文档视界 最新最全的文档下载
当前位置:文档视界 › 固体润滑二硫化钼(MoS2)材料的应用

固体润滑二硫化钼(MoS2)材料的应用

固体润滑二硫化钼(MoS2)材料的应用
固体润滑二硫化钼(MoS2)材料的应用

一、固体润滑二硫化钼(MoS2)材料的应用

固体润滑二硫化钼(MoS2)材料的应用可归纳为以下诸多方两:

1.负荷高的滑动部件,如重型机械、拉丝机械等;

2.高速运动的滑动部件,如弹丸与枪膛之间的滑动面;

3.速度低的滑动部件,如机床导轨等;

4.温高的滑动部件,如炼钢机械、汽轮机等;

上海亿霖润滑材料有限公司:132 **** ****

5. 度低的滑动部件。如致冷机械、液氧、液氨输送机械等:;

6. 高真空条件下的滑动部件,如原子宇航器上的机械等;

7. 接受强辐射的滑动部件,如原子能发电站的某些机械;

8.耐腐蚀的滑动部件,如处于强酸、强碱和海水中的活动部件;

9. 需防止压配装时损坏的部件,如果某些紧固件等;

10.长需期搁置、一旦启动就要求运转很好的部件,如安全装置、汽车驾驶盘的保险装置、导弹防卫系统等;

11. 安装能再接近的部件,如原子能机械、航犬机械等;

12. 安装后不能冉拆卸的部件。如桥梁支承、航天器的密封部件等;

13. 电性良好的滑动部件,如可变电阻触点、电机电刷等;

14. 有微振动的滑动部件,如汽车、飞机等有不平衡件的自动工具等;

15. 不能使用油泵油路系统润滑二硫化钼(MoS2)的机械,如宇宙飞船、人造卫星上的滑动部件等;

16. 环境条件很清洁的滑动部件,如办公机械、食品机械、精密仪表、家用电器和电子计算机等;

17. 耐磨粒磨损的运动部件,如钻探机械、农业耕作机械等;

18. 环境条件很恶劣的运动部件,如矿山机械、建筑机械、潜水机械等。

还可以列出一些固体润滑二硫化钼(MoS2)材料的垃用范畴。每一类间体润滑二硫化钼(MoS2)材料可以在多个领域、多种工业或多种工况条件下得到应用。而每一个领域、每一种工业或每一种工况条件下也可以成用多种类型的固体润滑二硫化钼(MoS2)材料。其中涉及到固体润滑二硫化钼(MoS2)材料的设计、制备工艺方法和应用技术等,下面仅举几方面得到成功应用的范例。

润滑油基本知识培训资料

润滑油基本知识培训资料 一、基本概念(见资料1) 1、原油:天然原油一般都是黑色液体,其中含有几百种及至上千种倾倒物的混合物,主要是碳氢化合物,大体为石蜡基础油,环烷基原油和中间基原油三类。年产1亿两千万吨至1亿4千万吨(中国)。 2、基础油:原油在炼油厂经过减压蒸馏生的轻质产品可获得气、煤、柴油等产品,重质产品,经过进一步精制后即可获得基础油。 3、润滑油:为满足设备机具的具体润滑要求,选择适当的基础油及添加剂调制而成的产品。 4、基础油的品种一般国产分为32#、46#、68#、100#、150SN、200SN、350SN、500SN、650SN、150BS等。进口的日本能源公司500SN、韩国1次、2次加氢基础油(高档)等 5、润滑油添加剂:添加不同性能的添加剂以改善润滑油的各种性能。(见资料2) 6、润滑油质量指标(见资料3、1-6) 二、车用润滑油的分类:内燃机油、齿轮油、液压油、刹车液、润滑脂 1、什么是汽油机油、什么是柴油机油、齿轮油、液压油级别的区分 2、什么是多级油,什么是单级油、什么是通用机油 3、5W、10W、15W、30、40、50的意思,代表的具体指标范围 4、GB标准的理化指标,黏度黏度指数闪点倾点等要记牢 5、各种车型选用什么级别及黏度的油、以及夏、冬两季的选油 6、API SAE的含义国家标准、石化标准以及我们的企业标准制定有哪些 识别润滑油的规格 内燃机油 SF/CD 15W/40为例: SAE 15W/40

