文档视界 最新最全的文档下载
当前位置:文档视界 › 二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略
二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略

二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。

一、适时用分类,讨论破定势

分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。

例1 已知f(x)=x 2

+bx+c (b,c ∈R),

(1)当b<-2时,求证:f(x)在(-1,1)单调递减。

(2)当b<-2时,求证:在(-1,1)至少存在一个x0,使得|f(x0)|≥

2

1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)单调递减。

(2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。

当x=0时,|f(0)|=|c|,|c|与

2

1

的大小关系如何呢?对|c|进行讨论: (i )若|c|≥

21,即|f(0)|≥2

1

,命题成立。 (ii )若|c|<

21,取x 0=-21,则2

1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .

故不论|c|≥

21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2

1

成立。 本题除了取x=-

2

1

外,x 还可取那些值呢?留给读者思考。 二、合理用公式,灵活换视角

公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。

例2 已知f(x)=x 2+ax+b 的图象与x 轴两交点的横坐标为x 1,x 2若|a|+|b|<1,求证:|x 1|<1且|x 2|<1.

解 由韦达定理,得???=-=+b x x a

x x 2121

???==+∴.|||||,|||2

121

b x x a x x 代入|a|+|b|<1,得|x 1+x 2|+|x 1x 2|<1, 又|x 1|-|x 2|≤|x 1+x 2|.

1||||||||||21212121<++≤+-∴x x x x x x x x

即|x 1|(1+|x 2|)<1+|x 2|。 又∵1+|x 2|>0,∴|x1|<1. 同理可得|x 2|<1。

例3 函数f(x)=ax 2+bx+c(a≠0),若函数f(x)的图象与直线y=x 和y=-x 均无公共点,求证:(1)4ac -b 2>1.

(2)对一切实数x ,恒有|

|41

||2a c bx ax >++. 分析(1)略。

(2)|442)2(|||2

2

a

b a

c a b x a c bx ax -+

+=++ 由(1)可知2)2(a

b x a +与a b a

c 442

-同号。

||2c bx ax ++∴

.

||41|44||

44||)2(|22

2a a b ac a

b a

c a b x a >-≥-++=

三、机智赋特值,巧妙求系数

变量在某一区域有某种结论成立时,可通过对题目结构特征的观察,由目标导向,赋予一系列特殊的函数值来构建对应的系数关系,使抽象问题具体化,从而独辟蹊径,出奇制胜。

例 4 函数f(x)=ax 2+bx+c(a≠0),对一切x ∈[-1,1],都有|f(x)|≤1,且g(x)=cx 2+bx+a ,求证:

(1)x ∈[-1,1]时,|2ax+b|≤4. (2)x ∈[-1,1]时,|g(x)|≤2.

证明 (1)由题设条件,可得??

?

??=+-=-++=.)0(,)1(,

)1(c f c b a f c b a f

???

?

?

?

???=--=--+=∴)0()],

1()1([21)],0(2)1()1([21f c f f b f f f a 又由题意可知??

?

??≤≤-≤.0|)0(|,1|)1(|,1|)1(|f f f

要证明]1,1[-∈x 时,|2ax+b|≤4,只要证明|±2a+b|≤4.

.422

1

23|)0(2)1(2

1

)1(23|

|2|=++≤--+=+f f f b a

同理可证|-2a+b|≤4. (2)|g(x)|=|cx 2+bx+a|

222

1211|

21||21||1||

)1(21)1(21)0()1(||

)0(2)

1()1(2)1()1()0(|22222≤+-=-+

++-=-+++-≤--+++-=--++--+

=x x

x x x

x x f x

f x f x f f f x f f x f 请读者仿照例4的方法解决下面一题:

例5 函数f(x)=ax 2+bx+c(a≠0),已知|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.求证:对一切]1,1[-∈x ,都有.2|)(|≤x f

分析 借助恒等式4

)1(4)1(2

2+-+=x x x , 得|g(x)|=|ax+b|

.

|)21(||)21(||

)21()21(||

]2

12)21([])21(2)21([||)21

21(]42)1(42)1([

|-++≤--+=+-+--++++=-+--++--+=x f x f x f x f c x b x a c x b x a c c x x b x x a

注意到]1,1[-∈x ,有

]0.1[2

1

],1,0[21-∈-∈+x x ,故有|g(x)|≤1+1=2.

五、联想反证法,类比创条件

对于一些数学问题,如果从正面思考较难,不妨尝试从反面入手,巧用逆向思维,比如借反证法来找到解决问题的途径。

例7 函数f(x)=x 2+ax+b (a,b ∈R ),x ∈[-1,1],求证: |f(x)|的最大值M≥

2

1

. 证明 假设M<

21,则|f(x)|<21,,2

1)(21<<-∴x f 即.2

1

212<++<-

b ax x 令x=0,1,-1,分别代入上式,得

,21

21<<-

b ① ,21

121<++-<-

b a ② ,2

1

121<++<-

b a ③ 由②+③,得2

1

23-<<-

b ,与①矛盾。 点评 通过假设结论不成立,创设了]1,1[-∈x 时,|f(x)|<2

1

恒成立这一常规而打开局面的有利条件,可谓“高招”!

六、鸡尾酒疗法,相是益彰好

每一种解法都不是万能的,如果把各种解题方法灵活地相互结合、渗透,那么不但能解决实际问题,而且思路开阔,有利于培养创造能力、提升数学品质。

例8 函数f(x)=ax 2+bx+c(a≠0),对一切]1,1[-∈x ,都有f(x)≤1,求证:对一

切]2,2[-∈x ,都有f(x)≤7.

