文档视界 最新最全的文档下载
当前位置:文档视界 › 3.2.2 空间线面关系的判定(一)

3.2.2 空间线面关系的判定(一)

3.2.2 空间线面关系的判定(一)
3.2.2 空间线面关系的判定(一)

3.2.2空间线面关系的判定(一)

——平行关系的判定

一、基础过关

1.空间直角坐标系中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB与CD的位置关系为________(平行、垂直或无法确定).

2.已知平面α的一个法向量是n=(1,1,1),A(2,3,1),B(1,3,2),则直线AB与平面α的关系是______________.

3.已知直线l与平面α垂直,直线的一个方向向量为u=(1,3,z),向量v=(3,-2,1)与平面α平行,则z=________.

4.已知A(0,0,0),B(1,0,0),C(0,1,0),D(1,1,x),若AD?平面ABC,则实数x的值是_____.5.若平面α的一个法向量为u1=(-3,y,2),平面β的一个法向量为u2=(6,-2,z),且α∥β,则y+z=________.

6.

如图,在平行六面体ABCD—A1B1C1D1中,M、P、Q分别为棱AB、CD、BC的中点,若平行六面体的各棱长均相等,则

①A1M∥D1P;

②A1M∥B1Q;

③A1M∥平面DCC1D1;

④A1M∥平面D1PQB1.

以上结论中正确的是__________(填序号).

二、能力提升

7.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B、AC上的点,A1M=AN=2

3a,则MN与平面BB1C1C的位置关系是________.

8.

如图所示,正四棱柱ABCD—A1B1C1D1中,E、F、G、H分别是CC1、C1D1、D1D、DC 的中点,N是BC中点,点M的四边形EFGH及其内部运动,则M只须满足条件________

时,MN∥平面B1BDD1(请填上你认为正确的一条即可).

9.

如图,已知正方体ABCD—A1B1C1D1中,E、F、G、H、M、N分别是正方体六个表面的中心,试确定平面EFG和平面HMN的位置关系.

10.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.

11.

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM∥平面BDE.

12.

如图,在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2,BB1=3,D是A1C1的中点.证明:A1B∥平面B1DC.

三、探究与拓展

13.

如图所示,在正方体AC1中,O为底面ABCD中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?

答案

1.平行 2.AB ∥α或AB ?α 3.3 4.0 5.-3 6.①③④ 7.平行 8.M 在FH 上 9.

解 如图,建立空间直角坐标系D —xyz ,设正方体的棱长为2, 易得E (1,1,0),F (1,0,1),G (2,1,1),H (1,1,2),M (1,2,1),N (0,1,1). ∴EF →=(0,-1,1),EG →

=(1,0,1), HM →=(0,1,-1),HN →

=(-1,0,-1).

设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面EFG ,平面HMN 的法向量,

由?????

m ·EF →=0m ·

EG →=0??????

-y 1+z 1=0,x 1+z 1=0,

令x 1=1,得m =(1,-1,-1).

由?????

n ·HM →=0,n ·

HN →=0,得????

?

y 2-z 2=0,-x 2-z 2=0,

令x 2=1,得n =(1,-1,-1). ∴m =n ,故m ∥n , 即平面EFG ∥平面HMN . 10.证明

建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),

C (0,1,0),

O (12,1

2,1),C 1(0,1,1), B 1C →

=(-1,0,-1),

OD →

=????-12,-12,-1, OC 1→

=???

?-12,12,0.

设平面ODC 1的法向量为n =(x 0,y 0,z 0),则?????

n ·

OD →=0n ·

OC 1→=0

得???

-12x 0-1

2

y 0-z 0=0 ①-12x 0

+1

2y 0

=0 ②

令x 0=1,得y 0=1,z 0=-1,

∴n =(1,1,-1). 又B 1C →·n =-1×1+0×1+(-1)×(-1)=0, ∴B 1C →

⊥n ,又B 1C ?平面ODC 1, ∴B 1C ∥平面ODC 1. 11.