是美国汽车工程师协会对内燃机油黏度分类法的英文缩写 现在执行的是SAE J300 Apr。1991版本 表示该油品低温时的黏度等级。 有SAE 0W、5W 、10W、15W、20W等级别。“W”前面的数字越小,其低温流动性越好,能满足在更低气温条件下工作的发动机的要求 表示该油品高温时的黏度等级。 有SAE 20、30、40、50和50以上级别。数字越大黏度越大。可以保证润滑油在高温时仍然有足够的黏度和油膜厚度来达到润滑的效果。 另外SAE30、SAE40、SAE50只具有单黏度级别的特性,应注意适用的温度范围 API SF/CD 第一个字母“S”表示该机油适用于汽车发动机,简称“汽油机油”。 第二个字母表示机油质量性能的水平,字母越往后质量性能越高。 有SD、SE、SF、SG、SH、SJ~~等级别。 是美国石油协会对润滑油质量等级分类标准的英文缩写 第一个字母“C”表示该机油适用于柴油发动机,简称“柴油机油”。 第二个字母表示机油质量性能的水平,字母越往后质量性能越高。 有CD、CE、CF、CG-4、CH、CH-4~~等级别。 1)、API SF/CD表述的质量等级说明该油品是一种即适合汽油发动机同时又能满足柴油发动

固体润滑剂(优质参考)

固体润滑剂 固体润滑剂就是在两个有载荷作用的相互滑动面间,用以降低摩擦和磨损的固体状态的物质。 要求:剪切抗力低,与被润滑表面有较好的亲和力,不腐蚀被润滑表面、耐高温、耐低温等特点。 包括金属材料,无机非金属材料和有机材料等。 可分为固体粉末润滑材料、粘结或喷涂固体润滑膜、自润滑复合材料。 固体润滑材料的适应范围比较广,以1000℃以上的白热高温到液体氢的深冷低温;严重腐蚀气体环境中工作的化工机械,是受到强辐射的宇航机械上(如月球表面的工作机械),在原子能工业、宇航和国防工业、电子工业、化学工业、机械工业、交通运输、食品工业、纺织印染等轻工业部门都已经得到了应用。 固体润滑剂主要用在高温、低温、高真空、放射线高辐射场、腐蚀性大、挥发性低、不易测定条件润滑、不容许受润滑油、脂沾污等场合和机件上。 一、固体润滑三种机理 1、形成固体润滑膜,它的润滑机理与边界润滑机理相似; 2、软金属固体润滑剂,它利用软金属抗剪切强度低的特点来起润滑作用; 3、层状结构的特点起润滑作用。图6—8为石墨的品体结构,由图6—8可知石墨具有层状,在层与层之间的接合力较弱,所以剪切抗力低。 一般常用的固体润滑剂有:二硫化钼、石墨、云母、二硫化钨、滑石粉、氮

化硼;塑料包括聚四氟乙烯、聚胺脂、聚乙烯、浇铸尼龙—6等以及某些金属如铅、锌、锡、银等低熔点金属及其合金。 二、固体润滑剂的优点 1)免除了油脂的污染及滴漏。如在空气压缩机实现固体润滑(包括轴承、密封、活塞环)后,可以提供不被油污染的空气;又如在纺织机械、食品加工机械、造纸机械、印刷机械采用固体润滑后,能避免油污,提高产品质量; 2)取消了供油脂所用的润滑油站及油路系统,节省了投资、降低了维修费用; 3)适应比较广泛的温度范围。它可用于特殊的工况条件(如在具有放射性条件下能抗辐射、耐高真空、抗腐蚀)以及不适宜使用润滑油脂的场合。 4)增强了防锈蚀能力。这对于潮湿气候的南方具有重要意义。 5)固体润滑剂分散悬浮在液体润滑剂中,既可以发挥固体润滑剂本身的性能,弥补固体润滑剂的摩擦系数大和导热性能不良的缺点。 三、固体润滑材料缺点 1)摩擦系数较大(比润滑油等流体润滑的摩擦系数大100—500倍,比润滑脂润滑的摩擦系数大50—100倍), 2)散热性能差,因而固体润滑剂主要用在其他润滑材料不能承担的润滑场合。 3)固体润滑膜的寿命较短,保膜时不仅增加工作量,有时还要停车检查,在一定程度上影响生产。 4)导人性不好,即使是粉末状,不易补充到摩擦表面。 5)塑料自润滑材料存在强度不高、线膨胀系数大、导热性差、不耐高温、摩擦系数有的还不够低的缺点。因此目前还不能完全取代润滑油脂。 四、对固体润滑剂的要求 固体润滑剂应满足以下性能要求: 1)较低的摩擦系数在滑动方向要有低的剪切强度,而在受载方向则要有高的屈服极限。同时还要具有防止摩擦表面凸峰的穿透的能力(即材料的物理性能是各向异性的); 2)附着力要强。要求附着力要大于滑动时的剪切力,以免固体润滑剂(或膜)从底材上或金属表面被挤刷(或撕离)掉; 3)固体润滑剂粒子间要有足够的内聚力,以建立足够厚的润滑膜,以防止摩擦表面的凸峰穿透并能贮存润滑剂; 4)润滑剂粒子的尺寸在低剪切强度方向应最大,这样才能保证粒子在滑动表面间能很好地定向; 5)在较宽的温度范围内,能保持性能稳定而不起化学反应。 要完全满足上述要求是不容易的。 不同的固体润滑剂,具有不同的特殊性能,一般情况只能满足或达到上述要

