文档视界 最新最全的文档下载
当前位置:文档视界 › 高炉布料器的主要故障分析与维护正式样本

高炉布料器的主要故障分析与维护正式样本

高炉布料器的主要故障分析与维护正式样本
高炉布料器的主要故障分析与维护正式样本

文件编号:TP-AR-L1899

There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party.

(示范文本)

编制:_______________

审核:_______________

单位:_______________

高炉布料器的主要故障分析与维护正式样本

高炉布料器的主要故障分析与维护

正式样本

使用注意:该操作规程资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。

介绍了布料器的结构和工作原理,阐述了布料器

使用与维护要点,根据承钢布料器出现的故障进行分

析总结,提出改进方法。

布料器是无钟炉顶的关键设备,其功能是驱动并

控制布料溜槽绕高炉中心线的旋转和倾动,以完成高

炉不同的布料要求。承钢炼铁厂3#、4#高炉容积为

2500立的钒钛冶炼大高炉,炉顶布料器采用包钢BG

Ⅲ型布料器,旋转采用机械传动,倾斜为液压传动,

布料器的冷却采用开式循环水加氮气实现。润滑由自

动润滑系统完成;可以实现环形布料、扇形布料、定

点布料等多种布料方式,满足高炉使用要求。

布料器的结构组成与各部分功能

2.1.布料器的结构组成

包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。

2.2.布料器各部分主要功能

布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。

布料溜槽也叫旋转溜槽,它主要是把料罐内的原料、燃料按照一定的方式,在炉内合理的布料作用。

溜槽托架主要是悬挂溜槽,使溜槽能够在溜槽托架上,绕高炉中心线旋转,也可以上下摆动,还可以旋转和摆动同时进行。

托圈主要功能是使溜槽能够上下摆动,同时用于放置回转支撑。

溜槽曲臂的作用主要是通过托圈的上下移动,带动曲臂动作,从而实现溜槽的上下摆动。

β电机主要是带动齿轮旋转,从而带动溜槽旋转。

液压缸的作用主要是提升托圈,从而带动曲柄动作使溜槽角度产生变化,进行高炉布料。

中心喉管的作用主要是使原料通过,落到高炉溜槽上。

高炉上料流程与布料器工作原理

3.1.高炉炉顶上料流程

主要是通过主上料皮带把原料、燃料输送到炉顶受料斗中,通过挡料阀的开启把受料斗中的料,分流到下面的两个并列料罐中,再通过料流阀的调节作

用,使料进入下密封阀箱中,最后,料通过布料器的中心喉管流到溜槽上,从而实现高炉上料的过程。

3.2.布料器工作原理

BGIII型布料器,主要包括主传动与副传动,二者既可独立运动,也可合成运动。

主传动:传动链:立式交流电动机一摆线针轮减速机一直齿小齿轮一上部回转支承一耳轴转套一溜槽(旋转)。

副传动:传动链:直线油缸一托圈一下部回转支承一钢圈一曲柄一耳轴一溜槽(倾动)。其中溜槽摆动角度10°至45°。

也就是说布料器布料时,β电机启动旋转,带动上回转支撑的外齿圈旋转,外齿圈旋转带动溜槽旋转;布料器上的3个液压油缸的伸缩动作,带动布料器托圈上下移动,托圈移动带动溜槽曲臂动作,从而

溜槽的角度在10°至45之间变化,达到在炉体内不同部位布料的效果。

布料器的使用与维护

4.1.布料器的使用

炉顶煤气温度应控制在150~~350℃,最高600℃,持续时间不超过30min。

溜槽转速nβ=8.12rpm,基本工作制度为连续运行,以便避免启、制动带来的惯性冲击载荷对机构的不利影响。高炉操作需要定点布料时,应明确指出定点布料车数、料种、方向角及布料角度的改变要求。操作人员即可按此要求临时改用手动工作制操作。(β角误差≯5°,α角在布料时由大逐渐变小)将该料罐中的料布入炉内。

α角正常工作油压不应小于10MPa,当液压系统工作压力过低时,其运动将出现异常。

β角的传动电机功率7.5kw,额定电流15A,工作电流~8A,必须稳定,发现波动,立即通知车间机、电专职工程师或车间主任,进行检查处理。

气密箱内以水冷却(压力不小于0.8MPa),工作温度一般情况≤65℃,特殊情况70℃,也可短期运行,但必须加强检查。采取临时措施,防止机构运行失常。

密封箱通氮气,防止炉内脏煤气串入,氮气耗量正常情况不大于200m3/h,密封箱内压力应略高于炉喉煤气压力,其压差为~0.001MPa,当临时停止供氮气时,设备仍可继续工作,但操作人员须立即关闭供氮阀门并通知相关人员,防止出现意外。

为防止布料溜槽与齿轮偏磨,每月应改变一次β角顺逆转方向。

4.2.布料器的维护

维护人员必须按检查制度要求进行检查,并填写记录。

检查中发现的问题能够处理的要及时处理,没条件处理的要向上级汇报。

每周一、三、五检查直线油缸系统、β角传动系统、信号传递系统、布料器各法兰人孔密封、布料器内温度、进回水情况等。

清扫规定:布料器密封箱上盖每月吹扫一次,保证上盖无杂物。

维护记录:岗位操作人员要将本班的设备运行情况写入岗位设备交接班记录中,维护人员要认真填写检查记录。

布料器的主要故障与改进

5.1.β角驱动大轴承的故障

轴承在使用一定的时期之后其滚子及外圈都会出

现不同程度的磨损,轴承间隙随磨损而变大,磨损程度较大(本体较小)的轴承滚子会卡在其它管子与轴承外圈之间使大齿轮或双联齿轮都不能转动造成布料器无法正常工作。在轴承磨损前期气密箱内部就会出现异音,因此在高炉检修期间一定要打开布料器人孔,在β角转动时进行仔细检查分辨,以便能及时发现轴承故障,提前做好准备工作。

5.2.溜槽倾动曲臂及连杆故障

布料器α角传动装置实现溜槽倾动,其中间传动的曲臂及连杆断裂也是布料器经常出现的较重大故障,因两部件均在布料器内部,一旦断裂,布料器将陷入瘫痪状态,高炉必须休风4-6小时才能处理。出现曲臂或连杆断裂的故障原因大都是部件自身材料种类的选用或加工处理方法或配合精度出现问题。