证明 建立如图所示的空间直角坐标系. 设AC ∩BD =N ,连结NE , 则点N 、E 的坐标分别是 ???

?22,22,0、(0,0,1).

∴NE →

=???

?-22,-22,1.

又点A 、M 的坐标分别是(2,2,0)、???

?22,22,1, ∴AM →

=???

?-22,-22,1.

∴NE →=AM →

,且A ?NE ,∴NE ∥AM . 又∵NE ?平面BDE ,AM ?平面BDE , ∴AM ∥平面BDE . 12.

证明 如图,以B 为坐标原点,分别以BA ,BC ,BB 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则B 1(0,0,3), C (0,2,0),

D ???

?22,2

2,3,

A 1(2,0,3). A 1

B →

=(-2,0,-3),

DB 1→

=????-22,-22,0,

DC →

=???

?-22,22,-3,

设平面B 1DC 的法向量为n =(x ,y ,z ), 则??

?

DB 1

→·n =0?-22x -22

y =0,DC →

·n =0?-22x +22

y -3z =0.

取n =?

??

?1,-1,-

23,由于A 1B →

·n =0,且A 1B ?平面B 1DC ,所以A 1B ∥平面B 1DC . 13.

解 如图所示,分别以DA 、DC 、DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,在CC 1上任取一点Q ,连结BQ ,D 1Q . 设正方体的棱长为1,

则O ????12,12,0,P ????0,0,12, A (1,0,0),B (1,1,0),D 1(0,0,1), 则Q (0,1,z ),

则OP →

=????-12

,-12,12, BD 1→=(-1,-1,1),∴OP →∥BD 1→, ∴OP ∥BD 1.

AP →=????-1,0,12,BQ →

=(-1,0,z ), 当z =12时,AP →=BQ →,

即AP ∥BQ ,有平面P AO ∥平面D 1BQ , ∴当Q 为CC 1的中点时,平面D 1BQ ∥平面P AO .

知识讲解_空间点线面的位置关系(基础)

空间点线面的位置关系 【考纲要求】 (1)理解空间直线、平面位置关系的定义; (2)了解可以作为推理依据的公理和定理; (3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。 【知识网络】 【考点梳理】 考点一、平面的基本性质 1、平面的基本性质的应用 (1)公理1:可用来证明点在平面内或直线在平面内; (2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面; (3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。 2、平行公理主要用来证明空间中线线平行。 3、公理2的推论: (1)经过一条直线和直线外一点,有且只有一个平面; (2)经过两条相交直线,有且只有一个平面; (3)经过两条平行直线,有且只有一个平面。 4、点共线、线共点、点线共面 空间点线面位置关系 三个公理、三个推论 平面 平行直 异面直相交直公理4及等角定理 异面直线所成的角 异面直线间的距离 直线在平面内 直线与平面平行 直线与平面相交 空间两条直 概念 垂斜 空间直线 与平面 空间两个平面 两个平面平行 两个平面相交 三垂线定理 直线与平面所成的角

(1)点共线问题 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上。 (2)线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上。 要点诠释:证明点线共面的常用方法 ①纳入平面法:先确定一个平面,再证明有关点、线在此平面内; ②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合。 考点二、直线与直线的位置关系 (1)位置关系的分类 ???? ??? ?相交直线共面直线平行直线 异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’ ∥a,b ’ ∥b,把a ’ 与b ’ 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). ②范围:02 π?? ??? , 要点诠释:证明两直线为异面直线的方法: 1、定义法(不易操作) 2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。此法在异面直线的判定中经常用到。 3、客观题中,也可用下述结论: 过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图:

空间点线面位置关系例题训练

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角 ________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点. 变式迁移1

空间点、线、面位置关系

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 ??? 共面直线? ?? ?? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1 如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点.