固体润滑材料

固体润滑材料 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第四章: 固体润滑 二、固体润滑材料 固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。 固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。 1、常见固体润滑剂的种类: ①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。 ②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。 2、固体润剂的基本性能 与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。 ①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 ②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 3、固体润滑剂的使用方法 1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。 3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。 4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及

二硫化钼的润滑机理

二硫化钼的润滑机理 一种固体润滑材料若愈能成为优良的润滑剂。起码应具备两种特性: 1.该材料晶体内剪切强度低,有许多良好的天然滑移面。 2.该材料应能牢固附着于底材金属表面上。 只有当该材料与金属底材面间的附着力大于晶体内剪切强度时,滑动才会发生在该材料的晶体内部,而不发生在底材金属与底材金属之间,或底材金属和润滑剂之间。附着力与剪切强度相差得愈大,该材料的润滑性能愈好,其摩擦系数(μ)与磨损(√)也愈小。 下面从这几方面来研究探讨二硫化钼的润滑机理: 1.二硫化钼的晶体结构 MoS2中含钼%,硫%。自然界天然产出的晶体MoS2呗称作“辉钼矿”。其组成部分与上述理论值相近。偶有钨、铼、锇或硒、碲作为类质同象元素取代钼或硫,进入晶格,而成为辉钼矿中的微量元素。 2.二硫化钼的晶体结构图 二硫化钼的晶体结构是六方晶体系结构,在两层位置相同的硫原子密堆积层中,形成许多三方棱柱体孔隙。钼原子就处在由六个硫原子形成的三方棱柱配位体的个数恰为钼原子个数的两倍。 二硫化钼的多型与润滑 当二硫化钼层片之间平行相叠加构成了二硫化钼晶体,其叠加方式不同,形成多种同质异构体。矿物学里称它为“辉钼矿”。 近年来有人依据对称原理和紧密堆积原理,在七层范围内重叠时,用

电子计算机推导出了112种类型。但迄今,自然界里已确定的辉钼矿的类型有两种: 2H(六方晶型)辉钼矿石1923年由Dickinson与Pauling所确定。它系二硫化钼层片接两层相重复的形式叠加。 3R(三方晶型)辉钼矿是1957年由Bell与Herfert发现,它系二硫化钼层片按三层相重叠的形式叠加。 2H与3R型辉钼矿的形成规律与其生成温度有关。二硫化钼晶型与生成温度的关系: 自然界分出的钼矿物质中98%为辉钼矿,而辉钼矿的80%为2H型,仅3%为3R型。其余17%为2H与3R混合型,它们可以通过Xˉ射线衍射图来区别。 3R系亚稳定态,当温度上升到600~1300℃后,它会转化为2H行辉钼矿。 对不同二硫化钼而言,合成多面因声场温度较低,通常为3R型;而天然工艺多面因保持着自然界辉钼矿原料面目,通常为2H型。在应用时,大多数人认为2H比3R型二硫化钼的润滑效果好。反之若无特别标明,所涉及二硫化钼均系2H(六方)晶型辉钼矿。 二硫化钼分子成键规律与滑移面