分析 函数y=|ax 2+bx+c| (a≠0)在区间[p,q]上的最大值,由图象易知只能在x=p 或x=q 或a

b

x 2-

=处取得,于是由题意只需证明|f(-2)|≤7且|f(2)|≤7且.7|)2(|≤-

a

b

f 由已知|f(-1)|=|a+b -c|, |f(1)|=|a+b+c|,|f(0)|=|c|, |f(-2)|=|4a -2b+c| =|3f(-1)+f(1)-3f(0)| ≤3|f(-1)|+|f(1)+3|f(0)| =3×1+1+3×1=7 同理|f(2)|≤7. 若]2,2[2-?-

a

b

,则由以上可知命题已证。 若]2,2[2-?-

a

b

,则 |44||)2(|2

a

b a

c a b f -=-

.

|2|||21|||

4|2

a

b b

c a b c ?+≤-= ∵|c|≤1,

.1|)1(|2

1

|)1(|21||≤-+=

f f b

又,2|2|

≤a

b

.2212

1

1|)2(|=??+≤-

∴a b f 因此,对一切]2,2[-∈x ,都有|f(x)|≤7.

例9 (1998年“希望杯”高三赛题)若函数f(x)=ax 2+bx+c(a≠0),对一切x ∈[0,1],恒有|f(x)|≤1.

(1)对所有这样的f(x),求|a|+|b|+|c|可能的最大值;

(2)试给出一个这样的f(x),使|a|+|b|+|c|确实取到上述最大值。

解(1)由????

???=++=++=0

)0(,2141)2

1(,

)1(f c b a f c b a f

解得???

?

?

?

???=--=+-=)0(),0(3)1()21(4),0(2)21(4)1(2f c f f f b f f f a

所以|)0()0(3)1()2

1

(4||)0(2)21(4)1(2|||||||f f f f f f f c b a +--++-=++

17

683|

)0(|6|)2

1

(|8)1(|3=++≤++≤f f f 故|a|+|b|+|c|可能最大值为17. (2)取a=8,b=-8,c=1,则

f(x)=8x 2-8x+11)2

1

(82--=x

f (x )在[0,1]上确实有|f (x )|≤1,且|a|+|b|+|c|=17.

解题思维训练是巩固所学知识的重要环节,也是培养优良教学素养的有效手段,在学习中应当有意识地培养思维的“方向感”和思路的“归属感”,促进数学思维空间的拓展,也有助于思维品质的提升。

例谈二次函数区间最值的求解策略

如何求解二次函数在区间上的最值,是一个综合性较强的问题,影响二次函数在某区间上最值的是区间和对称的位置。本文就区间和对称轴动与静的变化进行分类,探索求最值的方法。

一、定区间与定轴

区间和对称轴都确定时,则将函数式配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求最值。

例1 已知]3,1[13

3

2)(2∈--

=,x x x x f ,求f(x)最值。 分析 这2002年高考题的一个变式题,对f(x)配方,得

]3,1[,3

4

)33()(2-∈--

=x x x f , 其图象开口向上,对称轴,,x ]31[3

3

-∈=

故.3

4

)33()(;332)1()(min max -===-=f x f f x f 二、定区间与动轴

区间确定而对称轴变化时,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分别讨论,再利用二次函数的示意图,结合单调性求解。

例2 已知,12)(2-++-=m mx x x f 当]1,0[∈x 时,f(x)最大值为1,求m 值。 分析 f(x)的图象开口向下,对称轴为x=m 。

(1)当m<0时,f(x)在[0,1]上递减,.1)0()(max -==m f x f 由m -1=1,得m=2这与m<0矛盾。

(2)当0≤m≤1时,.1)()(2max -+==m m m f x f

由m 2+m -1=1,得m=1,这与m>1矛盾。或m=-2 ,m=2与0≤m ≤1矛盾。 综上可知m=1。 三、动区间和定轴

对称轴确定而区间在变化时,只需对动区间能否包含抛物线的顶点的横坐标进行分类讨论。

例3 已知函数],[,4

9

433)(22b b x b x x x f -∈++--=且b>0,若,7)(max =x f 求b 。

分析 这是1990年全国高考题的一道压轴题中半部分的代数求值问题。

将表达式配方,得.34)2

1

(3)(22+++-=b x x f

由于x ∈[-b,b],对称轴21-=x ,所以应对],[21b b -?及],[2

1

b b -∈-分类讨论。

(1)若b -<-

21,即2

1

0<

1

(3)(22max =+++--=b b x f

由f (x )max =7,得723±-=b ,与2

1

0<

(2)若21-≤-b ,即b≥21,则对称穿过区间[-b ,b],那么当21

-=x 时,

.34)(2max +=b x f 由f(x)max =7,得b 2=1,又>0,∴b=1。

综上可知b=1. 四、动区间与动轴

当区间和对称轴均在变化时,亦可根据对称轴在区间的左、右两侧及穿过区间三种情况讨论,并结合图形和单调性处理。

例4 已知f(x)=-x 2

+(a -1)x+a,x ∈[1,a]的最大值为100,求a 值。 分析 由x ∈[1,a],可知a>1,f(x)图象开口向下,对称轴为.2

1

-=

a x (1)当

12

1

≤-a ,即1

(2)当a a <-<21

1,即a>3时,.412)21()(2max ++=-=a a a f x f 由

1004

1

22=++a a ,得a=19,或a=-21,又a>3,∴a=19. (3)当

a a ≥-2

1

时,a≤-1,与a>1矛盾,故对称轴不可能在x=a 的右侧。

抽象函数常见题型例析

这里所谓抽象函数,是指只给出函数的一些性质,而未给出函数解析式的一类函数,抽象函数一般以中学阶段所学的基本函数为背景背景,且构思新颖,条件隐蔽、技巧性强,解法灵活。因此,抽象函数在近几年的各种考试中,成为考查的重点。

一、求函数解析式

例1 是否存在这样的函数f(x),使下列3个条件:

(1)f(n)>0,n∈N*;(2)f(n

1+n

2

)=f(n

1

)f(n

2

),n

1

、n

2

∈N*;

(3)f(2)=4

同时成立?若存在,求出f(x)的解析式,若不成立,说明理由。

分析题设给出了函数f(x)满足的3个条件,探索结论是否成立。我们可以用不完全归纳法寻找f(x)的解析式,再用数学归纳法证明其正确性。

解若存在这样的函数f(x),由条件得f(2)=f(1+1)=[f(1)]2=4,

∴f(1)=2.又f(2)=22,

∴f(3)=f(2+1)=f(2)·f(1)=23,

f(4)=f(3+1)=f(3)f(1)=24.