20xx年1月我厂3#高炉溜槽角度由35度向10

度转换过程中,旋转机构(β角)电机电流突然升至35A,随即电机因电流超高停止。经现场检查后未发现异常情况,后又重新启动电机。电机再次启动后,岗位人员听见布料器内发出两声异响,而后消失,布料器α角传动角度值停止不动作。随即高炉休风,经对布料器内部检查发现,布料器α角传动曲臂均在花键配合处断裂为3段,其中一花键轴键齿缺损4/5。因曲臂断裂,造成溜槽角度无法调整,布料器无法进行多环布料。后来经过对断裂曲臂的鉴定分析,得知断裂曲臂材质为ZG45。观察曲臂断面,发现铸造颗粒粗大,没有进行热处理,存在铸造内应力。而曲臂花键处加工面为应力集中区,花键套在交变载荷作用下产生疲劳断裂,曲臂设计存在缺陷。由于曲臂花键套与花键轴加工精度差,造成花键轴与花键套装配精度差。经现场检测,花键轴键齿与花键套齿侧间隙最

大处达1mm。当曲臂运动时,花键轴与花键套产生运动冲击,产生疲劳以致造成花键套断裂。

因此在日常检查时要重点检查布料器异音情况,高炉休风停机检修时要进入布料器内部仔细检查布料器各部件的磨损情况。并建议生产厂家对布料器曲臂进行受力载荷分析,同时对不合理处进行改造。

5.3.布料溜槽的常见故障

布料器溜槽最常见的故障就是磨漏。布料溜槽的正常使用寿命一般为8—10个月。磨漏是指溜槽上的耐磨倒刺衬板以及溜槽本体的严重磨损,以溜槽接料点为中心,半径大小不一的孔洞。出现较大的孔洞后就会影响高炉的正常布料,引起炉况波动。较大的孔洞出现可以通过炉内摄像观察到。一旦发现溜槽磨漏之后应立即更换,如果不及时更换导致孔洞越来越大,料流直接冲刷到溜槽托架上,造成溜槽托架磨

损,严重的结果会使溜槽掉入高炉内。严格来说发现溜槽出现孔洞再进行更换已经属于设备病态作业。在对溜槽进行检查时如果发现溜槽内倒刺衬板已经磨损掉,就应该及时更换溜槽。

20xx年4月底定修,在对我厂某高炉溜槽检查时发现溜槽衬板已经完全磨掉,当时由于备件不到位而没有更换新溜槽。再到6月初检查该溜槽时发现溜槽接料点处已经磨漏,孔洞直径将近400mm。由此可以推测出,在溜槽衬板完全磨掉之后,溜槽本体在料流冲击下最长经过两周时间就会磨漏。更换溜槽时间一般需要4—5小时。更换溜槽时应将α角角度调整到50°左右为最佳角度,如果角度过大,安装时较难挂钩;而如果角度过小,则在溜槽拆下时不易摘脱。在休风时间不能够满足更换溜槽时,也可以对溜槽进行补焊处理,在接料点处或磨漏的孔洞处补焊圆

钢或较厚的耐磨钢板。

布料溜槽的衬板耐磨性能至关重要,新的耐磨材料和工艺将会是溜槽性能提升的研究方向,目前我厂使用的方法是对衬板采取用硬质合金补焊层来增加其耐磨性。资料显示,对溜槽内衬表面进行碳化镀钨处理将有效增加溜槽使用寿命,可达18个月之久。

5.4.气密箱迷宫密封间隙过小

布料器安装在炉顶钢圈之上,受到炉喉处高温煤气的加热,同时受到炉喉料面处的高温热源辐射,还有布料器内部转动所产生的热量,这样的高温环境会使部分部件产生热涨。如果气密箱迷宫密封间隙过小的话,这种热涨就会引起转动部分与固定部分相互干涉,产生一定的阻力,导致β角电机电流过大而跳闸。因此在设计迷宫密封时应考虑到布料器所处高温环境带来的影响。同时要求我们的高炉操作人员一定

高炉铁口操作与维护 (1)

第24卷第5期2005年10月 髂钦 IRONMAKING V01.24,No.5 0ctober2005高炉铁口操作与维护 孟巍郑文玉刘明祥于君成 (北台钢铁集团有限责任公司)(新疆八一钢铁集团有限责任公司)(承德钢铁集团有限公司)(三峡工业设计研究院) 摘要对高炉铁口操作和维护中的若干问题进行分析。认为提高铁口深度合格率是高炉铁口操作与维护的关键,一要控制好铁口的角度、深度、直线度、口径准确度、正点率、出铁均匀率;二要选择合理的开口机、泥炮、钻头和钻杆;三要确保炮泥质量。 关键词高炉铁口铁口深度合格率开口机 1概述 高炉铁口区域是炉缸内最薄弱环节之一,科学合理地维护好铁口是炉前操作的重要工作。近年来,随着我国高炉大型化、现代化进程加快,冶炼强度的提高,给炉前操作提出了许多新要求。笔者认为,高炉铁口的操作与维护,首先,要完成好7项炉前操作指标——即铁口深度,角度,直线度,孔道均匀度,出铁正点率,放净渣、铁,出铁均匀率;其次,要使用结构先进的泥炮和开口机,并能科学合理地操作,匹配合理的钻头钻杆,定期更换修补泥套;第三,确保炮泥质量。只要满足上述要求,高炉铁口的操作与维护就能提高到一个新水平,这对降低铁口维护量,提高炉前工作效率,降低生产成本以及延长炉底炉缸寿命都是十分有利的。 2提高铁口深度合格率 炉前7项操作指标中,最重要的是铁口深度合格率。铁口深度合格率是铁口深度合格次数与实际出铁次数之比。影响铁口深度合格率的原因很多,客观分析主要有以下几个方面。 2.1铁口深度 合理的铁口深度是出净渣、铁的有效保障。铁口深度是指铁口至泥包外壳的实际厚度。要保证有效铁口深度要做好以下几点:①要稳定铁口角度;②有渣口的高炉要放净上渣;③要保证铁口(孔道)直线度;④要稳定打泥时间,保证打泥量,防止漏泥跑泥;⑤提高炮泥质量;⑥选择结构合理的泥炮、开口机;⑦要提高炉前工操作维护水平;⑧科学合理地配置钻头钻杆。合理的铁口深度一般是炉缸原内衬加炉壳厚度的1.2~1.5倍。1J。不同容积高炉对铁口深度要求也不同(见表1)。 表1300—1500m3高炉铁口深度 2.2铁口角度 铁口角度与泥包形成的位置有直接关系,位置不定,深度不准。尤其目前使用单连杆无轨开口机的高炉,铁口的角度实际是假想角度,对准铁口的一瞬间是一个设定的度数,当钻进到一定的深度,角度就逐渐变大,特别是遇到夹铁、夹渣、泥包断层面时,最后的实际角度甚至超过19。,这样的随意“角度”泥包形成的上下左右位置和理论设计位置相差甚远,很难保证合理的铁口深度。所以每次打泥都要对不稳定的旧铁口孔道进行修补,同时又要在新的位置产生新的泥包。长期以来修补后的旧孔道与新孔道炮泥烧结性差,加之孔道不标准,一受到渣铁的冲刷和侵蚀、铁口坍塌,铁口孔道就变得不规则,铁口变大,这样极容易造成铁口烧穿,严重时会出现跑大流、喷焦,不尽快进行修补会导致铁口冷壁烧穿。因此,我们提倡选择使用有轨式开口机或斜座转臂式开口机、斜座液压泥炮,这样结构的开口机、泥炮开堵铁口“稳、准、快”。 2.3放净渣铁 强调出铁均匀率的同时,要强调放净渣铁,渣铁出不净,堵口炮泥出现漂浮,使铁口连续过浅,同时增加了出渣量。由于孔道不规范,在打泥过程中铁口的修补量过大,影响炮泥的流速,使新泥包壳产生裂纹,泥包减薄,深度达不到要求,孔道变大,控制不住铁水流速,容易出现卡焦、跑焦现象。 ?43?  万方数据万方数据