高中数学空间点线面之间的位置关系讲义

2.1空间点、直线、平面之间的位置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题

1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个 (B )1个或4个 (C )3个或4个 (D )1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。 8.在空间中, ① 若四点不共面,则这四点中任何三点都不共线。② 若两条直线没有公共点,则这两条直线是异面直线。 以上两个命题中为真命题的是 (把符合要求的命题序号填上) 9.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB 和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D B 1与MN 所成角的余弦值。 10.正方体1111ABCD A B C D -中,E 、F 分别为11D C 和11B C 的中点,P 、Q 分别为AC 与BD 、11A C 与EF 的交点. (1)求证:D 、B 、F 、E 四点共面;(2)若1A C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线.

【步步高】2014届高考数学一轮复习 3.2.2 空间线面关系的判定(一)备考练习 苏教版

3.2.2 空间线面关系的判定(一) ——平行关系的判定 一、基础过关 1. 空间直角坐标系中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位 置关系为________(平行、垂直或无法确定). 2. 已知平面α的一个法向量是n =(1,1,1),A (2,3,1),B (1,3,2),则直线AB 与平面α的 关系是______________. 3. 已知直线l 与平面α垂直,直线的一个方向向量为u =(1,3,z ),向量v =(3,-2,1) 与平面α平行,则z =________. 4. 已知A (0,0,0),B (1,0,0),C (0,1,0),D (1,1,x ),若AD ?平面ABC ,则实数x 的值是_____. 5. 若平面α的一个法向量为u 1=(-3,y,2),平面β的一个法向量为u 2=(6,-2,z ), 且α∥β,则y +z =________. 6. 如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ; ③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上结论中正确的是__________(填序号). 二、能力提升 7. 在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 、AC 上的点,A 1M =AN = 2 3 a ,则MN 与平面BB 1C 1C 的位置关系是________. 8. 如图所示,正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 中点,点M 的四边形EFGH 及其内部运动,则M 只须满足条件________时,MN ∥平

空间点线面之间位置关系知识点总结

高中空间点线面之间位置关系知识点总结 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系''' x o y中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。重点记忆:直观图面积=原图形面积 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积:各个面面积之和 ②圆柱的表面积③圆锥的表面积2 S rl r ππ =+ ④圆台的表面积22 S rl r Rl R ππππ =+++⑤球的表面积2 4 S R π = ⑥扇形的面积公式 21 3602 n R S lr π == 扇形 (其中l表示弧长,r表示半径) 2、空间几何体的体积 ①柱体的体积V S h =? 底 ②锥体的体积1 3 V S h =? 底 ③台体的体积1) 3 V S S S S h =+? 下下 上上 (④球体的体积3 4 3 V R π = 2 π 2 π 2r rl S+ =

空间点、线、面之间的位置关系

空间点、线、面之间的位置关系 【知识梳理】 1.平面的基本性质 公理1:如果一条直线上的___两点_____在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过__这个公共点___的一条直线. 公理3:经过______不在同一条直线上______________的三点,有且只有一个平面. 推论1:经过_____一条直线和这条直线外的一点_______________,有且只有一个平面. 推论2:经过___两条相交直线_____________,有且只有一个平面. 推论3:经过____两条平行直线____________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 ?? ? 共面直线??? ?? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 答案:(1)平行 相交 (2)不经过该点 (3)①锐角或直角 ②????0,π 2 3.同一条直线 4.相等 3.公理4 平行于______同一条直线______的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角___相等_____. 【自我检测】 1.若直线a 与b 是异面直线,直线b 与c 是异面直线,则直线a 与c 的位置关系是 平行、相交或异面. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线____24____对. 3.三个不重合的平面可以把空间分成n 部分,则n 的可能取值为___4,6,7,8_____. 4.(2010·全国Ⅰ)直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1 所成角的大小为__60°______. 将直三棱柱ABC —A 1B 1C 1补成如图所示的几何体. 由已知易知:该几何体为正方体. 连结C 1D ,则C 1D ∥BA 1. ∴异面直线BA 1与AC 1所成的角为∠AC 1D (或补角), 在等边△AC 1D 中,∠AC 1D =60°. 5.下列命题:

【练习】高中数学空间中点线面的位置关系练习题

空间中点线面的位置关系练习题 1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、 AD 、1B 1C 1的中点,则,正方体的过P 、Q 、R 的截面图形是 ( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线A Q B 1 R C B D P A 1 C 1 D 1 ? ? ?