由此猜想f(x)=2x(x∈N*).

下面用数学归纳法证明上述猜想。

(1)当n=1时,显然成立。

(2)假设当n=k(k∈N*)时猜想成立,即f(k)=2k,那么当n=k+1时,则f(k+1)=f(k)·f(1)=2k·2=2k+1仍然成立。

综上所述,存在函数f(x)=2x,对x∈N*成立。

利用所给条件,通过数据实验,用不完全归纳法问题出猜想,再用数学归纳法给出证明,是处理抽象函数递推型综合题的常用方法。

二、判断函数的单调性

例2 设f(x)是定义在[-1,1]上的函数,且满足f(-x)=-f(x),对任意a 、b ∈[-1,1],当a+b≠0时,都有

b

a b f a f ++)

()(>0。试判断f(x)的单调性。

分析 由函数单调性的定义,首先问题着f(x 2)-f(x 1),这里x 1,x 2∈[-1,1],且x 1

解 设x 1,x 2∈[-1,1],且x 1

)].([)

()

()()()()()(122121212x x x x x f x f x f x f x f x f -+?-+-+=

-+=-

由条件,得

0)

()

()(1212>-+-+x x x f x f ,又x 2-x 1>0,

∴f(x 2)-f(x 1)>0,f(x 2)>f(x 1), ∴f(x)在[-1,1]上是增函数。 三、求函数值或值域

例3 已知定义在N*上,且在N*上取值的增函数y=f(n)。对任意m ,n ∈N *,当m 、n 互质时,f(mn)=f(m)f(n).又f(180)=180,求f(2004)值。

分析 由f(180)=180及题设可推出f(1)=1,再利用f(n)∈N *寻找f(n)及n 关系,然后求值。

解 ∵f(180)=f(1×180)=f(1)·f(180)=180,即f(1)f(180)=180,∴f(1)=1.由f(n)是增函数及函数值是自然数可得,1=f(1)

∴f(n)=n(1≤n≤180,n ∈N *). ∴f(2004)=f(12×167)

=f(12)·f(167)

=12×167=2004.

注一般地,抽象函数求值,要先找自变量与函数值之间的关系,根据找到的关系再注值。

例4 f(x)是定义在R上的函数,且满足:

(1)f(-x)=-f(x);(2)对任意x,y R,有f(x+y)=f(x)+f(y);

(3)当x>0时,f(x)<0,且f(1)=-2。求函数f(x)在[-3,3]上的最值。

分析抽象函数求最值问题,一般是先根据条件确定函数的单调性,然后再确定其最值。

解设0≤x

1

2

≤3,则

f(x

2)=f[(x

2

-x

1

)+x1]=f(x

2

-x

1

)+f(x

1

)

即f(x

2-x

1

)=f(x

2

)-f(x

1

).

∵x

2-x

1

>0,∴f(x

2

-x1)<0.

∴f(x

2)-f(x

1

)<0,即f(x

1

)>f(x

2

).

∴f(x)在[0,3]上是减函数。

又由f(-x)=-f(x),得f(x)在[-3,0]上也是减函数,从而f(x)在[-3,3]上是减函数。

所以,当x=-3时,f(x)取最大值,其值为

f(-3)=-f(3)=-f(1+2)=-f(1)-f(1+1)=-3f(1)=6.

当x=3时,f(x)取最小值,其值为f(3)=-f(3)=-6.

注函数单调性是函数的局部性质,在确定函数单调性时,要根据条件,把定义域分割成若干个区间,分别讨论其单调性。

四、判断函数的周期

例5 设f(x)是定义在R 上的函数,且f(-x)=f(x),其图象关于直线x=1对称,对任意x 1x 2∈[0,

2

1

],都有f(x 1+x 2)=f(x 1)·f(x 2). (1)设f(1)=2,求)4

1

()?21(f f ; (2)证明f(x)是周期函数。

分析 (1)把f(1)用)21(f 表示,再求)21(f ,而)21(f =)4

1

(2f ,注意开方时的

符号。

(2)由图象关于x=1对称,可得f(x)=f(2-x),再利用f(-x)=f(x)就可确定其周期。

解(1)由函数y=f(x)的性质知,

].1,0[,0)2()2()22()(∈≥=+=x x

f x f x x f x f

又∵.2)41

()2121()1(2==+=f f f

.

2)4

1(,

2)4

1

()21(.2)21(4

2=∴===∴f f f f

将上式中-x 以x 代替得,f(x)=f(x+2),x ∈R.故f(x)是以2为一个周期的周期函数。

注 判断函数f(x)的周期性,就是寻找满足等式f(x+T)=f(x)中的非零常数T 。在解题时,注意利用题设中函数的奇偶性、对称性等性质,把这些性质转化成相应的等式,再证明f(x+T)=f(x)。

五、不等式问题

例6 定义在(-1,1)上的函数f(x)满足:

(1)对任意x 、y ∈(-1,1)都有);1(

)()(xy

y

x f y f x f ++=+ (2)当x ∈(-1,0)时,有f(x)>0;求证:).21

()1

31()111()51(2f n n f f f >+++++

分析 因为x ∈(-1,0)时,有f(x)>0,而结论中要求x>0时f(x)的值,故要先判断f(x)的奇偶性。因为不等式证明时需放缩,还要判断f(x)的单调性。

解 在等式)1(

)()(xy

y

x f y f x f ++=+中,令x=y=0,得f(0)=0,再令y=-x ,得f(x)+f(-x)=0,即f(-x)=-f(x),

∴f(x)在(-1,1)上是奇函数。 设-1

)1()()()()(2

12

12121x x x x f x f x f x f x f --=-+=-

∵-10. ∴f(x 1)>f(x 2).