高炉布料操作

高炉布料操作(提纲) 刘云彩 1,高炉布料的作用 1.1,布料能改变高炉产量水平、改善顺行,降低燃料消耗: 布料能改变产量水平,能提高高炉接受风量的能力;改善顺行,大幅降低燃料消耗: 炉内料柱的空隙度大约在0.35—0.45之间。上升的煤气对炉料的阻力约占料柱有效重量的40—50%。煤气分布是不均匀的,对下降炉料的阻力差别很大。利用不同的煤气分布,减少对炉料的阻力,从而保持高炉稳定、顺行。有了顺行,就有可能提高冶炼强度,增加产量。 1.2,通过布料能延长功率寿命 边缘气流过分发展,必然加剧炉墻侵蚀。通过布料控制边缘气流,保护炉墻。 1..3,通过布料,预防、处理一些类型的高炉冶炼进程发生的事故 这些类型包括: 高炉憋风、难行; 渣皮脱落; 边缘过轻,危害很大。边缘过轻,首先表现在炉顶温度过高。影响炉顶温度的因素较多,边缘发展,是其中之一。炉顶温度每降低100,大约可降低焦比3-5公斤,主要来自三个方面: A,气带走的热量; B,冷却水及炉体散热; C,煤气利用率下降。 正常冶炼水平,炉顶温度与渣量关系密切。 边缘过重,同样会带来灾难。1982年首钢2高炉,连续发生风口压入路内事故,给生产带来很大损失:

50 15 炉腹渣皮结到一定厚度,自行脱落,由于边缘煤气量不足,不能很好的熔化,大块渣皮沿炉缸壁下滑, 将深入炉内的风口压入炉内。 类似的现象,在宝钢和日本也出现过。日本把这一现象叫“曲损”。 炉墙结厚; 减少一些铁中的有害元素。 装料制度也有局限性: 严重的炉缸堆积,解决不了; 严重的炉墙结厚,效果很小。 布料的作用,是通过不同的装料方法,改变煤气流分布,并影响软融带的形状。改变炉料位置及矿、焦在炉喉径向的比例,是控制煤气流分布的有效手段。 双钟装料设备,炉料分布受到限制,调节煤气流的作用比较有限。 无钟的出现,克服了大钟的缺陷。第一座无钟高炉,于1972年在蒂森公司汉博恩厂投产。这是卢森堡阿贝尔公司的重大发明,它以全新的原理、紧凑的结构,克服了大钟布料器的缺点,使高炉布料,完成一次革命。很快,在世界范围推广。它通过改变旋转溜槽角度,可把炉料布到炉喉内任何位置。 2, 布料操作 2.1,煤气流的作用 煤气分布对高炉的作用是多方面的。煤气在高炉内的分布,分四种类型。各种类型的作用如表3: 表3,布料的作用(高炉布料规律,135页表40) 2.2,软融带的形状,对高炉行程有重要影响,煤气分布在很大程度上决定软融带的形状(图1)。 图1,软融带形状及煤气分布 [2] 2.3,批重的作用: 批重大小,对煤气分布影响极大。大批重普遍加重边缘及中心;小批重发展边缘及中心。各炉在一定 的条件下,均有一个临界范围。当批重大于临界范围,随批重增加而加重中心;当批重小于临界范围,随批重增加而加重边缘或作用不明显[1]。 依此原理,当炉料较好时,应当用大批重;外部条件变坏时,应缩小批重。

高炉布料器的主要故障分析与维护详细版

文件编号:GD/FS-2826 (操作规程范本系列) 高炉布料器的主要故障分析与维护详细版 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

高炉布料器的主要故障分析与维护 详细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 介绍了布料器的结构和工作原理,阐述了布料器使用与维护要点,根据承钢布料器出现的故障进行分析总结,提出改进方法。 布料器是无钟炉顶的关键设备,其功能是驱动并控制布料溜槽绕高炉中心线的旋转和倾动,以完成高炉不同的布料要求。承钢炼铁厂3#、4#高炉容积为2500立的钒钛冶炼大高炉,炉顶布料器采用包钢BGⅢ型布料器,旋转采用机械传动,倾斜为液压传动,布料器的冷却采用开式循环水加氮气实现。润滑由自动润滑系统完成;可以实现环形布料、扇形布

料、定点布料等多种布料方式,满足高炉使用要求。 布料器的结构组成与各部分功能 2.1.布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。 2.2.布料器各部分主要功能 布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。 布料溜槽也叫旋转溜槽,它主要是把料罐内的原料、燃料按照一定的方式,在炉内合理的布料作用。 溜槽托架主要是悬挂溜槽,使溜槽能够在溜槽托架上,绕高炉中心线旋转,也可以上下摆动,还可以旋转和摆动同时进行。