的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、 F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角 为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— S C A B E F

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

空间中点线面位置关系

高一升高二暑假衔接立体几何 第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

空间中点线面位置关系(经典)

第一讲:空间中的点线面 一,生活中的问题? 生活中课桌面、黑板面、教室墙壁、门的表面都给我们以“平面”形象.如果想把一个木棍钉在墙上,至少需要几个钉子?教室的门为什么可以随意开关?插上插销后为什么不能开启?房顶和墙壁有多少公共点?通过本节课学习,我们将从数学的角度解释以上现象. 二,概念明确 1,点构成线,线构成面,所以点线面是立体几何研究的主要对象。 所以:点与线的关系是_____________________,用符号______________。 线与面的关系是_____________________,用符号______________。 点与面的关系是_____________________,用符号______________。 2,高中立体几何主要研究内容:点,线,面的位置关系和几何量(距离,角) 3,直线是笔直,长度无限的;平面是光滑平整,向四周无限延伸,没有尽头的。点,线,面都是抽象的几何概念。不必计较于一个点的大小,直线的长度与粗细。 4,平面的画法与表示 描述几何里所说的“平面”是从生活中的一些物体抽象出来的,是无限的 画法通常把水平的平面画成一个,并且其锐角画成45°,且横边长等于其邻边长的倍,如图a所示,如果一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用 画出来,如图b所示

记法 (1)用一个α,β,γ等来表示,如图a中的平面记为平面α (2) 用两个大字的(表示平面的平行四边形的对角线的顶 点)来表示,如图a中的平面记为平面AC或平面BD (3) 用三个大写的英文字母(表示平面的平行四边形的不共线的顶点)来表示,如图a 中的平面记为平面ABC或平面等 (4) 用四个大写的英文字母(表示平面的平行四边形的)来表示,如图a中的平面可记作平面ABCD 检验检验: 下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一 个平面的长是50m,度是20m;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为() A.1B.2C.3D.4 三,点,线,面的位置关系和表示 A是点,l,m是直线,α,β是平面. 文字语言符号语言图形语言 A在l上 A在l外 A在α内 A在α外 文字语言符号语言图形语言 l在α内 l与α平行

空间点线面的位置关系及公理

1.四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内). 公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面). 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理4:平行于同一条直线的两条直线平行. 2.直线与直线的位置关系 (1)位置关系的分类 ????? 共面直线??? 平行直线相交直线异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)叫作异面直线a ,b 所成的角(或夹角). ②范围:(] 0,π2. 3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况. 4.平面与平面的位置关系有平行、相交两种情况. 5.等角定理 空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补. 【知识拓展】 1.唯一性定理

(2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直. 2.异面直线的判定定理 经过平面内一点的直线与平面内不经过该点的直线互为异面直线. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.() (2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.() (3)两个平面ABC与DBC相交于线段BC.() (4)经过两条相交直线,有且只有一个平面.() (5)没有公共点的两条直线是异面直线.() 1.下列命题正确的个数为() ①梯形可以确定一个平面; ②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A.0 B.1 C.2 D.3 2.(2016·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则() A.m∥l B.m∥n C.n⊥l D.m⊥n 3.(2016·合肥质检)已知l,m,n为不同的直线,α,β,γ为不同的平面,则下列判断正确的是() A.若m∥α,n∥α,则m∥n B.若m⊥α,n∥β,α⊥β,则m⊥n C.若α∩β=l,m∥α,m∥β,则m∥l D.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α 4.(教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=23,AD=23,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.