故f(x)在x ∈(-1,0)上是减函数。

又由奇函数的性质知f(x)在x ∈(0,1)上仍然是减函数,且f(x)<0.

).

21()11()

21()11()21(111)21(11)2)(1(11)2)(1(1]

1

)2)(1(1

[)1321(

+-+=+-++=??????????+-+++-++=??

??

?

????

???++-++=-++=++n f n f n f n f n n n n f n n n f n n f n n f ).

2

1()21()21()11()41()31)31()21()

1

321()111()51(+-=??????

+-+++??????-+??????-=+++++∴n f f n f n f f f f f n n f f f

.0)2

1

(,1210<+∴<+<

n f n ).2

1()21()21(f n f f >+-∴

故所证不等式成立。

注 本题先确定函数的奇偶性和单调性,利用裂项求和进行化简,再根据条件用放缩法证明不等式;在解题过程中,利用题设充分挖掘隐含条件,开拓解题思路,使问题得到解决。

六、图象的对称性

例7 设a 是常数,函数f(x)对一切x ∈R 都满足f(a -x)=-f(a+x)。 求证:函数f(x)的图象关于点(a,0)成中心对称图形。 证明 )()(x a f x a f +-=- 对任意x ∈R 都成立,

).

2(

)]

(

[

)]

(

[

)

(x

a

f

x

a

a

f

x

a

a

f

x

f-

-

=

-

+

-

=

-

-

=

∴在f(x)的图象上任取一点(x

0,y

),则其关于(a,0)的对称点(2a-x

,-y

)

也在其图象上。

∴f(x)图象关于点(a,0)成中心对称图形。

注证明一个函数图象的对称性问题,只需在此函数图明上任取一点P1,证明它的对称点P2也在其图象上。

七、方程根的问题

例8 已知函数f(x)对于一切实数x满足f(x)=f(12-x),若方程f(x)=0有n 个不同的实数根,这个n人实根的和是48,求n的值。

分析由方程根的意义及等式f(x)=f(12-x)的意义知,方程的根是成对出现的,且成对两根之和是12.

解由方程f(x)=f(12-x)知,如果x

0是方程f(x)的根,那么12-x

也是方程

的根,且x

0≠12-x

,x

+(12-x

)=12.由48=12×4可知方程f(x)=0有四对不同的实

数根,即方程f(x)=0有8个不同的实根,∴n=8.

注解此题的关键是,理解f(x)=f(12-x)的意义,判断出方程根的性质。

抽象函数问题,往往综合运用函数的性质及数学思想方法,挖掘隐含条件,探索抽象函数的有关性质,寻找解题思路。

高三数学复习方法

高三数学复习,大体可分三个阶段,每一个阶段的复习方法与侧重点都各不相同,要求也逐步提高。

一、基础复习阶段——系统整理,构建数学知识网络

将高中阶段所学的数学基础知识进行系统整理,进行有机的串联,构建成知识网络,使学生对整个高中数学体系有一个全面的认识和把握,以便于知识的存储、提取和应用,也有利于学生思维品质培养和提高,这是数学复习的重要环节。从近几年来高考试题中我们可以看到:基础知识,基本技能,基本思想和方法始终是高考数学试题考查的重点。《考试说明》明确指出:易、中、难题的占分比例控制在3:5:2左右,即中、低档题占总分的80%左右,这就决定了我们在高考复习中必须抓基础,常抓不懈,只有基础打好了,做中、低档题才会概念清楚,得心应手,做难题和综合题才能思路清晰,运算准确。在高考第一轮复习中应以夯实双基为主,对构建的知识网络上每个知识点要弄清要领,了解数学知识和理论的形成过程以及解决数学问题的思维过程,注重基础知识的复习和基本技能的训练,不求高难,应为后继阶段的综合能力提高打下坚实基础。要贴紧课本,对课本中的例题、知识点加以概括和延伸,使之起到举一反三,触类旁通的效果。如课本中数列一章有详细推导等差数列和等比数列前n项和公式的过程,通过复习要掌握“倒序相加法”和“错位相加法”两种不同的方法,为我们在数列求和的解题中提供思路和方法。因此在复习时特别要注意课本中例题和习题所启示的解题方法,要关于总结,丰富解题思路。

二、综合复习阶段——综合深化,掌握数学思想方法

第二轮复习是在第一轮复习的基础上进行巩固、完善、综合、提高的重要阶段,

是关系到学生的数学素质能否迅速提高进而适应高考中、难度试题的关键。第二物理学复习要加强对思维品质和综合能力的培养,主要着眼于知识重组,建立完整的知识能力结构,包括学科的方法能力、思维能力、表达能力,但这都必须建立在知识的识记能力基础之上,理解知识的来源及其所蕴含的数学思想、数学方法,把握知识的纵横联系,培养探索研究问题的能力。常用的数学思想方法有化归,函数与方程的思想,分类讨论思想,数形结合思想以及配方法、换元法、待定系数法等等。这些基本思想和方法分散地渗透在中学数学教材中,在高一、高二的学习过程中,主要精力集中于数学知识学习中,缺乏对基本的数学思想和方法的归纳和总结,在高考前的复习过程中,要在复习基础知识的同时,有意识地掌握基本数学思想和方法,只有这样,在高考中才册灵活运用和综合运用所学的知识。

第二轮复习要培养数学应用意识,学会从材料的情景、问题中去理论,册根据题目所给的材料,找到主干和知识的结合点。要学会形成体系和方法,即解题思路,包括对有效信息的提取、解题所需的方法和技巧、对事实材料的分析和判断及结论的评价和反思等。

