a1+a2+…+an)-1a1+1a2+…+1an

=a1(1-qn)1-q-1a11-1qn1-1q=a1(1-q4)1-q-q(1-qn)a1(1-q)qn0,

a1(1-qn)1-qq(1-qn)a1(1-q)qn.

因为0 <q<1,所以,化简得:a121qn-1,即q4qn-1,

4n-1,n5,所以n的最大值为5.

答案:5

16.设实数x,y满足x-y-20,x+2y-50,y-20,则u=yx-xy的取值范围是__________.

解析:作出x,y满足的可行域如图中阴影部分所示,可得可行域内的点与原点连线的斜率的取值范围是13,2,

即yx13,2,故令t=yx,

则u=t-1t,根据函数u=t-1t在t13,2上单调递增,得u-83,32.

答案:-83,32

三、解答题:本大题共6小题,共7 0分.

17.(10分)在三角形中有下面的性质:

(1)三角形的两边之和大于第三边;

(2)三角形的中位线等于第三边的一半;

(3)三角形的三条内角平分线交于一点,且这个点是三角形的内心;

(4)三角形的面积为S=12(a+b+c)r(r为三角形内切圆半径,a、b、c为三边长).

请类比出四面体的有关相似性质.

解析:(1)四面体任意三个面的面积之和大于第四个面的面积;

(2)四面体的中位面(过三条棱的中点的面)的面积等于第四个面的面积的四分之一;新课]

(3)四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心;

(4)四面体的体积为V =13(S1+S2+S3+S4)r(r为四面体内切球的半径,S1、S2、S3、S4为四面体的四个面的面积).

18.(12分)已知a>0,b>0,求证b2a+a2ba+b.

解析:b2a+a2b-(a+b)=b2a-a+a2b-b

=(b+a)(b-a)a+(a+b)(a-b)b

=(a-b)(a+b)1b-1a=1ab(a-b)2(a+b),

∥a>0,b>0,b2a+a2ba+b.

19.(12分)为响应国家扩大内需的政策,某厂家拟在2009年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t0)万元满足x=4-k2t+1(k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2009年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家2009年该产品的利润y万元表示为年促销费用t万元的函数;

(2)该厂家2009年的年促销费用投入多少万元时厂家利润最大?

解析:(1)由题意有1=4-k1,得k=3,故x=4-32t+1.

y=1.56+12xxx-(6+12x)-t

=3+6x-t=3+64-3t-1-t

=27-182t+1-t(t0).

(2)由(1)知:

y=27-182t+1-t=27.5-9t+12+t+12.

由基本不等式

9t+12+t+1229t+12t+12=6,

当且仅当9t+12=t+12,

即t=2.5时,等号成立,

故y=27-182t+1-t

=27.5-9t+12+t+1227.5-6=21.5.

当t=2.5时,y有最大值21.5.所以2009年的年促销费用投入2.5万元时,该厂家利润最大.20.(12分)设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….

(1)求a1,a2;

(2)猜想数列{Sn}的通项公式.

解析:(1)当n=1时,

x2-a1x-a1=0有一根为S1-1=a1-1,

于是(a1-1)2-a1(a1-1)-a1=0,解得a1=12.

当n=2时,x2-a2x-a2=0有一根为S2-1=a2-12,

于是a2-122-a2a2-12-a2=0,

解得a2=16.

(2)由题设(Sn-1)2-an(Sn-1)-an=0,

Sn2-2Sn+1-anSn=0.

当n2时,an=Sn-Sn-1,代入上式得

Sn-1Sn-2Sn+1=0①

由(1)得S1=a1=12,S2=a1+a2=12+16=23.

由①可得S3=34,由此猜想Sn=nn+1,n=1,2,3,….

21.(12分)设二次函数f(x)=ax2+b x+c的一个零点是-1,且满足[f(x)-x]f(x)-x2+120恒成立.