聚合物基自润滑材料的研究现状和进展

聚合物基自润滑材料的研究现状和进展 由于聚合物本身具有较低的摩擦系数,优良的机械性能及耐腐蚀性等优点,其基自润滑复合材料具有非常优异的摩擦磨损性能,正在被广泛的应用到减摩领域。本文综述了聚醚醚酮、聚四氟乙烯及聚酰亚胺等几种高聚物的摩擦磨损特点及其应用,聚合物基自润滑复合材料发展现状。指出目前聚合物基高性能自润滑材料的制备途径主要是通过聚合物与聚合物共混及添加纤维、晶须等来提高基体的机械强度,通过添加各类固体自润滑剂来提高摩擦性能,有效提高其综合性能。聚合物基自润滑材料可取代传统金属材料,成为全新的一类耐摩擦磨损材料。 论文关键词:高聚物,复合材料,自润滑材料,摩擦,磨损 1、聚醚醚酮(PEEK) 1.1 聚醚醚酮(PEEK)的特点 聚醚醚酮(PEEK)是一种高性能热塑性高聚物,具有良好机械性能、抗化学腐蚀性和抗辐射性,显着的热稳定性和耐磨性。它可以在无润滑、低速高载下或在液体、固体粉尘污染等 收稿日期: 修订日期: 作者简介:刘良震(1980-),男,助理讲师, E-mail:ldcllfz@https://www.docsj.com/doc/4e15364810.html, 恶劣环境下使用。因而关于聚醚醚酮及其复合材料的研究越来越受到人们重视。聚醚醚酮是一种半晶态热塑性聚合物,为了改善其机械性能,尤其是摩擦学性能,常在其中添加聚四氟乙烯(PTFE)、聚丙烯腈(PAN)和碳纤维(FC)等材料,也可添加颗粒增强型材料或进行特种表面处理等离子体处理等。当聚醚醚酮及其复合材料与金属材料相互对磨时,通常在金属表面形成聚合物转移膜,其结构、成分均与原有的聚合物及复合材料不同,其性能、厚度及连续程度均对摩擦副的摩擦学性能有重大影响[4]。 1.2 对聚醚醚酮(PEEK)摩擦性能的研究 章明秋等人[5,6]对聚醚醚酮(PEEK)在无润滑滑动条件下磨损产生的磨屑的形态进行研究,结果表明,聚醚醚酮(PEEK)的磨屑具有分形特征,其分形维数与载荷的关系对应于磨损率与载荷的关系,能够反映聚醚醚酮(PEEK)磨损机制的变化。在给定的试验条件下,随着载荷的增大,聚醚醚酮(PEEK)的磨损机制从粘着磨损为主伴随着疲劳-剥层磨损,进而转变为热塑性流动磨损。 张人佶等[7,8]利用扫描电镜、扫描微分量热仪、红外光谱仪、俄歇电子谱仪等分析手段系统的研究了聚醚醚酮(PEEK)及其复合材料的滑动转移膜,结果表明:纯聚醚醚酮(PEEK)在滑动摩擦过程中形成不连续的转移膜。聚四氟乙烯(PTFE)的光滑分子结构有助于使转移膜更光滑,固体润滑效果也更好。在PEEK/FC30中,不仅加入PTFE,而且加入具有层状

第四章固体润滑材料

第四章: 固体润滑 二、固体润滑材料 固体润滑剂的作用是以固体润滑物质(如固体粉末、薄膜及固体复合材料等)来减少作相对运动两表面的摩擦与磨损,并保护该表面,在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低磨擦磨损。固体润滑剂的材料有无机化合物(石墨、二硫化钼、氮化硼等)、有机化合物(蜡、聚四氟乙烯、酚醛树脂)和金属(Pb\Sn\Zn)以及金属化合物,其中以石墨和二硫化钼应用最广。 固体润滑剂的适用范围比较广,从1000℃以上的白热高温到液体氢的深冷低温,无论在严重腐蚀气体环境中工作的化工机械,还是受到强辐射的宇宙机械,都能有效地进行润滑。 1、常见固体润滑剂的种类: ①粉状润滑剂:有二硫化钼粉剂、二硫化钨粉剂、二硫化钼P型、胶体石墨粉。 ②膏状润滑剂:有二硫化钼重型机床油膏、二硫化钼齿轮油润滑油膏、二硫化钼高温齿轮油膏、特种二硫化钼油膏、齿轮润滑用GM-1型成油膜膏。 2、固体润剂的基本性能 与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及其他有害的作用。 ①、物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 ②、化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 要求固体润滑剂有较高的承载能力:因为固体润滑剂往往应用于严酷工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 3、固体润滑剂的使用方法 1)作成整体零件使用:某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。 2)作成各种覆盖膜来使用:通过物理方法将固体润滑剂施加到摩擦界面或表面,使之成为具有一定自润滑性能的干膜,这是较常用的方法之一。成膜的方法很多,各种固体润滑剂可通过溅射、电泳沉积、等离子喷镀、离子镀、电镀、粘结剂粘结、化学生成、挤压、浸渍、滚涂等方法来成膜。市面上已出现了无润滑轴承及采用纳料技术的固体润滑剂。 3)制成复合或组合材料使用:所谓复合(组合)材料,是指由两种或两种以上的材料组合或复合起来使用的材料系统。这些材料的物理、化学性质以及形状都是不同的,而且是互不可溶的。组合或复合的最终目的是要获得一种性能更优越的新材料,一般都称为复合材料。 4)作为固体润滑粉末使用:将固体润滑粉末(如MoS2)以适量添加到润滑油或润滑脂中,可提高润滑油脂的承载能力及改善边界润滑状态等,如MoS2油剂、MoS2 油膏、MoS2润滑脂及Mo S2水剂等。