三、强化复习阶段——强化训练,提高应试实战能力

从某种意义上说,成绩是练出来的,考前强化训练尤其重要。练近年来的高考试题和各地的模拟试题,掌握高考信息和命题动向,提高正克率,练出速度,在练中升华到纯熟生巧的境界。在练习时要注意以下几点。解题要规,俗话说:“不怕难题不得分,就怕每题都扣分”,所以务必将解题过程写得层次分明,结构完整。重要的是解题质量而非数量,要针对自己的问题有选择地精练,发现错误及时纠正,把做错的题做上标记,在旁边写上评析,然后把试卷保存好,过一段时间,再做一遍。不应满足于会做,应注意解题后的反思常悟,悟出解题策略、思想方法的精华,尤其对一

含参二次函数中绝对值问题

2016浙江高考数学含参二次函数中绝对值问题 1设函数R b a b a x x x f ∈+-=,,)(. (1)当0>a 时,讨论函数)(x f 的零点个数; (2)若对于给定的实数)01(<<-a a ,存在实数b ,使不等式2 1)(21+≤≤-x x f x 对于任意的[]12,12+-∈a a x 恒成立试将最大实数b 表示为关于a 的函数)(a m ,并求)(a m 的取值范围。 2已知函数.)(2b x x ax x f -+= (1)当1-=b 时,若不等式12)(--≥x x f 恒成立,求实数a 的最小值; (2)若0

(1)若方程x x f 2)(=恰有三个不同的实数根,求实数a 的值; (2)当0>a 时,若对任意的],0[+∞∈x ,不等式)(2)1(x f x f ≤-恒成立,求实数a 的取值范围. 4已知0≥a ,函数a a x x x f 25)(2+--=. (1)若函数)(x f 在]3,0[上单调,求实数a 的取值范围; (2)若存在实数2,1x x ,满足)()(0))((2121x f x f a x a x =<--且,求当a 变化时 21x x +的取值范围.

(1)若函数)]([)(x f f x F =与)(x f 在R x ∈时有相同值域,求实数b 的取值范围; (2)若方程21)(2=-+x x f 在)2,0(上有两个不同实数根2,1x x , ①求实数b 的取值范围; ②求证: 41121<+x x 6已知函数),()(2R b R a b ax x x f ∈∈--=+. (1) 若,2,2≥=b a 且函数)(x f 的定义域,值域均为],1[b ,求b 的值; (2) 若函数)(x f 的图像与直线1=y 在)2,0(∈x 上有2个不同的交点,试求a b 的范围.

高中数学-二次函数定区间上最值问题

高中数学-二次函数定区间上最值问题 一、二次函数知识点回顾 (一)二次函数的概念: 一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. (二)二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小; 当2b x a =-时,y 有最大值244ac b a -. (三)二次函数基本形式: 1、2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。

3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: 二、二次函数闭区间上的最值解题思路分析 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 如设: f x a x b xc a ()() =++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 方法思路分析:将f x ()配方,得顶点为--?? ???b a a c b a 2442,、对称轴为x b a =- 2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上 f x ()的最值:

初三数学二次函数知识点总结及经典习题含答案77699

人教版九年级下册数学 二次函数知识点总结教案 主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2 +bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)单调递减。 (2)当b<-2时,求证:在(-1,1)至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢?对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .

故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢?留给读者思考。 二、合理用公式,灵活换视角 公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。 例2 已知f(x)=x 2+ax+b 的图象与x 轴两交点的横坐标为x 1,x 2若|a|+|b|<1,求证:|x 1|<1且|x 2|<1. 解 由韦达定理,得???=-=+b x x a x x 2121 ???==+∴.|||||,|||2 121 b x x a x x 代入|a|+|b|<1,得|x 1+x 2|+|x 1x 2|<1, 又|x 1|-|x 2|≤|x 1+x 2|. 1||||||||||21212121<++≤+-∴x x x x x x x x 即|x 1|(1+|x 2|)<1+|x 2|。 又∵1+|x 2|>0,∴|x1|<1. 同理可得|x 2|<1。 例3 函数f(x)=ax 2+bx+c(a≠0),若函数f(x)的图象与直线y=x 和y=-x 均无公共点,求证:(1)4ac -b 2>1. (2)对一切实数x ,恒有| |41 ||2a c bx ax >++. 分析(1)略。

二次函数在闭区间上的最值 (经典)

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为- -?? ???b a ac b a 2442 ,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是 f b a ac b a f x -?? ???=-2442 ,()的最大值是f m f n ()()、中的较大者。 (2)当[] - ?b a m n 2,时 若-< b a m 2,由f x ()在[] m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[] m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。 1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。 例1. 函数y x x =-+-2 42在区间[0,3]上的最大值是_________,最小值是_______。 练习. 已知232 x x ≤,求函数f x x x ()=++2 1的最值。 2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的 最值”。 例2. 如果函数f x x ()()=-+112 定义在区间[] t t ,+1上,求f x ()的最值。 例3. 已知2 ()43f x x x =--+,当[1]()x t t t ∈+∈R ,时,求()f x 的最值. 对二次函数的区间最值结合函数图象总结如下: 当a >0时??? ???? +<-+≥-=) )((212)())((2 12)()(21max 如图如图,,n m a b n f n m a b m f x f ?? ? ? ? ? ??? <-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f

绝对值问题的求解方法

绝对值问题的求解方法 一、定义法 例1 若方程只有负数解,则实数a的取值范围是:_________。 分析与解因为方程只有负数解,故,原方程可化为: , ∴, 即 说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。 二、利用非负性 例2 方程的图象是() (A)三条直线: (B)两条直线: (C)一点和一条直线:(0,0), (D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得 即或 解之得:或 故原方程的图象为两个点(0,1),(-1,0)。 说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。 三、公式法 例3 已知,求的值。 分析与解, ∴原式 说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。 四、分类讨论法 例4 实数a满足且,那么

分析与解由可得 且。 当时, ; 当时, 说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。 五、平方法 例5 设实数a、b满足不等式,则 (A)且 (B)且 (C)且 (D)且 分析与解由于a、b满足题设的不等式,则有 ,