关于高炉出铁口泥包形成与维护方面的研究

关于高炉出铁口泥包形成与维护方面的研究 高新运贾广顺杜敏庆李丙来肖海龙 (济钢集团有限公司炼铁厂,济南 250101) 摘 要本文通过长期的炉前操作实践,结合具体感受认识,着重进行了高炉铁口(即高炉出铁口)泥包形成原理以及打泥操作控制和合理打泥量计算方法进行了研究,同时也对一些基本概念进行了定义,但没有涉及炮泥质量和炮泥成分等问题,单纯旨在提高炉前操作人员基本知识水平和操作技能,引导炉前操作人员在保证铁口合理深度前提下节约使用炮泥,降低炉前生产成本,减少环境污染。 关键词 高炉铁口泥包打泥量 Research of Maintenancing on the Clay Pack Used in Iron Notch of BF Gao Xinyun Jia Guangshun Du Minqing Li Binglai Xiao Hailong (Ironmaking plant of Jigang Group Co., Ltd., Jinan, 250101) Abstract The emphasis on the iron notch the clay pack in principle, operator control and a reasonable amount calculated in the field of study, does not involve the quality and the composition of the gunmud, to improve the operating personnel basic knowledge and skills and improve the operating personnel to ensure the proper depth of the economy in the use of the gunmud and reduce the production costs and reduce environmental pollution. Key words iron notch, clay pack, the mud volume 1 引言 业内人士知道高炉铁口是高炉的关键部位,主导炼铁厂命运的产品——铁水都要从高炉铁口排出,铁口工作状态的好坏不仅决定炼铁厂指标和效益,而且还能够决定高炉一代炉役的长短。因此,高炉铁口的操作与维护在整个炼铁系统一直是十分重要的,也是得到各级领导高度重视的。 济钢1750m3高炉投产初期,铁口曾一度较浅,并且打开困难,为此,厂领导曾多次指示从各个方面开展研究,尽快解决铁口问题。其中有人研究泥炮质量问题,有人研究开口机问题,有人组织炉前操作人员进行实际操作探索,考虑到高炉铁口操作、维护是一个长期的、需要许多人甚至许多专业共同参与和努力才能完成课题,因此,我们选择了“高炉铁口泥包形成原理、打泥操作控制和合理打泥量计算”这三个问题进行研究,以配合实现高炉铁口的长治久安。在开展“高炉铁口泥包形成原理、打泥操作控制和合理打泥量计算”研究方面,认为首先必须与铁口操作的人员和炉前技师进行沟通、交流,并通过沟通、交流达成共识,以便于统一思想、统一认识、统一操作。考虑到沟通、交流单纯采用口头形式很难表达圆满,因为有些问题不是一句话两句话能够解释清楚的,因为凡是表达不清楚的问题,都不容易被人们接受。因此,认为要想在思想上、认识上取得一致,必须通过文字描述和图形描述的方法进行交流,这样才能使沟通和交流更便于理解,才能使沟通和交流的结果永久保留下来,才能成为上升到理论高度来认识的依据,才能实现这一领域认识上 高新运,男,高级工程师,从事炼铁技术研究。

大型高炉炉前操作及铁口维护技术培训教材

-大型高炉炉前操作及铁口维护技术培训教材 第一部分.大型高炉铁口保持稳定的基本要素 目前国已生产和在建的大型高炉越来越多,几乎全部采用了无渣口、多铁口的设计。由于国许多企业的大型高炉都是近几年建成的,对铁口的操作及维护技术几乎从零开始。遇到的问题都很多,如:铁口深度不稳定发生频繁渗漏断裂现象、铁口深度长期浅引起侧壁升高、铁口漏煤气严重泥套无法制作、开口困难被迫采用闷炮开口引起出铁跑大流等事故。由于炉前操作的不稳定经常造成高炉减风减产、不仅对炉况影响很大而且影响到高炉的长寿。 ?高炉炉身修补技术的发展和操作控制水平的提高使高炉一代炉龄已能够达到15年以上,也有的已超过20年。由于炉缸是高炉的重要组成部分,而它的损坏必须在停炉大修时才能修补,因此现在炉缸是决定高炉长寿的最关键部位。 ?对过去几年世界围20余座高炉炉缸的破损及修补的调查表明,几乎所有的破损和修补都在出铁口周围和其下部区域。 ?实践和研究也表明,影响高炉(尤其是大型高炉)的长寿因素主要是:炉缸不断侵蚀、砖衬减薄,不能维持生产。而在高炉炉缸区域,侵蚀最严重的是铁口区域。这是因为在高炉正常生产中,大量的熔融渣铁从铁口排出,对铁口区域的砖衬冲刷、侵蚀厉害。因此铁口出渣铁作业完毕后总要通过铁口孔道打入一定的炮泥,以达到修补被侵蚀的铁口区域炉墙,达到维持一定砖衬厚度的目的。但出铁口周围比炉缸壁其他部位的条件更恶劣,因此要形成稳定的保护层更加困难,成功地维护好该保护层是高炉长寿的关键。 ? 1.影响出铁口维护的因素 ?出铁口位于炉缸的下沿为长方形或圆形直孔,主要由铁口框架、保护板、铁口保护砖、泥套、流铁孔道及泥包所组成。如图1、图2 所示

高炉布料器的主要故障分析与维护(朱志军)

高炉布料器的主要故障分析与维护 朱志军韩宇 单位:河北钢铁集团承钢分公司维检中心 摘要:介绍了布料器的结构和工作原理,阐述了布料器使用与维护要点,根据承钢布料器出现的故障进行分析总结,提出改进方法。 Abstract:This paper introduces the structure and working principle of the distributor, the distributor of use and maintenance, are analyzed and summarized according to the fault bearing steel distributor appears,proposed the improvement method. 关键词:布料器使用维护要点故障分析改进方法 Keywords: distributor using the new methods of fault maintenance points 1.前言 布料器是无钟炉顶的关键设备,其功能是驱动并控制布料溜槽绕高炉中心线的旋转和倾动,以完成高炉不同的布料要求。承钢炼铁厂3#、4#高炉容积为2500立的钒钛冶炼大高炉,炉顶布料器采用包钢BGⅢ型布料器,旋转采用机械传动,倾斜为液压传动,布料器的冷却采用开式循环水加氮气实现。润滑由自动润滑系统完成;可以实现环形布料、扇形布料、定点布料等多种布料方式,满足高炉使用要求。 2.布料器的结构组成与各部分功能 2.1 布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。布料器结构、驱动原理见图1所示。 图1

高炉铁口岗位

高炉铁口岗位安全作业 应知应会手册 」、“应知”部分 (一)岗位名称及作业任务

(二)危险介质理化特性及主要技术参数

(三)岗位主要危险源点情况 作业活动危险有害因素事故类型风险等级 设备点检、维护、开口操作、更换开铁口钎子、卸钎子等作业煤气泄漏中毒二级操作不挡,工具烘烤状况爆炸二级进入铁口区域作业,确认泄漏煤气点燃 中毒/窒息 二级操作不挡,喷溅铁口烫伤 二级 烘烤铁口,操作不细烧伤二级更换开铁口钎子不挡拉伤三级捅铁口不挡烫伤三级在走梯、平台上滑倒、平台栏杆损坏摔伤四级铁沟高温辐射灼烫四级临时线路漏电触电四级煤气区域救助伤员时防护不当中毒 四级烧铁口工具确认烧伤三级 (一)作业程序及异常状态处置措施 1、出铁水作业程序 (1)开口机操作 1、开口前检查开口机是否能运转正常,并装好风钻,启动液压泵 2、按规定铁口角度对准中心线钻铁口,先用风钻分次逐步钻进,钻入500-600mm 后换钢钎子,钻开铁口后,要迅速退回开口机,并关液压泵,拆下钎子及钎尾 3、发现铁口内有铁时改用钎子打或氧气烧铁口,严禁用钻头钻,以防钻头损坏 开铁口操作的要点是:无论铁口深浅,都要烘烤干,其中还要注意开口钎子铲的大小和铁口的潮湿状况。 (2)堵铁口操作铁口出现喷溅状况敲钟堵铁口。依次是清理铁口两侧的喷溅杂物,拿起手锤敲钟操作,通知泥炮工堵铁口,通知主控室出铁完毕,打开冷却水阀门,打水冷却开口机设备 堵铁口操作的要点是:无论铁口状况如何,铁口两侧杂物必须清理干净2、异常状 态处置措施