(1)求f(1)的值;

(2)求f(x)的解析式;

解析:(1)由均值不等式得x2+122x2=x,

若[f(x)-x]f(x)-x2+120恒成立,

即xx2+12恒成立,

令x=1得112+12=1,故f(1)=1.

(2)由函数零点为-1得f(-1)=0,即a-b+c=0,

又由(1)知a+b+c=1,所以解得a+c=b=12.

又f(x)-x=ax2+12x+c-x=ax2-12x+c,

因为f(x)-x0恒成立,所以=14-4ac0,

因此ac116①

于是a>0,c>0.再由a+c=12,

得acc+a22=116②

故ac=116,且a=c=14,

故f(x)的解析式是f(x)=14x2+12x2+12x+14.

22.(12分)某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5);

(2)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系,并根据你得到的关系式求f(n)的表达式.

解析:(1)∥f(1)=1,f(2)=5,f(3)=13,f(4)=25,

f(5)=25+44=41.

(2)∥f(2)-f(1)=4=41,

f(3)-f(2)=8=42,

f(4)-f(3)=12=43,

f(5)-f(4)=16=44,

由上式规律得出f(n+1)-f(n)=4n.

f(n)-f(n-1)=4(n-1),

f(n-1)-f(n-2)=4(n-2),

f(n-2)-f(n-3)=4(n-3),

f(2)-f(1)=41,

f(n)-f(1)=4[(n-1)+(n-2)+…+2+1]

=2(n-1)n,

f(n)=2n2-2n+1.

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

高考推理与证明专项训练题

高考推理与证明专项训练题 1.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理() A.结论正确B.大前提错误 C.小前提错误D.推理形式错误 答案C 解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x的函数才是对数函数.故选C. 2.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班; 丙说:我们三人各自值班的日期之和相等. 据此可判断丙必定值班的日期是() A.10日和12日B.2日和7日 C.4日和5日D.6日和11日 答案D 解析这12天的日期之和,S12=12×(12+1) =78,甲、乙、丙 2 各自的值班日期之和是26,对于甲,剩余2天的值班日期之和是22,因此这两天是10日和12日,故甲在1日,3日,10日,12日值班;

对于乙,剩余2天的值班日期之和是9,故乙可能在2日,7日,或者是4日,5日值班,因此丙必定值班的日期是6日和11日.故选D. 3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 答案 A 解析 由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,不符合题意;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A. 4.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2 +b 2 =c 2 ,即? ????a c 2+? ?? ??b c 2 =1,则△ABC 为直角三角形,类比此结论可

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

基本不等式题型总结

基本公式 (1)R b a ab a a ∈≥+、,222(2)ab b a 2≥+,一定二正三相等(3 )b a a b b a b a 1122222+≥≥+≥+,当b a =时,等号成立(4)33abc c b a ≥++推广: n n n x x x n x x x 2121≥+++,0>i x 题型 (1)对勾函数:x b ax y +=当x b ax =时,函数取得极值点 (2)1的代换 当题目中有b a b a 11、、、时。例1:正数n m 、满足12=+n m ,求m n 11+的最小值解:223212)21111+≥+++=+?+=+m n n m n m m n m n ()(

(3)xy y x 、、型 例2:已知2=++xy y x ,求y x +最小值①因式分解(提取公因式)2 3232113 )1)(1(2 -≥+∴≥+++=++∴=++y x y x y x xy y x 又②求谁留谁 22208)(4)())(2(4)())(2(44)(2222-≥+≥-+++∴+-≥+∴+-=≥+∴≥+y x y x y x y x y x y x xy y x xy y x 解得: ③?判别法:0 ≥?2 320 )2(40 22 )(,22-≥≥--=?=-+-∴=-+∴-=+=z z z z zy y z y y z z y x y x z 解得则令④技巧、完全对称为最值 解得:原式完全对称和式子中2322 22-==+=∴=∴x x x y x y x