整理得 , 由此可知,从而 上式仅当时成立, ∴,即且, 选B。 说明运用此法是先对不等式进行平方去掉绝对值,然后求解。 六、图示法 例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是() (A)1 (B)2 (C)3 (D)4 分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。 由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。 说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题 【学前思考】 二次函数在闭区间上取得最值时的X ,只能是其图像的顶点的横坐标或给定区间的端点?因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置.在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键.本节,我 们将以若干实例说明解决此类问题的具体方法. 【知识要点&例题精讲】 二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: CaSe l、给定区间确定,对称轴位置也确定 说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数 图像,再将给定区间标出,那么二次函数的最值一目了然. 解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间内 (i) 当其对称轴的横坐标在给定区间内时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得;(ii )当其对称轴的横坐标不在给定区间内时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值. 例1、二次函数y = χ2-2χ+3在闭区间[-1,2】上的最大值是_________ . 例2、函数f(X)= -X2 +4x-2在区间【0,3】上的最大值是_________ 最小值是

例3、已知2χ2≤3x,则函数f(χ)=χ2+χ+1的最大值是 ____________ ,最小值是 CaSe n、给定区间确定,对称轴位置变化 说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值. 解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求 二次函数y=aχ2?bx ?c ( a =O)在给定区间[p,q 1上的最值,需对其对称轴与 给定区间的位置关系进行分类讨论.这里我们以a 0的情形进行分析: (i)若一A P ,即对称轴在给定区间∣p,q 1的左侧,贝U函数f(χ)在给定区间 2a l-P,q ]上单调递增,此时[f (X)]max = f(q),[f (X)]min = f ( P); (ii) 若^-―

二次函数绝对值问题

常见绝对值类问题汇总 ——辽宁数学小丸子编辑 【题1】已知32()(0)f x ax bx cx d a =+++≠,当1x ≤时,'()f x M ≤恒成立,求a 的最大值 【题2】设1()4 2(,)x x f x a b a b R +=+?+∈,若对于1[0,1],()2x f x ?∈≤都成立,求b 【题3】2()f x x bx c =++在定区间[,]m n 上的最大值为M ,则M 有一个最小值2 ()8 m n -,当且仅【题4】设,,a b c R ∈,对任意满足1x ≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题5】设函数(),,f x x ax b a b R =--∈,若对任意实数,a b ,总存在实数0[0,4]x ∈使得不等式0()f x m ≥成立,求实数m 的取值范围 【题6】设2 ()(0)f x ax bx c a =++≠,当1x ≤时,总有()1f x ≤,求证:当2x ≤时,()7 f x ≤【推广】设2()(0)f x ax bx c a =++≠,当1x ≤时,总有()f x k ≤,求证:当x n ≤时,2()(21)f x n k ≤-【题7】已知二次函数22(),(),(1)1,(0)1,(1)1f x ax bx c g x cx bx a f f f =++=++-≤≤≤求证:当11x -≤≤时, (1)5 ()4f x ≤(2)()2 g x ≤【题8】设函数2()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有 24 ax b +≤【推广】设函数2 ()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有2(*) nax b n n N +≤∈【题9】设,,a b c R ∈,对任意满足01x ≤≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题10】设函数1()(1,)f x x c b c R x b =++<-∈-,函数()()g x f x =在区间[1,1]-上的最大值为M ,若M k ≥对任意的,b c 成立,求k 最大

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的 求解策略 This model paper was revised by the Standardization Office on December 10, 2020

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2+bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)内单调递减。 (2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f . 故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢留给读者思考。

二次函数经典难题(完整资料).doc

【最新整理,下载后即可编辑】 二次函数经典难题(含精解) 一.选择题(共1小题) 1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6 二.填空题(共12小题) 2.作抛物线C 1关于x轴对称的抛物线C 2 ,将抛物线C 2 向左平 移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C 1 所对应的函数解析式是 _________ . 3.抛物线关于原点对称的抛物线解析式为 _________ . 4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________ . 5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD 边长为10,则正方形EFGH的边长为_________ . 6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛

物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________ . 7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B (4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________ . 8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a= _________ ;若抛物线与x轴有两个交点,则a的范围是_________ .9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a= _________ . 10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________ . 11.若抛物线的顶点在x轴上方,则m的值是 _________ . 12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a?c 的值是_________ . 13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________ .

二次函数的区间最值问题知识讲解

二次函数最值问题 二次函数y =ax 2 bx C a = 0)是初中函数的主要内容,也是高中学习的重要基 础?在初中阶段大家已经知道:二次函数在自变量 x 取任意实数时的最值情况(当a ■0时, 本节我们将在这个基础上继续学习当自变量 x 在某个范围内取值时,函数的最值问 题?在高中阶段,求二次函数的最值问题只需要记住“三点一轴”,即题目给出的 x 的取值范 围区间的两个端点, 二次函数的顶点,以及二次函数的对称轴, 注意结合图像学会用数形结 合解题。高中阶段的二次函数最值问题可以分为一下三个方面: 1.定轴定区间。2.动轴定区 间。3.定轴动区间。下面我们来看例题。 【例1】当-2空x 空2时,求函数y =x 2 -2x-3的最大值和最小值. 分析:这个问题十分简单,属于定轴定区间这一类题目, 只需要画出函数图像即可以解 决。 1 5 【例2】当t 兰x 兰t +1时,求函数y = -x 2 -X -一的最小值(其中t 为常数)? 2 2 函数在x 二 b 2a 处取得最小值 4ac -b 2 4a 无最大值;当时 a . 0,函数在x —处取得 2a 最大值 4ac -b 2 4a 无最小值.