(1)开口机设备损坏的紧急处置 1.1通知通知主控室;通知检修跟班人员 1.2确认开口机损坏部位,通知点检人员准备好损坏部位的备件和物品,以便赢取更换时间; 1.3接到更换备件时间短,不影响正常出铁点,及时联系可以适当延迟出铁时间。1.4接到更换备件时间长,及时组织炉前人员迅速做好人工开铁口准备。 1.5准备好大锤、长度2 米的开口钎子 1.6钎子一头对准铁口部位,一头用大锤轮流敲打钎子 1.7开到铁口深度差不多的时候,用圆钢将铁口捅开(2)铁口漏的紧急处置 2.1铁口漏铁时及时用泥炮堵住铁口,出铁时铁口大喷 2.2铁口是否出净渣铁,是铁口深度一个指标 2.3铁口孔道直径、铁口孔道的工作状态是出铁正点率的一个指标 (二)处理异常失控状态应当采取的应急措施 1、出铁口难开事故应急处置 1.1原因 1.1.1炮泥过硬,强度大。 1.1.2渣铁未出净,带铁堵口时夹杂渣铁、焦炭。 1.1.3炉缸不活跃,铁口过深2、现场应急处置措施 2.1措施 2.1.1使用质量合格的炮泥。 2.1.2出净渣铁,铁口适当喷射。 2.1.3适当减少打泥量,备有长钎子。 2.1.4用氧气烧开出铁口。 2、铁口连续过浅事故应急处置 2.1原因 2.1.1渣铁未出净,炉缸内积存大量渣铁。 2.1.2开口操作不当,铁口孔道过大。 2.1.3“闷炮”开口操作。 2.1.4潮铁口出铁。 2.1.5炮泥质量差。 2.1.6下渣量大,渣流把铁口拉浅。 2.1.7打泥量少(包括大量跑泥)

高炉布料规律攻关总结[1]

高炉布料规律的攻关总结 目的:通过布料操作的进一步改善,达到合理控制煤气流,促进炉况 顺行,延长高炉寿命。 一、简介:邢钢1#高炉有效容积350m3,2001年7月改造扩容,炉 顶系统采用了并罐无料钟和高炉热流在线监测等新技术;2003 年180m2烧结机的投入使用,使入炉的原料结构趋于稳定,燃 料方面为全生产焦,M25在91%以上;由于无料钟炉顶在中小 高炉中的广泛使用,煤气流的合理利用成为高炉的炉况顺行程 度的关键,为此在2006年开始模拟布料测定。 二、布料测定: 1、制作测量布料落点工具。使用6′焊管,做成Z型直角模具,利用休风机会从炉顶点火人孔放入炉内,使得垂直段与炉喉钢砖平行且紧贴钢砖,伸入炉内的水平段与钢砖垂直,水平段上标有刻度。 2、制作了能精确测量溜槽角度的工具。使用1吋焊管制作成“工”型模具,一端从炉顶点火人孔伸入炉内,与溜槽底部(下端)平行且紧贴底部,外端可以使用量角器进行测量溜槽角度。 3、炉料堆角位置的测量。通过休风机会在1#高炉进行两次测量矿石和焦炭的布料落点。 3.1 使用32.5°同角度放料:测量工具水平段处于料线1200mm 位置,矿石集中落点距离炉喉钢砖约400-500mm位置,焦炭落料点距离炉喉钢砖约0-300mm位置。由于首次试验测量工具不具备连续显示物料轨迹的功能,实际数据是通过炉料撞击测量工具水平段后留下的痕迹判断出的落料位置。 3.2 使用32°同角度放料:判断出矿石落点的具体位置,从料面(3000mm)观察,矿石完全布到边缘位置。焦炭部分冲击炉喉钢砖1100-1200mm位置,所以判断出针对1#高炉如果需要适当发展边缘气流时,焦炭外环最大角度不应该超过32°。 四、试验过程及分析

高炉设备操作维护检修规范

第一章炉前设备 第一节开口机 一、开口机技术操作规程 1、转臂回转由液控阀1操纵,工作时将阀推至“工作”档,开口机转至工作位置,推动液控阀2,油缸伸出,机架倾动,挂上钩。 2、将阀3推至“前进”档,使进给马达带动行走小车慢速向前,当钻头抵住炉口前,推动阀4、阀5至“工作”档,使CHY1000A 型开铁口机同时产生冲击和回转动作,打开吹灰气阀,使灰渣排除。 3、当行走小车向前碰到前缓冲器挡块时(现在铁口还有100-200mm未打开)把阀3拉到“退回”档,行走小车快速退回,同时把阀 4、阀5,拉至“停止”档,开铁口机将停止工作,关闭吹灰气阀。 4、当钻杆完全从铁口中退出后,推动液控阀2,油缸回缩,机架倾动,脱钩;拉动阀1至“避让”档,开口机退回至休息位置。 至此,开口机的工作差不多完全结束。本规程严格规定:“不许用开口机直接打开铁口放出铁水”,应该先用开口机打到一定深度(一般距出铁还有100-200mm),然后把开口机退出,在用

吹氧或其它钎杆捅开铁口,放出铁水。 技术参数:液压油:兰稠46号抗磨液压油

二、开口机设备维护规程 1、安装和更换零部件时,除确保元件本身清洁外,必须严格操纵各开路处,防止在结合时污染杂质的侵入,确保整个系统不受污染。 2、定期加注润滑油或润滑脂。 润滑周期表 3、常用备件 倾动油缸(φ100×φ45×110)1根钻杆、钻头、振打杆若干件 回转油缸(φ160×φ90×340)1根滚动轴承各2套 冲击回转开口机(CHY1000A)2台链条