高中数学空间点线面之间的位置关系讲义之欧阳数创编

2.1空间点、直线、平面之间的位 置关系 一、平面 1 平面含义: 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 二、三个公理: 三、空间直线、平面之间的位置关系 D C B A α

四、等角定理: 五、异面直线所成的角 1.定义: 2.范围: 3.图形表示 4.垂直: 六、典型例题 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,,(D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A )1个或3个(B )1个或4个(C )3个或4个 (D )

1个、3个或4个 3.以下命题正确的有() (1)若a∥b,b∥c,则直线a,b,c共面;(2)若a∥α,则a平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β;(4)分别和两条异面直线都相交的两条直线必定异面。 (A)1个(B)2个(C)3个(D)4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是() (A)2 (B)3 (C)6 (D)12 5.以下命题中为真命题的个数是() (1)若直线l平行于平面α内的无数条直线,则直线l∥α;(2)若直线a在平面α外,则a∥α; (3)若直线a∥b,α?b,则a∥α;(4)若直线a∥b,α?b,则a平行于平面α内的无数条直线。 (A)1个(B)2个(C)3个(D)4个 6.若三个平面两两相交,则它们的交线条数是()(A)1条(B)2条(C)3条(D)1条或3条

空间点线面位置关系及平行判定及性质

空间点线面位置关系及平行判定及性质 【知识点梳理】 1.平面的基本性质公理1 如果一条直线上的两个点都在一个平面内,那么这条直线上的所有点都在这个平面内 ,,A B l A B α∈? ?∈? l α?? 2.平面的基本性质公理2(确定平面的依据) 经过不在一条直线上的三个点,有且只有一个平面 3.平面的基本性质公理2的推论 (1)经过一条直线和直线外的一点,有且只有一个平面 (2)经过两条相交直线,有且只有一个平面 (3)经过两条平行直线,有且只有一个平面 4.平面的基本性质公理3 如果两个不重合的平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线 A A αβ∈??∈?? l A l αβ=∈ 5.异面直线的定义与判定 (1)定义:不同在任何一个平面内的两条直线,既不相交也不平行 (2)判定:过平面外一点与平面内一点的直线,与平面内不经过该点的直线是异面直线 6.直线与直线平行 (1)平行四边形ABCD (矩形,菱形,正方形) 对边平行且相等,//AB CD ,//BC AD (2)三角形的中位线 ,E F 分别是,AB AC 的中点 中位线平行且等于底边的一半,//EF BC (3)线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行 //l α,l β?,//m l m α β=? (4)面面平行的性质定理 如果两个平行的平面同时与第三个平面相交,则它们的交线平行 //αβ,a α γ=,//b a b βγ=? (5)线面垂直的性质定理

如果两条直线同垂直于一个平面,则这两条直线平行 a α⊥,// b a b α⊥? 7.直线与平面平行 (1)线面平行的判定定理 如果不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 a α?,b α?,////a b a α? (2)面面平行的性质定理 如果两个平面互相平行,那么一个平面内的任一直线都平行于另一个平面 //αβ,//a a αβ?? 8.平面与平面平行 (1)面面平行的判定定理 如果一个平面内有两条相交直线,分别平行于另一个平面,那么这两个平面平行 a α?, b α?,a b A =,//a β,////b βαβ? (2)垂直于同一直线的两个平面互相平行 a α⊥,//a βαβ⊥? 【典型例题】 题型一:点线面的关系用符号表示、判断异面直线 例1.给定下列四个命题 ①,,//,////a b a b ααββαβ??? ②,a a αβαβ⊥??⊥ ③,//l m l n m n ⊥⊥? ④,,,l a a l a αβα βαβ⊥=?⊥?⊥ 其中,为真命题的是 A. ①和② B. ②和③?? C. ③和④?? D. ②和④ 变式1. 给出下列关于互不相同的直线,,l m n 和平面,,αβγ的三个命题: ①若,l m 为异面直线,,l m αβ??,则//αβ; ②若//,,l m αβαβ??,则//l m ; ③若,,,//l m n l α ββγγαγ===,则//m n 其中真命题的个数为 A .3 B.2 C.1 D.0