第一节(三)固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法

固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法 文章来源:开拓者钼业 公司网址:https://www.docsj.com/doc/4e15364810.html, 三、固体润滑材料二硫化钼-(MoS2)的制备方法 在密闭的齿轮箱内放进一定量的固体润滑剂粉末,通过齿轮运动将其飞溅在摩擦表面,依靠它的粘着力附着在轮齿表面,便组成了最简单的固体润滑摩擦副。随着对固体润滑材料二硫化钼-(MoS2)要求的不断提高和科学技术的进步,固体润滑材料二硫化钼-(MoS2)的制备工艺也不断完善。从制备原理来讲,刚本润滑材料二硫化钼-(MoS2)的制备可归纳为以下几种方法。 1. 二硫化钼-(MoS2)机械混合 将几种作用互补的物质进行机械混合,使其成为均质混合体。 2. 二硫化钼-(MoS2)热压烧结 在一种粉末型基材中加人另一种(或多种)其他粉末,经机械混合后成为均质混合体。然后进行热压烧结(在不同的气氛、压力和温度下),使其成为具有一定物理机械和摩擦学性能的整体。用这种方法制备的固体润滑材料二硫化钼-(MoS2)较多,适用于金属基、非金属基和陶瓷等润滑材料二硫化钼-(MoS2)。 3. 二硫化钼-(MoS2)粘结 利用粘结剂将润滑剂粉末粘结在基材表面。如果将具有相当强度的金属或有机编织材料二硫化钼-(MoS2)作为背衬,其上再粘结润滑层,使形成了既有强度又有润滑性的复合层润滑材料二硫化钼-(MoS2)。 4 . 二硫化钼-(MoS2)气相沉积 通过物螋∫气相沉积(包括溅射、离子镀和等离子喷涂等)或化学气相沉积将润滑剂微粒粘着在基材表面形成固体润滑涂层。其粘着力由原子间的结合力呈现。 5 . 二硫化钼-(MoS2)化学反应 通过电镀化学镀,包括多层镀和复合镀等,将润滑剂微粒粘着在基材表癣形成固体润滑镀层。

润滑基础知识

润滑基础知识 一、设备在运转时是怎样发生磨损的? 答:相对运动中的两物体接触表面材料的逐渐丧失或转移,即形成磨损。是伴随摩擦而产生的现象,是摩擦的结果。一个机体的磨损过程大致可分为:(1)跑合磨损阶段(2)稳定磨损阶段(3)剧烈磨损阶段。产生磨损的方式有以下几种:1、粘着磨损:当摩擦表面的微凸体在相互作用的各点处发生“冷焊”后,在相对滑动时,材料从一个表面转移到另一个表面。2、磨料磨损:硬的颗粒或硬的突起物,引起摩擦面材料脱落。3、疲劳磨损:摩擦面受周期性载荷的作用,使表面材料疲劳而引起材料微颗粒脱落。4、冲蚀磨损:当一束含有硬质微颗粒的流体冲击到固体表面上时就会造成冲蚀磨损。5、腐蚀磨损:摩擦表面受到空气中的酸或润滑油、燃油中残存的少量无机酸及水份的化学作用或电化学作用。 二、设备在运转时,是怎样润滑的? 答:摩擦表面间,由于润滑油的存在而大大改变了摩擦的特性。润滑油能在金属摩擦表面形成油膜,这种油膜能将两金属摩擦表面不断隔开,使其摩擦表面发生的粘着磨损、磨料磨损变得很小,同时润滑油还能起均化载荷作用,能降低两金属摩擦表面的疲劳磨损。具体润滑机理可分为: (一)边界润滑:当两个受润滑油润滑的表面在重载作用下靠的非常紧(两表面间可能只有一微米,甚至只有一两个分子那样厚的油膜存在,以致有相当多的摩擦表面微凸体发生接触),而润滑油的体积性质(即粘度)还不能起作用时,其摩擦特性便主要取决于润滑油和金属表面的化学性质。这种能保护金属不致粘着的薄膜,叫边界膜。其形成原理如下:1、物理吸附作用:当润滑油与金属接触时,润滑油就在两者的分子吸力的作用下紧贴到金属表面上,形成物理吸附膜。 2、化学吸附作用:当润滑油分子受化学键力的作用而贴附到金属表面上时,就形成化学吸附膜。 3、化学反应:当润滑油分子中含有以原子形式存在的硫、氯、磷时,在较高的温度(通常在150℃~200℃)下这些元素能与金属起化学反应,形成硫、氯、磷的化合物。前两种边界膜的润滑性能叫润滑油的油性,后一种则叫极压性。 (二)混合润滑:随着摩擦面间油膜厚度的增大,表面微凸体直接接触的数量在