1套 给进液压马达1台各操纵阀各1件 4、第一次安装使用的开铁口机和油马达,2个月后要清洗一次,以后每季度清洗一次。(有关CHY1000A、CHY2000开口机和J6K-490型油马达的使用维护参见其专用讲明书)。 三、开口机设备检修规程 1、检修前必须执行停电挂牌制度。 2、更换打击机时,先拆下管路托架和各连接管路,再拆下后缓冲器,拆下前后链接头,从轨梁的后部抽出打击机,即可更换。 3、推进驱动装置检修时,先拆下前后链接头,拉住链条,并启动液压马达将链条抽出,再拆下油管,拆下压板螺栓即可将推进驱动装置从推进轨梁上卸下。 4、检修完毕,将现场清理洁净。 第二节泥炮机 一、泥炮技术操作规程 操作人员上岗前先阅读讲明书,了解和熟悉液压泥炮的结构,动作原理和操作要领。

高炉布料器的主要故障分析与维护实用版

YF-ED-J7556 可按资料类型定义编号 高炉布料器的主要故障分析与维护实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

高炉布料器的主要故障分析与维 护实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 介绍了布料器的结构和工作原理,阐述了 布料器使用与维护要点,根据承钢布料器出现 的故障进行分析总结,提出改进方法。 布料器是无钟炉顶的关键设备,其功能是 驱动并控制布料溜槽绕高炉中心线的旋转和倾 动,以完成高炉不同的布料要求。承钢炼铁厂 3#、4#高炉容积为2500立的钒钛冶炼大高炉, 炉顶布料器采用包钢BGⅢ型布料器,旋转采用 机械传动,倾斜为液压传动,布料器的冷却采 用开式循环水加氮气实现。润滑由自动润滑系

统完成;可以实现环形布料、扇形布料、定点布料等多种布料方式,满足高炉使用要求。 布料器的结构组成与各部分功能 2.1.布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。 2.2.布料器各部分主要功能 布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。 布料溜槽也叫旋转溜槽,它主要是把料罐内的原料、燃料按照一定的方式,在炉内合理的布料作用。 溜槽托架主要是悬挂溜槽,使溜槽能够在

高炉布料器的主要故障分析与维护正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.高炉布料器的主要故障分析与维护正式版

高炉布料器的主要故障分析与维护正 式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 介绍了布料器的结构和工作原理,阐述了布料器使用与维护要点,根据承钢布料器出现的故障进行分析总结,提出改进方法。 布料器是无钟炉顶的关键设备,其功能是驱动并控制布料溜槽绕高炉中心线的旋转和倾动,以完成高炉不同的布料要求。承钢炼铁厂3#、4#高炉容积为2500立的钒钛冶炼大高炉,炉顶布料器采用包钢BGⅢ型布料器,旋转采用机械传动,倾斜为液压传动,布料器的冷却采用开式循环水加氮气实现。润滑由自动润滑系统完

成;可以实现环形布料、扇形布料、定点布料等多种布料方式,满足高炉使用要求。 布料器的结构组成与各部分功能 2.1.布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。 2.2.布料器各部分主要功能 布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。 布料溜槽也叫旋转溜槽,它主要是把

高炉铁口日常深度控制探讨

高炉铁口日常深度控制探讨 铁口是高炉铁水流出的孔道,由铁口框、保护板、泥套和铁口砖通道组成。铁口区域是环境比较恶劣的地方,受高温铁水冲刷、开眼机、泥炮振动以及焖炮作业时的破坏,加之铁口角度的变化,开炉不久铁口通道内异型砖就被侵蚀掉,只有泥套泥来替代,好在泥套泥可以即破坏即补充能够始终保持铁口通道的完好,但是如果受损的铁口通道没有被及时补上或连续过浅,则会给铁口造成致命的损害。 ?一、铁口深度与炉口维护的关系 ????铁口深度的确定是根据炉墙厚度而定的,正常的铁口深度应比铁口区域炉墙厚度大1/3—1/4,要使泥包超出炉墙,这样才能经常地保护铁口区域炉墙不受侵蚀破坏。 ????铁口排出大量的铁水的炉渣在这个过程中,铁口受到炉内炽热液态渣铁冲刷,高温煤气燃烧冲刷等影响,直接造成铁口泥包和铁口孔道二损坏,经堵口打入新泥,损坏二泥包,孔道得到补充。 ????所以,炉前操作中对铁口维护是一件非常重要的工作,铁口过浅轻者出铁卡焦炭,“跑大流”被迫高炉改常压放风,破坏炉内顺行;重则发生堵不住铁口,渣铁场放炮,烧坏铁道,如果铁口长期过浅,或铁口孔道不正,再导致烧环铁口区域二冷板,发生铁口爆炸等恶性事故,然而铁口过深也不是好现象,会出现铁口难开或出现潮泥,造成铁口的大量喷溅,出铁的不均匀性,导致排不尽渣铁,而影响炉况的顺行。

????二、操作中应注意以下几点? ????为保持正常的铁口深度,除了有质量好的炮泥,性能良好的设备条件外,操作也受到多方面的影响 ?1、风量、风压的影响?? ????炮泥在铁口孔道内一边受到泥炮的推力,另一边受到高炉内压力,而使炮泥变得密实,当风压较高时,炮泥在前进的过程受到的阻力也较大,打泥速度会变慢,如果在打泥过程中仍然按时间来计算深度,那么在同样的时间内,此时铁口深度会较浅,但这时,新泥和旧泥连接较好,打炉内的泥及时地形成喇叭状而贴在炉墙上,所以在风压,风量较大时,打泥时间相应控制应长一些。反之,当风压、风量较低时,泥炮的推力一定而炉内压力减小,必然出现吐泥速度的增加,打泥时间保持不变时,则会造成大量炮泥在炉内堆积,造成铁过深,如新泥没有受到来自炉内足够的压力,而使新旧泥之间不能良好地结合,出现断裂,开铁口时有漏铁、漏渣的现象,这种情况一方面应调整泥炮压力,另一方面适当减少打泥量。 ????2、炉温和渣碱度的影响?? ????炉温和渣碱度较高时,渣铁粒度较大,流动性不好对铁口孔道的冲刷较小孔道大小在出铁前后变化不大,孔道内的容泥量较少,在铁口浓度不变情况下,所需泥量较少,打泥时间应适当控制。?? ????相反,当炉温和渣碱度较低时,渣铁流动性好,对铁口孔道的冲刷会大一些,另外在渣铁流动性好时,打入炉内的泥会被渣铁漂走一部分,所以在炉温和渣碱度较

高炉布料器的主要故障分析与维护

编订:__________________ 单位:__________________ 时间:__________________ 高炉布料器的主要故障分 析与维护 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4702-94 高炉布料器的主要故障分析与维护 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 介绍了布料器的结构和工作原理,阐述了布料器使用与维护要点,根据承钢布料器出现的故障进行分析总结,提出改进方法。 布料器是无钟炉顶的关键设备,其功能是驱动并控制布料溜槽绕高炉中心线的旋转和倾动,以完成高炉不同的布料要求。承钢炼铁厂3#、4#高炉容积为2500立的钒钛冶炼大高炉,炉顶布料器采用包钢BGⅢ型布料器,旋转采用机械传动,倾斜为液压传动,布料器的冷却采用开式循环水加氮气实现。润滑由自动润滑系统完成;可以实现环形布料、扇形布料、定点布料等多种布料方式,满足高炉使用要求。 布料器的结构组成与各部分功能 2.1.布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布