(4)xy y x 、、22型①完全对称 ②求谁留谁 ③?判别法:0≥?④配方,三角换元例3:已知1422=++xy y x 求y x +2的最大值配方: 1)2(41522=++x y x ;则:12(21522=++x y x )(换元: ]2,0[cos 2;sin 215πθθθ∈=+=。x y x θθθsin 15 1cos ,sin 152-==∴y x )sin(58cos sin 15 32?θθθ+=+=+∴y x 510 22≤+∴y x

2020年高考文科数学《不等式》题型归纳与训练

A. a a>b>0,由不等式性质知:->->0,所以< >- 7 2 ∵x-x=4a-(-2a)=6a=15,∴a=15 62 2020年高考文科数学《不等式》题型归纳与训练 【题型归纳】 题型一一元二次不等式解法及其应用 例1若a>b>0,cB.D.< c d c d d c d c 【答案】D 【解析】由c0,又 d c a b a b d c d c 例2关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x,x),且x-x=15,则a=() 1221 A.515 B.C.D.24 15 2 【答案】A 【解析】∵由x2-2ax-8a2<0(a>0),得(x-4a)(x+2a)<0,即-2a0的解集是___________. 【答案】(-3,2)?(3,+∞) 【解析】不等式可化为(x+3)(x-2)(x-3)>0采用穿针引线法解不等式即可. 例4已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 【答案】(-2 2 ,0) 【解析】由题意可得f(x)<0对于x∈[m,m+1]上恒成立,

?f(m+1)=2m2+3m<0 ,则函数y=4x-2+1的最大值. x<,∴5-4x>0,∴y=4x-2+=- 5-4x+?+3≤-2+3=1 1 【解析】因为y=x(8-2x)= 1 . 【答案】9,+∞) ?f(m)=2m2-1<02 即?,解得-0,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2x+(8-2x)=8为定值,故只需将y=x(8-2x)凑上一个系数即可. 例3函数y= x2+7x+10 x+1 (x>-1)的值域为。 [ 【解析】 当x>-1,即x+1>0时,y≥2(x+1)? 4 +5=9(当且仅当x=1时取“=”号). x+1 2

推理与证明经典练习题资料

推理与证明经典练习 题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 高二数学《推理与证明》练习题 一、选择题 1.在等差数列{}n a 中,有4857a a a a +=+,类比上述性质,在等比数列{}n b 中,有( ) A .4857b b b b +=+ B .4857b b b b ?=? C .4578b b b b ?=? D .4758b b b b ?=? 2.已知数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想 出n S 的表达式为( ) A 、12+n n B 、112+-n n C 、112++n n D 、2 2+n n 3.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x =???'1()()n n f x f x +=,n ∈N ,则 2015()f x =( ) A.sin x B.-sin x C.cos x D.-cos x 4.平面内有n 个点(没有任何三点共线),连接两点所成的线段的条数为 ( ) A.()112n n + B.()112 n n - C.()1n n + D.()1n n - 5.已知2()(1),(1)1()2 f x f x f f x +==+,*x N ∈(),猜想(f x )的表达式为 ( ) A .4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21 f x x =+ 6.观察数列的特点1,2,2,3,3,3,4,4,4,4,…的特点中, 其中第100项是( ) A .10 B .13 C .14 D .100 7.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 8. 分析法证明不等式的推理过程是寻求使不等式成立的( ) A .必要条件 B .充分条件 C .充要条件 D .必要条件或充分条件 9. 2+7与3+6的大小关系是( ) A.2+7≥3+6 B.2+7≤3+6 C.2+7>3+6 D.2+7<3+ 6 10.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