润滑脂和固体润滑剂用的地方

润滑脂和固体润滑剂用的地方 (一).润滑脂: 润滑脂的性能包括: (1)触变性;(2)粘度;(3)强度极限;(4)低温流动性;(5)滴点;(6)蒸发性;(7)胶体安定性;(8)氧化安定性等。 润滑脂的种类和牌号繁多,分类方法也有许多种,有的按基础油组成分类,如分为石油基润滑脂和合成油润滑脂;有的按用途分类,如分为减摩润滑脂,防护脂和密封脂;有的按润滑脂的某一特性分类,如高温脂,耐寒脂和极压脂等。润滑脂中的稠化剂的类型,是决定润滑脂工作性能的主要因素。 现将几类润滑脂的特性简要介绍。 (1).烃基润滑脂以地蜡稠化基础油制成的润滑脂称为烃基润滑脂。具有良好的可塑性,化学安定性和胶体安定性,不溶于水,遇水不产生乳化。其缺点是熔点低,烃基润滑脂主要用作保护作用。 (2).皂基润滑脂皂基润滑脂占润滑脂的产量90%左右,使用最广泛。最常使用的有钙基,钠基,锂基,钙一钠基,复合钙基等润滑脂。复合铝基,复合锂基润滑脂也占有一定的比例,这两种脂是有发展前景的品种。 (3).无机润滑脂主要有膨润土润滑脂及硅胶润滑脂两类。硅胶润滑脂是由表面改质的硅胶稠化甲基硅油制成的润滑脂,可用于电气绝缘及真空密封。膨润土润滑脂是由表硅胶润滑脂是由面活性剂(如二甲基十八烷基苄基氯化铵或氨基酸胺)处理后的有机膨润土稠化不同粘度的石油润 滑油或合成润滑油制成,适用于汽车底盘,轮轴承及高温部位轴承的润滑。 (4).有机润滑脂各种有机化合物稠化石油润滑油或合成润滑油,各具有不同的特性,这些润滑脂大都作为特殊用途。如阴丹士林,酞青铜稠化合成润滑油制成高温润滑脂可用于200~250℃;含氟稠化剂如聚四氟乙烯稠化氟碳化合物或全氟醚制成的润滑脂,可耐强氧化剂,作为特殊部件的润滑。又如聚脲润滑脂可用于抗辐射条件下的轴承润滑等。 (二).固体润滑剂: 固体润滑是指利用固体粉末,薄膜或整体材料来减少作相对运动两表面的摩擦与磨损并保护表面免于损伤的作用。按照经济合作与发展组织(OECD)制定的摩擦学名词术语,固体润滑的定义是:能保护相对运动表面免于损伤并减少其摩擦与磨损而使用的任何固体粉末或薄膜。在固体润滑过程中,固体润滑剂和周围介质要与摩擦表面发生物理,化学反应生成固体润滑膜,降低摩擦磨损。 固体润滑剂概念应用较晚,1829年伦尼(Rennie)进行了石墨和猪油复合材料的摩擦试验。二硫化钼是在20世纪30年代第一次用作润滑剂,目前固体润滑剂已在许多机械产品中应用,可在许多特殊,严酷工况条件下如高温,高负荷,超低温,超高真空,强氧化或还原气氛,强辐射等环境条件下有效地润滑,简化润滑维修,为航天,航空与原子能工业发展所必不可少的技术。

二硫化钼地润滑特性

二硫化钼的润滑特性 摘要 二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。 主题词:二硫化钼润滑特性抗报压真空润滑 1.二硫化钼的理化特性: 分子式:MoS2 分子量:16008 颜色:兰-灰到黑色 密度α/cm3:4.8-5.0(或4.85 --5.0、4.8) 熔点℃:约1500℃(或大于1800℃、1185℃) 硬度:mosh1--1.5(或knnop12--60) 显微硬度:基础面3.136×102Mpa,棱面8.82×103Mpa 表面能:基础面2.4×10-2J/M2,棱面7.0×10-1J/M2 热胀系数:10-7×10-6/K 温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。 化学稳定性: 氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、

350℃、450℃)开始氧化后。560℃后(或540℃)剧烈氧化。潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。 分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。分解产物为Mo与S。 能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。 能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。 在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。 2、二硫化钼与载荷 工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。润滑目的即在于防止工件间直接接触。 油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。 用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。