分析:这类问题属于定轴动区间的问题,由于 X 所给的范围随着t 的变化而变化,所以 需要比较对称轴与其范围的相对位置. 1 5 解:函数y =-x2—x _-的对称轴是x=1。画出其草图。 2 2 (1) 灯=}12 j_| = —3 ; 1 i 5 1 i A min =尹+1) -(t +1)石=|t -3. 1 2 -t 2 -3,t<0 2 综上所述:y min = -3,0_t_1 】t 2 —t —5,t A 1 I 2 2 【例3】设二次函数f x =-x 2 ? 2ax ? 1-a 在区间0,1 ]上的最大值为2,求实数a 的 值。分析:这类问题属于动轴定区间的问题,由于函数的对称轴随 a 的变化而变化,所 ⑵当对称轴在所给范围左侧.即 1 2 5 t 1时当X"时,畑; (4)当对称轴在所给范围之间?即 t _1 _t 1= 0_t _1 时;当 x = 1 时, ⑹当对称轴在所给范围右侧?即 t 1 :::1= t :: 0时,当 x =t ? 1 时,

二次函数及含有绝对值练习

二次函数及含有绝对值练习 的取值范围; 恒成立,求实数、若函数a a x x x f ≥-++=|2|1)(1 2、的取值范围;成立,求实数使若存在一个a a x ≥+|2x |-|1-x | 3、的值 ,求实数的最小值为若函数a a x x x f 3|2||1|)(+++= 的最小值是 函数|2018||2017||4||3||2||1|)(-+-++-+-+-+-=x x x x x x x f Λ [)) 1()1()(-.)1()1()(-.)1()1()(-.)1()1()(-.,0|,)1()(|)1()()(0)().(4a F a F a F a F D a F a F a F a F C a F a F a F a F B a F a F a F a F A a x g x f x g x f x F x g x f -≤+≤-≥+≤-≤+≥-≥+≥>----+=∞+且)(且)(且)(且)(则()若设函数上单调递增, ,都是偶函数,且在、已知 的值求实数的最小值为、已知函数a ax x x a x x f , 2 111)4()(522+-++-+=

的取值范围 求实数有四个不同的根,若方程 、已知函数a a ax x g x f x g x f x x g x x f 03|)()(|)()(,34)(,)(62=----+-== ) ,()),(),,((.|||||)||,(|.|;||||)||,(|.),(),(.. 2 ),(,2 ),(,,7b a m b a m b a M m D b a b a b a M C b a b a b a m B b a b a m b a M A b a b a b a m b a b a b a M R b a =+=-+-=-++=+--+= -++=∈) 下列式子错误的是( 定义:、设 的取值范围是 则有两个不同的零点,、已知m m x x x f x x ----+-=23 4234)(8 的取值范围 求实数,的最小值为、已知a x x a x x a x x x f 1)0(321 1)(9>-+--+-+ =

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题 湖北省荆州中学 鄢先进 二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。 类型一 定轴定区间 例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =- 变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。 分析:由图像可知,函数)(x f 在[2,4]为增函数, min ()(2)0f x f ∴== 变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值. 分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。 max ()(3)3f x f ∴== 例2.已知二次函数f x ax ax a ()=++-2241在区间[] -41,上的最大值为5,求实数a 的值。 解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。很明显,其顶点横坐标在区间 []-41,内。 x

①若a <0,函数图像开口向下,如下图1所示。当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去 图1 图2 ②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去 综上可知:函数f x ()在区间[] -41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。在例1中,二次函数图像的开口,对称轴和区间都是固定的,需引起同学们注意的是,当函数的最值的取得在区间两个端点都有可能的时候,要比较端点与对称轴距离的大小。在例2中,二次函数图像的对称轴和区间是固定的,但图像开口方向是随参数a 变化的,要注意讨论。 小结:二次函数2()()f x a x k h =-+(0)a >在区间[,]m n 最值问题。 ①若[,]k m n ∈,则min ()()f x f k h ==,max ()max{()()}f x f m f n =? ②若[,]k m n ?,当k m <时,min ()()f x f m =,max ()()f x f n = 当k n >时,min ()()f x f n =,max ()()f x f m = 当0a <时,仿此讨论 类型二 定轴动区间 例3.已知函数22,[2,]y x x x a =-∈-,求函数的最小值().g a

绝对值函数系列习题(二次函数)

含有绝对值符号的函数的性质 1、已知不等式| |2 2x x a +≤对x 取一切负数恒成立,则a 的取值范围是_______. 2、若关于x 的不等式||22 a x x --<至少有一个负数解,则实数a 的取值范围是_______. 3、函数2 |1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 4、设常数R ∈a ,以方程20112||=?+x a x 的根的可能个数为元素的集合=A _______. 5、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为_______. 6、对任意的120x x <<,若函数1 ()f x a x x b x =-+折线(两侧的射线均平行于x 轴), 试写出a 、b 应满足的条件 . 7、已知函数()2log f x x =,正实数,m n 满足m n <, 且()()f m f n =,若()f x 在区间2,m n ????上的最大值为则m =________,n =_________. 8、设,,a b R ∈且1b ≠.若函数1y a x b =-+的图象与直线y x =恒有公共点,则,a b 应满足的条件是_______. 9、关于x 的方程092 2=-++a x a x (R a ∈)有唯一的实数根,则=a _______. 10、若函数1log 2 )(| 3|+-=-x x f a x 无零点,则a 的取值范围为_______. 11、定义在R 上的函数()f x 的图像过点(6,2)M -和(2,6)N -,且对任意正实数k ,有 ()()f x k f x +<成立,则当不等式|()2|4f x t -+<的解集为(4,4)-时,则实数t 的值 为_______. 12、已知函数21(0)()log (0) x a x f x x x ?++≤=?>?有三个不同零点,则实数a 的取值范围为_______. 13、设关于x 的不等式4|4|2 +≤+-x m x x 的解集为A ,且A A ?∈2,0,则实数m 的取 值范围是_______.