点线面之间的位置关系的知识点总结

点线面之间的位置关系的知识 点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中空间点线面之间位置关系知识点总结 第二章 直线与平面的位置关系 空间点、直线、平面之间的位置关系 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥b 。 2 公理4:平行于 c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; D C B A α L A · α C · B · A · α P · α L β 共面直线 =>a ∥c 2

高中数学空间点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 3 三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α A ∈α B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 D C B A α L A · α C · B · A · α

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为 简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; P · α L β 共面直线 =>a ∥c 2

空间直线异面关系的判定与度量

空间直线异面关系的判定与度量 考点动向 空间直线的位置关系,除了初中就熟悉的相交与平行外,立体几何中新增加了异面关系,这部分是立体几何的传统重点知识,从客观小题到解答大题都会涉及到,有对异面关系的判定问题,也有对异面程度的度量问题,涉及异面成角与异面直线间的距离,这些问题可以充分考查考生的空间想象能力,解题方法主要是平移直线与借助直线的方向向量等,可以预测考查空间异面直线的问题仍将保持热度. 方法范例 例 如图1-1,已知两个正四棱锥P ABCD -与Q ABCD -的高分别为1 和2,4AB =. (Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 解析 本题设置的三问,有证有算, 由于已知为两个同底的正棱锥组合而成的,故可以利用几何体的性质,构造空间直角坐标系,借助向量解答,对于求异面直线所成的角,也可利用定义实施平移解答. 解法1 (I )连结AC BD ,,设AC BD O =.因为P ABCD -与Q ABCD -都是 正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P O Q ,,三点在一条直线上,所以PQ ⊥平面ABCD . (II )由题设知,ABCD 是正方形,所以AC BD ⊥.由(I ),PQ ⊥平面 ABCD ,故可分别以直线CA DB QP ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图1-2)由题设条件,相关各点的 C A B P D Q 图1-1 C 图1-2 几何精练

坐标分别是(001)P ,, ,0)(002)(0A Q B -,,,,,. 所以(2202)(021)AQ PB =--=-,,,,.于是3 cos 9 AQ PB AQ PB AQ PB <>= = ,. 从而异面直线AQ 与PB 所成的角是 . (III )由(II ),点D 的坐标是(0-,,(22220)(003)AD PQ =--=-,,,,,, 设()n x y z =,,是平面QAD 的一个法向量,由00n AQ n AD ?=??=??得00z x y + =+=??. 取1x =,得(1 1n =--,,.所以点P 到平面QAD 的距离32 2 PQ n d n == . 解法2 (I )取AD 的中点M ,连结PM QM ,.因为P ABCD -与Q ABCD -都是 正 四 棱 锥 , 所 以 A D P M ⊥⊥,.从而AD ⊥平面 PQM .又PQ ?平面P Q M ,所以P Q A D ⊥.同理PQ AD ⊥,所以PQ ⊥平 面ABCD . (II )连结AC BD ,,设A C B D O =, 由PQ ⊥平面ABCD 及正四棱锥的性质可知 O 在PQ 上,从而P A Q C ,,,四点共面. 取OC 的中点N ,连结PN .因为 1122PO NO NO OQ OA OC ===,,所以PO NO OQ OA =,从而AQ PN BPN ,∥∠(或其补角)是异面直线AQ 与PB 所成的角.连结 BN . 因为 3PB = == , PN ===, BN === 所以222cos 29PB PN BN BPN PB PN +-=== ∠. 图1-3

相关文档
相关文档 最新文档