润滑基本常识

设备润滑与管理的基本知识(草稿) 一、润滑材料的选用 在机器的摩擦副之间加入某种介质,使其减少摩擦和磨损,这种介质称为润滑材料,也称润滑剂。由于摩擦副的类型和性质不同,相应地对润滑材料的要求和选用也有所不同。只有按摩擦副对润滑材料的性能要求,合理的选用润滑材料,才能减少摩擦、降低磨损,延长设备的使用寿命,从而达到节约能源、保证设备正常运转,提高企业经济效益的目的,尤其是现代化高精度、高速度、高效率的生产设备,对润滑材料的耐高温、高压、高速、腐蚀等要求愈来愈高,随着新型材料的不断发展,对润滑管理专业人员的业务水平提出了更高的要求。 1、润滑基本原理 在两个相互摩擦的表面间加入润滑剂,使其形成一层润滑膜,将两摩擦表面分开,其间的直接干摩擦为润滑分子间的摩擦所代替,从而达到降低磨擦、减少磨损的目的,这就是润滑作用的基本原理。按润滑状态的不同,润滑可分为以下三种: ⑴液体润滑(完全润滑) 润滑剂所形成的油膜完全将两摩擦表面隔开,呈现油膜内层间的液体分子摩擦,称为液体润滑。获得液体润滑的方法有两种:一为液体静压润滑,即人为的将压力油输入润滑表面之间,用以平衡外载而把两表面分离;二是液体动压润滑,即利用摩擦副两表面的相对运动作用,把油带入摩擦面之间,形成压力油膜把两表面分开。流体润滑的摩擦系数为0.001~0.008。 ⑵边界润滑 润滑剂在摩擦表面上形成一层吸附在金属表面上极薄的油膜,或与表面金属形成金皂,但不能形成流体动压效应;边界润滑状态下的摩擦是吸附油膜或金属膜接触的相对滑动所形成的摩擦,摩擦系数为0.05~0.1。当负荷增大或速度改变时,吸附油膜或金属皂可能破裂,引起摩擦表面直接接触而形成干摩擦。 精选范本

二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟 二硫化钼的润滑特性 二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟 的优点,被誉为“固体润滑之王”而被广泛应用。作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。二硫化钼以S—Mo—S 的三明治式夹层相迭加。层内,S—Mo 间以极性键紧密相连。层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力 后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。除此外,它还具备有许多良好的润滑特性。(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下

【CN110016277A】用于制备自润滑耐磨材料的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自润滑耐

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910375103.9 (22)申请日 2019.05.07 (71)申请人 河南科技大学 地址 471003 河南省洛阳市涧西区西苑路 48号 (72)发明人 邱明 李迎春 程蓓 庞晓旭  谷守旭  (74)专利代理机构 郑州睿信知识产权代理有限 公司 41119 代理人 张兵兵 李宁 (51)Int.Cl. C09D 163/00(2006.01) C09D 7/61(2018.01) (54)发明名称 用于制备自润滑耐磨材料的组合物、自润滑 耐磨涂料、自润滑耐磨涂层、自润滑耐磨材料 (57)摘要 本发明涉及一种用于制备自润滑耐磨材料 的组合物、自润滑耐磨涂料、自润滑耐磨涂层、自 润滑耐磨材料,属于自润滑材料技术领域。本发 明的用于制备自润滑耐磨材料的组合物,主要由 树脂和以下重量份数的组分组成:二硫化钼11~ 12份、石墨烯0.088~0.3份。本发明的组合物,以 二硫化钼为润滑剂,以石墨烯作为润滑添加剂, 利用二硫化钼和石墨烯二维层状结构的相似性, 将两者按照特定比例与树脂进行复合制成耐磨 材料可以发挥二硫化钼和石墨烯的协同润滑效 应,使耐磨材料的耐磨性能和自润滑性能得到显 著提高;尤其是采用本发明的组合物制得的自润 滑减摩耐磨涂层在干摩擦和海水条件下均具有 良好的润滑减摩、 耐磨和环境自适应性能。权利要求书1页 说明书7页 附图2页CN 110016277 A 2019.07.16 C N 110016277 A

权 利 要 求 书1/1页CN 110016277 A 1.一种用于制备自润滑耐磨材料的组合物,其特征在于:主要由树脂和以下重量份数的组分组成:二硫化钼11~12份、石墨烯0.088~0.3份。 2.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述树脂与二硫化钼的质量比为2~3:1。 3.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均粒径为0.5~2μm。 4.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述石墨烯的平均层数为5~7层。 5.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述二硫化钼的平均粒径为10~20μm。 6.根据权利要求1所述的用于制备自润滑耐磨材料的组合物,其特征在于:所述组合物还包括溶剂;所述溶剂与树脂的质量比为1:1~2.5。 7.一种自润滑耐磨涂料,其特征在于:包括组分A和组分B;所述组分A为如权利要求1所述的用于制备自润滑耐磨材料的组合物;所述组分B包括固化剂。 8.一种采用如权利要求7所述的自润滑耐磨涂料制得的自润滑耐磨涂层。 9.根据权利要求8所述的自润滑耐磨涂层,其特征在于:所述自润滑耐磨涂层的厚度为20~30μm。 10.一种自润滑耐磨材料,其特征在于:包括基体以及涂覆在基体上的自润滑耐磨涂层;所述自润滑耐磨涂层是将如权利要求7所述的自润滑耐磨涂料的组分A与组分B混合后涂覆在基体上固化得到。 2