料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。 2.2.布料器各部分主要功能 布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。 布料溜槽也叫旋转溜槽,它主要是把料罐内的原料、燃料按照一定的方式,在炉内合理的布料作用。 溜槽托架主要是悬挂溜槽,使溜槽能够在溜槽托架上,绕高炉中心线旋转,也可以上下摆动,还可以旋转和摆动同时进行。 托圈主要功能是使溜槽能够上下摆动,同时用于放置回转支撑。 溜槽曲臂的作用主要是通过托圈的上下移动,带动曲臂动作,从而实现溜槽的上下摆动。 β电机主要是带动齿轮旋转,从而带动溜槽旋转。 液压缸的作用主要是提升托圈,从而带动曲柄动作使溜槽角度产生变化,进行高炉布料。

高炉操作作业指导书

高炉操作作业指导 书 1

2500m3高炉操作作业指导书 1 目的适用范围 按照高炉分厂生产计划根据作业区制定方针操作高炉,完成各项指标及产量,及时处理突发事故。 本作业指导书适用于炼铁分公司高炉分厂2500m3高炉作业区。 2 引用标准和术语 2.1术语 焦比:冶炼一吨生铁所消耗的焦炭量。 煤比:冶炼一吨生铁所消耗的煤量。 燃料比:冶炼一吨铁所耗的燃料总量。 冶炼强度:每昼夜每立方有效容积所消耗的焦炭吨数。 利用系数:每昼夜生产的标准生铁/高炉有效容积(吨/立方米.日) 合格率:合格铁质量与规定时间内的总质量之比。 休风率:高炉休风时间/规定工作时间*100% 入炉焦比:干焦耗用量(吨)/合格生铁产量(吨) 矿焦比:矿石批重与焦炭批重之比。 风口前理论燃烧温度:假定风口前焦炭燃烧放出的热量全部用来加热燃烧产物,这时所能达到的最高温度。 装料制度:对炉料装入炉内的方式方法的有关规定。 物理热:炉缸温度可用铁水温度表示,一般为1480~1520℃。 化学热:用生铁含Si量来表示。 装料顺序:焦炭和矿石入炉的先后次序。

休风:高炉在生产过程中因检修、处理故障或其它原因,必须中断生产,停止向高炉送风。 料批:按照装料顺序将矿焦放入炉内的一个循环。 批重:一批料的质量。 料线:从探尺零位到料面的距离。 低料线:高炉用料不能及时加入炉内,致使高炉实际料线比规定料线低0.5m或更低时,即为底料线。 二元碱度:CaO与SiO2的比值。 三元碱度:CaO+Mgo与SiO2的比值。 α角:指无料钟炉顶布料溜槽径向上下倾动的角度。 β角:指无料钟炉顶布料溜槽360度圆周旋转的角度。 γ角:指无料钟炉顶下料闸开关的角度。 溜槽转速ω:指无料钟炉顶布料溜槽每分钟旋转的圈数。 探尺零位:以炉喉钢砖上沿定为探尺零位。 定点布料:炉子截面某点发生管道或过吹时,操作时溜槽倾角和定点方位由人工手动控制的布料方式。 环形布料:随着溜槽倾角的改变,可将焦炭和矿石分布在距离中心不同的部位上,借以调整边缘或中心的煤气分布,又可做单、双、多环形布料方式。 高炉炉型:高炉内工作的空间形状。 设计炉型:高炉按蓝图设计的空间形状。 3

关于高炉布料操作

布料操作是高炉基本操作制度中经常变动的操作。高炉外部条件变化,或高炉生产方针改变,一般都需要改变装料制度。 1高炉布料的作用 (1)布料能改变高炉产量水平,改善顺行,降低燃料消耗。炉内料柱的空隙度大约在0.35~0.45。上升的煤气对炉料的阻力约占料柱有效重量的40%~50%。煤气分布是不均匀的,对下降炉料的阻力差别很大。利用不同的煤气分布,减少对炉料的阻力,从而保持高炉稳定、顺行。有了顺行,就有可能提高冶炼强度,增加产量。通过布料,改善煤气利用,也是布料的重要功能。 (2)通过布料能延长高炉寿命。边缘气流过分发展,必然加剧炉墙侵蚀。通过布料控制边缘气流,既保护炉墙又改善煤气利用,是合理装料制度的前提。 (3)通过布料,预防、处理一些类型的高炉冶炼进程发生的事故。这些事故类型包括:高炉憋风、难行;处理炉墙结厚;边缘过重,引起的渣皮脱落;增加有害杂质通过煤气排除高炉。 装料制度也有局限性:严重的炉缸堆积,解决不了;严重的炉墙结厚,效果很小。 2大钟操作 高炉最早出现于中国,已有2700年的历史。高炉装料方法多种多样,均未流传下来。1850年,当巴利式大钟布料器在英国出现,尽管它不能旋转并有许多缺点,还是流传了下来。在此基础上,不断改进、完善,终于在1907年出现了“马基式”布料器,并迅速在世界范围普及。为什么大钟布料器得到发展,能够在炼铁历史中占有重要地位?因为它解决了高炉长期以来一直困扰的煤气流合理分布问题。 通过大钟布料器落入炉内的炉料,形成边缘中心低的反锥体料面。当炉喉直径大于3·5 m自边缘和中心的料面差,已经超过1 m,这就使中心的料柱透气性明显提高。从图1看到,阻力系数(高炉每米工作高度的压力差)大约在0.04--0.07kPa,高炉边缘和中心的料柱高差,推动了煤气流向高炉中心流动。这一作用,也为高炉扩大奠定了基础。大钟式布料所形成的料面,是以后各种布料器共同遵循的准则,无料钟布料也不例外。 大钟装料仅靠炉料堆尖在炉喉间隙的狭窄空间变化,改变炉料分布,所以经常使用批重、装料次序、料线变化组合,达到目的。 3 无料钟与大钟布料的区别

高炉布料器的主要故障分析与维护简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 高炉布料器的主要故障分析与维护简易版

高炉布料器的主要故障分析与维护 简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 介绍了布料器的结构和工作原理,阐述了 布料器使用与维护要点,根据承钢布料器出现 的故障进行分析总结,提出改进方法。 布料器是无钟炉顶的关键设备,其功能是 驱动并控制布料溜槽绕高炉中心线的旋转和倾 动,以完成高炉不同的布料要求。承钢炼铁厂 3#、4#高炉容积为2500立的钒钛冶炼大高炉, 炉顶布料器采用包钢BGⅢ型布料器,旋转采用 机械传动,倾斜为液压传动,布料器的冷却采 用开式循环水加氮气实现。润滑由自动润滑系 统完成;可以实现环形布料、扇形布料、定点