12道经典推理题

12道经典推理题,据说谁能全做出来谁就是天才 1、水平思考法 有一家人决定搬进城里,于是去找房子。 全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。 他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。 这时,温和的房东出来,对这三位客人从上到下地打量了一番。 丈夫豉起勇气问道:"这房屋出租吗" 房东遗憾地说:"啊,实在对不起,我们公寓不招有孩子的住户。" 丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开了。 那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了他那红叶般的小手,又去敲房东的大门。 这时,丈夫和妻子已走出5米来远,都回头望着。 门开了,房东又出来了。这孩子精神抖擞地说:...... 房东听了之后,高声笑了起来,决定把房子租给他们住。 问:这位5岁的小孩子说了什么话,终于说服了房东 我的想法(首先我保证自己事先没有看过任何答案,朋奕是比较诚实的,但错了也希望大家能礼貌指出)是:小孩以自己身份去租,那么就符合房东条件了。 2、篮球赛 在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6秒钟内再赢乙队4分,显然是不可能的了。 这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分 我的想法:让对方进球,然后加时再打。 3、分油问题 有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份 我的想法:先把13斤的倒满,然后用13斤的倒满5斤,这时13斤中就有8斤,也就是1/3了,将这些到如11斤容器中。 再用5斤和剩余的倒满13斤的,重新来一次,就完成了。 4、第十三号大街 史密斯住在第十三号大街,这条大街上的房子的编号是从13号到1300号。琼斯想知道史密斯所住的房子的号码。 琼斯问道:它小于500吗史密斯作了答复,但他讲了谎话。 琼斯问道:它是个平方数吗史密斯作了答复,但没有说真话。 琼斯问道:它是个立方数吗史密斯回答了并讲了真话。 琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。 史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。 但是,琼斯说错了。 史密斯住的房子是几号 我的想法是:64号,首先想最简单的处理办法,这里一共有5个条件,能作为初步判断的只有前三个,那么前三个中最简单的就是第三个立方数的条件,假设为真,得出1~10的立方数,其中既符合平方数的也符合立方数的只有64和512,若大于500则只有512,小于500则64,但512中有1,若

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

高三数学不等式题型总结全

不等式的解题归纳 第一部分 含参数不等式的解法 例1解关于x 的不等式022 ≤-+k kx x 例2.解关于x 的不等式:(x-2 x +12)(x+a)<0. 例3、若不等式13 64222 2<++++x x k kx x 对于x 取任何实数均成立,求k 的取值范围. 例4若不等式ax 2+bx+1>0的解集为{x ︱-3--++m f m f θθ恒成立,求实数m 的取值范围.

【课堂练习】 1、已知(2a -1) 2 x -(a-1)x-1<0的解集为R ,求实数a 的取值范围. 2、解关于x 的不等式:.0)2(2 >+-+a x a x 3、解关于x 的不等式:.012 <-+ax ax 【课后练习】 1.如果不等式x 2-2ax +1≥2 1 (x -1)2对一切实数x 都成立,a 的取值范围是 2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是 3.对于任意实数x ,代数式 (5-4a -2a )2 x -2(a -1)x -3的值恒为负值,求a 的取值范围 4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2 β关于k 的解析式,并求y 的取值范围 第二部分 绝对值不等式 1.(2010年高考福建卷)已知函数f (x )=|x -a |. (1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.

选修2-2推理与证明单元测试题(好经典)

《推理与证明》单元测试题 考试时间120分钟 总分150分 一.选择题(共50分) 1.下面几种推理过程是演绎推理的是 ( ) A .在数列{a n }中,a 1=1,a n =12(a n -1+1 an -1 )(n ≥2),由此归纳出{a n }的通项公式 B .某校高三(1)班有55人,高三(2)班有54人,高三(3)班有52人,由此得出高三所有班人数超过50人 C .由平面三角形的性质,推测空间四面体的性质 D .两条直线平行,同旁内角互补,由此若∠A ,∠B 是两条平行直线被第三条直线所截得的同旁内角,则∠A +∠B =180° 2.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y | =2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( ) A .76 B .80 C .86 D .92 3. 观察下列各式:72=49,73=343,74=2401,…,则72012的末两位数字为( ) A .01 B .43 C .07 D .49 4. 以下不等式(其中..0a b >>)正确的个数是( ) 1> ② ③lg 2>A .0 B .1 C .2 D .3 5.如图,椭圆的中心在坐标原点, F 为左焦点,当AB FB ⊥时,有 ()()() 2 2 2 2 2 c b b a c a +++=+ ,从而得其离心率为 ,此类椭圆称为“黄金椭圆”,类比“黄金椭圆”,可推出“黄金双曲线”的离心率为( ) A . 12 B .12+ C 6.如图,在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰 是由6颗珠宝构成的正六边形, 第三件首饰是由15颗珠宝构成的正六边形, 第四件首饰是由28颗珠宝构成的正六边形,以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,依此推断第8件首饰上应有( )颗珠宝。 第2件 第3件 第1件