二次函数绝对值的问题练习及答案

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2 ()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, () f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)2 222 2131,24()||1131,24x x a x a x a f x x x a x x a x a x a ?? ?+-+=++-≥? ??? ?=+-+=??? ?-++=-++< ????? 当()min 13 ,24a f x a ≤-=- 当()2min 11 ,1 22a f x a -<<=+ 当()min 13 ,24a f x a ≥=+ 例2 已知函数 1)(2 -=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤). 解:(1)方程|()|()f x g x =,即 2 |1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的

二次函数的最值问题总结

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时, 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 二次函数求最值(一般范围类) 例1.当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2.当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 例3.当0x ≥时,求函数(2)y x x =--的取值范围.

解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-. 例4.当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t = --; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y = ?--=-; (3) 当对称轴在所给范围右侧.即110t t +? 在实际生活中,我们也会遇到一些与二次函数有关的问题: 二次函数求最值(经济类问题) 例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.

5含绝对值的二次函数(教案及练习)

含绝对值的二次函数 含绝对值的二次函数其本质是分段函数,研究含绝对值的二次函数就是分段研究二次函数的局部性态.设定分类讨论的标准是问题解决的前提条件,数形结合则是问题能否正确解决的关键 所在. 例1.解下列各题: (1)(2010全国)直线1=y 与曲线a x x y +-=2有4个交点,则实数a 的取值范围是 . (2)(2008浙江)已知t 为常数,函数t x x y --=22在区间]3,0[上的最大值为2,则=t . (3)设集合{} {}2,,022<=∈<++-=x x B R a a a x x x A ,若Φ≠A 且B A ?,则实数a 的取值范 围是 . 例2.设函数R x a x x x f ∈+-+=,1)(2 (1)判断函数)(x f 的奇偶性; (2)求函数)(x f 的最小值.

例3.已知函数1)(,1)(2-=-=x a x g x x f . (1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围; (2)若R x ∈时,)()(x g x f ≥恒成立,求实数a 的取值范围; (3)求函数)()()(x g x f x h +=在区间]2,2[-上的最大值. 例4.设a 为实数,函数2()2()f x x x a x a =+--. (1)若(0)1f ≥,求实数a 的取值范围; (2)求()f x 的最小值.

5.含绝对值的二次函数 班级 姓名 一、综合练习 1.设b a <<0,且x x x f ++= 11)(,则下列大小关系式成立的是( ) (A ))()2()(ab f b a f a f <+< (B ))()()2(ab f b f b a f <<+ (C ))()2()(a f b a f ab f <+< (D ))()2 ()(ab f b a f b f <+< 2.已知{}n a 为等差数列,n S 是{}n a 的前n 项和,若9843=++a a a ,则9S = . 3.直线750x y +-=截圆221x y +=所得的两段弧长之差的绝对值是 . 4.函数y k x a b =--+与y k x c d =-+的图象1(k 0k )3 >≠且交于两点)3,8(),5,2(,则c a + 的值是_______________. 5.任意满足305030x y x y x -+≤??+-≥??-≤? 的实数,x y ,若不等式222()()a x y x y +<+恒成立,则实数a 的取值 范围是 . 6.已知双曲线22 221(0,0)x y a b a b -=>>,N M ,是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线PN PM ,的斜率分别为12,k k ,021≠k k ,若21k k +的最小值为1,则双曲线的离心率为 . 二、本讲练习 1.设函数c bx x x x f ++=)(给出下列四个命题: ① 0=c 时,)(x f y =是奇函数; ② 0,0>=c b 时,方程0)(=x f 只有一个实根; ③ )(x f y =的图象关于),0(c 对称; ④ 方程0)(=x f 至多有两个实根. 其中正确的命题是 ( ) (A )①④ (B )①③ (C )①②③ (D )①②④ 2.若不等式2 1x x a <-+的解集是区间()33-,的子集,则实数a 的范围为 . 3.设a 为实数,函数a x x x f -=)(,求函数)(x f 在]2,2[-上的最大值.

二次函数在给定区间上的最值问题

二次函数在给定区间上的最值问题 【学前思考】 二次函数在闭区间上取得最值时的x ,只能是其图像的顶点的横坐标或给定区间的端点. 因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置. 在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键. 本节,我们将以若干实例说明解决此类问题的具体方法. 【知识要点&例题精讲】 二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: Case Ⅰ、给定区间确定,对称轴位置也确定 说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数图像,再将给定区间标出,那么二次函数的最值一目了然. 解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间内. (i )当其对称轴的横坐标在给定区间内时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得; (ii )当其对称轴的横坐标不在给定区间内时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值. 例1、二次函数223y x x =-+在闭区间[]1,2-上的最大值是_______. 例2、函数2()42f x x x =-+-在区间[]0,3上的最大值是_______,最小值是_______.

例3、已知223x x ≤,则函数2()1f x x x =++的最大值是_______,最小值是______. Case Ⅱ、给定区间确定,对称轴位置变化 说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值. 解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求二次函数2y ax bx c =++(0a ≠)在给定区间[],p q 上的最值,需对其对称轴与给定区间的位置关系进行分类讨论. 这里我们以0a >的情形进行分析: (ⅰ)若2b p a - <,即对称轴在给定区间[],p q 的左侧,则函数()f x 在给定区间[],p q 上单调递增,此时max [()]()f x f q = ,min [()]()f x f p =; (ⅱ)若2b p q a ≤- ≤,即对称轴在给定区间[],p q 的内部,则函数()f x 在[,]2b p a -上单调递减,在[,]2b q a - 上单调递增,此时min [()]()2b f x f a =-,max [()]() f x f p =或()f q ,至于最大值究竟是()f p 还是()f q ,还需通过考察对称轴与给定区间的中点的位置关系作进一步讨论:若22 b p q p a +≤- < ,则max [()]()f x f q =;若22p q b q a +≤-≤,则max [()]()f x f p =; (ⅲ)若2b q a - >,即对称轴在给定区间[],p q 的右侧,则函数()f x 在给定区间[],p q 上单调递减,此时max [()]()f x f p = ,min [()]()f x f q =. 综上可知,当0a >时, max (),22[()](),22b p q f q a f x b p q f p a +? -

相关文档 最新文档