布料等多种布料方式,满足高炉使用要求。 布料器的结构组成与各部分功能 2.1.布料器的结构组成 包钢BGIII型布料器,其主要由布料器外壳,布料溜槽,溜槽托架,托圈,溜槽曲臂,上、下回转支撑,喉管,β电机,波纹管,各种管道(水管、液压管、氮气管)等组成。 2.2.布料器各部分主要功能 布料器外壳主要是起到密封高炉炉顶煤气的作用,同时是布料器各部件的支撑体。 布料溜槽也叫旋转溜槽,它主要是把料罐内的原料、燃料按照一定的方式,在炉内合理的布料作用。 溜槽托架主要是悬挂溜槽,使溜槽能够在溜槽托架上,绕高炉中心线旋转,也可以上下

潘向东——铁口维护与操作实践

长钢8号高炉铁口维护实践 潘向东侯毅雷 (长钢炼铁厂) 摘要本文介绍了长钢1080m3高炉出铁口的维护和操作方法,认为提高铁口深度合格率是高炉铁口操作与维护的关键,一要控制好铁口的角度、深度、直线度、口径准确度、正点率、出铁均匀率; 二要选择合理的开口机、泥炮、钻头和钻杆;三要确保炮泥质量.。 关健词高炉铁口维护 1 概述 铁口经常受到高温渣铁的侵蚀和冲刷,是高炉的薄弱环节。所以铁口的维护工作便成为高炉生产中的大事,它与能否正常生产、能否长寿高产息息相关。铁口的好坏往往影响炉子的寿命。把铁口维护好,就要做好以下7项炉前操作指标——即铁口深度,角度,直线度,孔道均匀度,出铁正点率,放净渣、铁,出铁均匀率;其次,要使用结构先进的泥炮和开口机,并能科学合理的操作,匹配合理的钻头钻杆,定期更换修补泥套;第三,确 保泥炮质量。下面就铁口的维护谈一点粗浅的看法。 2 提高铁口深度合格率 炉前7项操作指标中,最重要的是铁口深度合格率。铁口深度合格率是铁口深度合格次数与实际出铁次数之比。影响铁口深度合格率的原因很多,客观分析主要有以下几个方面。 2.1 铁口深度 合理的铁口深度是出净渣、铁的有效保障。铁口深度是指铁口至泥包外壳的实际厚度。要保证有效铁口深度要做好以下几点:①稳定铁口角度;②保证铁口(孔道)直线度③稳定打泥时间、打泥量,防止漏泥跑泥;④提高炮泥质量;⑤选择结构合理的泥炮、开口机; ⑥提高炉前工操作维护水平;⑦科学合理配置钻头钻杆。8高炉控制铁口深度为2400—2600mm。 2.2 铁口角度 开炉初期,炉底还没有受到侵蚀时,铁口角度只要保持0°~2°就可以了,随着炉底侵蚀深度的增加,铁口角度也相应增加,经过一段时间之后,炉底侵蚀减弱,炉底温度也基本稳定下来。在这一阶段铁口角度一般保持在7°~12°为适宜,只有在停炉大修时才加大到15°~17°,8高炉控制钻孔角度为11°。在日常生产中要固定一定的铁口角度,三班统一按固定角度开铁口,不得任意改变,只有统一认为需要改变时,才可以用新的角度来操作。如果任意改变铁口角度,就等于改变了死铁层厚度,这对维护炉底不利,更重

高炉布料模型的开发与应用

高炉布料模型的开发与应用 徐萌1,张汝望2,丁汝才2 (1.首钢技术研究院,北京100043;2.首秦公司,河北秦皇岛264404) 摘要:本文基于布料模型提出中心边缘相对负荷L C/L E的概念,修正了高炉煤气中心边缘相对分布Z/W的定义,建立布料与煤气分布之间的日常动态趋势管理,并结合高炉实际的炉况分析布料对高炉操作的影响规律。统计分析得到首钢某高炉长期稳定的Z/W、L C /L E和焦炭负荷区间,为高炉实际操作提供了有意义的参考。并结合布料与煤气分布之间的关系对首秦2号高炉的炉况波动进行了分析。 关键词:高炉布料模型;中心边缘相对负荷;煤气分布;趋势管理 1 引言 目前高炉布料模型比较普及,但是真正能够为生产提供指导作用的并不多,可能存在以下原因:一、布料模型模拟结果不够准确,如对炉料粒度的偏析、料流宽度、内外堆角都很少有准确的试验依据和描述,另外对径向炉料运动以及对炉料分布的影响也没有相应的描述;二、模型缺少实际的应用效果,大多模型编制完成后并没有作为有效的分析工具,即后续的工作很少有人深入并坚持去进行,因此也造成现场生产技术和操作者对该类模型的不重视。然而不可否认的是,高炉炉内的任何模型模拟结果都不可能达到绝对地与实际一致,首先,模型都依赖于初始界面条件的选择和大量的试验及监测数据,试验及监测结果的可靠和准确性本身就是对模型结果具有很大的影响,其次,高炉在长期生产的过程中炉内炉外的条件都在发生变化,这是模型本身不可控制的。也正是因为如此,需要模型工作者更加努力地去做到尽量达到与实际更为接近地效果,最为重要的是,应长期坚持模型结果与高炉实际的结合,坚持日常管理和长期趋势管理。对于高炉布料模型来说,需要使用模拟结果建立起高炉布料中心、边缘负荷与炉喉煤气分布之间的对应关系,通过日常的数据管理制度建立两者之间长期的趋势管理曲线,并和当时的原燃料条件、操作制度、炉况等相结合。通过长期的趋势管理上的积累和分析,就有可能利用布料模型实现对高炉布料制度的合理有效的调整。为此,开发了某高炉布料模型,基于模型理论分析布料与高炉煤气分布之间的对应关系,总结规律,为日常高炉布料调整提供指导。 2 高炉布料模型功能 该高炉布料模型可实现以下功能:(1)落点计算;(2)料面形状和矿焦比曲线;(3)料面形状和矿焦比对比。不同之处在于(1)抛物形堆尖:用料流宽度系数和抛物形堆尖高度系数分别表示抛物形堆尖的宽度和高度,可根据实际情况任意调整。(2)优先填充抛物形堆尖,然后再分别填充两侧,解决了简单的直线三角填充时将小堆角物料优先填充到中心导致模拟料面中心高的问题。(3)设置了料面对比功能,可快速了解布料调整前后的料面形状和径向矿焦比的变化程度。

相关文档