基本不等式题型归纳

基本不等式题型归纳 【重点知识梳理】 1.基本不等式:2a b ab +≤ (1)基本不等式成立的条件:0a >,0b >. (2)等号成立的条件:当且仅当a b =时,等号成立. 2.几个重要的不等式:(1)222a b ab +≥(,a b R ∈); (2) 2b a a b +≥(0ab >); (3)2( )2a b ab +≤(,a b R ∈); (4)2222()()a b a b +≥+(,a b R ∈). 3.算术平均数与几何平均数 设0a >,0b >,则,a b 的算术平均数为 2 a b +,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知0a >,0b >,则 (1)如果积ab 是定值p ,那么当且仅当a b =时,a b +有最小值是2p .(简记:积定和最小) (2)如果和a b +是定值p ,那么当且仅当a b =时,ab 有最大值是2 4 p .(简记:和定积最大) 题型一览 1、已知0a >,0b >,且41a b +=,则ab 的最大值为_______,则 1ab 的最小值为_______; 2、已知21x y +=,则24x y +的最小值为_______ 3、设03x <<,则函数4(52)y x x =-的最大值为_______ 4、若0x >,则4x x + 的最小值为_______;若0x <,则4x x +的最大值为_______ 5、若2x > ,则12x x +-的最小值为_______;若2x < ,则12 x x +-的最大值为_______ 若函数1()(2)2f x x x x =+ >-在 x a =处有最小值,则a =_______ 6、已知,a b R +∈,且22a b +=,则 12a b +(2a b b a +)的最小值为_______,此时,a b 的值分别是_______ 7、已知0x >,0y >,2 12x y +=(22x y xy +=或220x y xy +-=),则2x y +的最小值为_______

推理与证明综合测试题

一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 2.结论为:n n x y +能被x y +整除,令1234n =,,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述性质,在等比数 列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)的假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 6.观察式子:213122+ <,221151233++<,222111712344+++<,L ,则可归纳出式子为( ) A.22211111(2)2321n n n + +++<-L ≥ B.22211111(2)2321n n n + +++<+L ≥ C.222111211(2)23n n n n -+ +++,,∥.若 EF AB ∥,EF 到CD 与AB 的距离之比为:m n ,则可推算出: ma mb EF m m +=+.试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD BC ,相交于O 点,设OAB △, OCD △的面积分别为12S S ,,EF AB ∥且EF 到CD 与AB 的距离之 比为:m n ,则OEF △的面积0S 与12S S ,的关系是( ) A.120mS nS S m n +=+ B.120nS mS S m n +=+

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

专题:基本不等式常见题型归纳

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2 +b 2 ≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R , a 2+ b 2 2 ≤( a +b 2 )2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2 +b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤( a +b 2 )2 ),当且仅当a =b 时 取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数,x y 满足0x y >>,且22log log 1x y +=,则22 x y x y +-的最小值 为 . 2.若实数,x y 满足1 33(0)2 xy x x +=<< ,则313x y + -的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________

逻辑推理经典题

逻辑推理题练习 真假推理属于显性结论类的一种,其具体表现是在题目中给出若干个前提,前题有真有假,要求通过判断命题的真假情况,进而推理出指定的结论。 一、题型分析 经过对近年真题的比较与研究,我们不难发现,真假推理题型的难度在不断增加,答题的重点从矛盾关系扩大到反对、推出等多种关系,提问方式也从“只有一真”,“只有一假”扩大到“两真两假”。对于公务员考试,绝大多数考生没有必要也不需要去学习专业的逻辑学知识,只要掌握如下解题方法即可。 二、解题思路 首先,判断题型是“只有一真”,“只有一假” 还是“两真两假”;其次,在题干当中寻找一组矛盾关系,反对关系和推出关系,判断这两个条件是一真一假、不能同真、不能同假,还是必须同真、必须同假;最后,进行推导,得出结论。 三、真题示例 (一)只有一真 1.桌上有四个杯子,每个杯子都写着一句话,第一个:“所有的杯子里都有啤酒”;第二个:“本杯中有可乐”;第三杯“本杯中没有咖啡”;第四个“有些杯子中没有啤酒”。 假如只有一个为真话,那么()为真。 A.所有的杯子中有啤酒 B.所有的杯子中都没有可乐 C.第三个杯子中有咖啡 D.第二个杯子中有可乐 2.在一次对全市中学假期加课情况的检查后,甲乙丙三人有如下结论: 甲:有学校存在加课问题。 乙:有学校不存在加课问题。 丙:一中和二中没有暑期加课情况。 如果上述三个结论中只有一个正确,则以下哪项一定为真() A.一中和二中都存在暑期加课情况 B.一中和二中都不存在暑期加课情况 C.一中存在加课情况,但二中不存在 D.一中不存在加课情况,但二中存在 (二)只有一假 3.某珠宝店失窃,甲、乙、丙、丁四人涉嫌被拘审。四人的口供如下:甲:案犯是丙。乙:丁是罪犯。丙:如果我作案,那么丁是主犯。丁:作案的不是我。四个口供中只有一个是假的。 如果以上断定为真,则以下哪项是真的?()。 A.说假话的是甲,作案的是乙 B.说假话的是丁,作案的是丙和丁

(完整版)高中数学基本不等式题型总结

The shortest way to do many things is 专题 基本不等式 编者:高成龙 专题 基本不等式 【一】基础知识 基本不等式:) 0,0a b a b +≥>>(1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1);(2);()24a b ab +≤(),a b R ∈)+0,0a b a b ≥>>【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知,且,则的最小值为 .0,0x y >>34x y +=41x y +【变式1】已知,且,则的最小值为 .0,0x y >>34x y +=4x x y +【变式2】(2013年天津)设, 则的最小值为 .2,0a b b +=>1||2||a a b +【例2】(2012河西)已知正实数满足,则的最小值为 . ,a b 211a b +=2a b +【变式】已知正实数满足,则的最小值为 . ,a b 211a b +=2a b ab ++

【例3】已知,且,则的最小值为 . 0,0x y >>280x y xy +-=x y +【例4】已知正数满足,则的最小值为 .,x y 21x y +=8x y xy +【例5】已知,若不等式总能成立,则实数的最大值为 . 0,0a b >>212m a b a b +≥+m 【例6】(2013年天津市第二次六校联考)与圆相交于两点,()1,0by a b +=≠22 1x y +=,A B 为坐标原点,且△为直角三角形,则的最小值为 . O AOB 22 12a b +

【例7】(2012年南开二模)若直线始终平分圆的周长,()2200,0ax by a b -+=>>22 2410x y x y ++-+=则的最小值为 . 11a b +【例8】设分别为具有公共焦点的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足 12,e e 12,F F P ,则的最小值为 120PF PF ?= 22214e e +【例9】已知,则的最小值是( )0,0,lg 2lg 4lg 2x y x y >>+=11x y + A .6 B .5 C . D .3+【例10】已知函数,若,且,则的最小值为 .()4141 x x f x -=+120,0x x >>()()121f x f x +=()12f x x +

相关文档
相关文档 最新文档