固体润滑剂的特性

固体润滑剂的特性 文章来源:开拓者钼业 https://www.docsj.com/doc/4e15364810.html, 1.3.1 固体润滑剂的特性 1.3.1.1 摩擦特性 所有的摩擦副都要承受一定的负荷或传递一定的动力,并且以一定的速度运动。黏着于摩擦表面的固体润滑剂在与对偶材料摩擦时,在对偶材料表面形成转移膜,使摩擦发生在固体润滑剂之间。这样才能表现出零号的摩擦特性——较低的摩擦系数。 固体润滑剂的摩擦特性与其剪切强度有关,剪切强度越小,摩擦系数则越小。层状结构润滑材料在摩擦力的作用下,容易在层与层之间产生滑移,所以摩擦系数小。软金属润滑材料能产生晶间滑移,剪切强度也很小,因而这些物质可以作为固体润滑剂。 1.3.1.2 承载特性 对偶材料在摩擦时,由于摩擦表面的粗糙度,会使微凸体处产生局部高温,而且,负荷越大,温度越高,速度越快,温升也越大,因而磨损也越大。 固体润滑剂应该具有承受一定负荷和运动的速度的能力,即承载能力。在它所能承受的负荷和速度范围内,应该使摩擦副保持较低的摩擦系数,不使对偶材料间发生咬合,而且应使磨损减到最小。 为了使固体润滑剂在规定的工作条件下充分发挥其润滑作用,对于轴承等材料来说,有个特定的标量,即pv值(pa·m/s)——负荷与速度的乘积。对于每种润滑材料,都有其极限pv值(超过该值运行便

失效)和工作pv值(正常工作条件),通常,工作pv值为极限pv值的一半左右。 固体润滑膜的承载特性与其本身的材质有关,尤其受其物理学性能的影响,同时也与固体润滑剂在基材料上的结合强度有关。结合强度越高,承载能力越大。 1.3.1.3 耐磨性 对偶材料在一定负荷和速度下发生摩擦,总会产生磨损。固体润滑剂的耐磨性能与下列两个因素有关。 1)固体润滑剂对摩擦比偶民的黏着力越强,越容易形成转移膜,其耐磨性也越好,固体润滑膜的寿命越长。 2)固体润滑剂应该具有不低于基材的热膨胀系数。当摩擦引起升温时,由于其热膨胀系数较高而将突出基于基材表面,并与对偶材料接触,不断提供固体润滑剂,以维持较好的耐磨性能。 同时,固体润滑剂的耐磨性与气氛黄精条件有关。 1.3.1.4 宽温性 固体润滑剂应能在一定的温度范围内工作。目前,固体润滑剂的使用温度上限在1200℃(金属压力加工中所使用的固体润滑剂),最低温度在-270℃左右(液氧和液氮等输液泵轴承的固体润滑)。但是,无论何种固体润滑剂都没有这样宽的工作范围。实际使用的固体润滑剂只要求适用于某一特定的温度范围,而且通过制造特定的复合润滑材料便可以用于某个温度范围工作。在一定工作温度范围内,固体润滑剂应该具有较低的摩擦系数、较好的润滑性能和耐磨性。

固体自润滑材料研究进展

固体自润滑材料研究进展 摘要:综述了固体自润滑材料的种类、性能、组织、应用以及自润滑机理。指出为了满足科技的日益发展,迫切需要研制从添加润滑剂到无须添加润滑剂而具有自润滑的材料。 关键词:自润滑摩擦磨损组织机理 前言 固体润滑是指利用固体材料来减少构件之间接触表面的摩擦与磨损的润滑方式。而自润滑材料是具有固体润滑的性能。固体润滑技术的发展,主要是从二战以后的航空工业、空间技术等高技术领域开始的。在某些不能或者无法使用润滑油和润滑油脂的高温、超低温、强辐射、高负荷、超高真空、强氧化、海水以及药物等介质的条件下,固体自润滑技术显示出良好的适应性能,被广泛应用于冶金、电力、船舶、桥梁、机械、原子能等工业领域,因而在欧美工业发达国家受到相当的重视。 1固体自润滑材料的性能 1.1铝、铅及石墨的含量对铝铅石墨固体自润滑复合材料性能的影响 固体润滑剂的加入对材料的摩擦学性能有较大的影响,采用常规的粉末冶金方法制备了铝铅石墨固体自润滑复合材料,并对其力学性能和摩擦磨损性能进行了研究。早在20世纪60年代初期,人们就已经发现,两种或者多种固体润滑剂混合使用时,会产生一种料想不到的协同润滑效应。其润滑效果比任何一种单独使用时都好[1]。考虑将石墨和铅作为组合固体润滑剂同时使用。多元固体润滑剂的复合使用是固体自润滑材料的一个发展方向。 实验通过不同的成分配比,采用常规的粉末冶金方法。将各种原料粉末按实验需要的配比称好后置于V型混料机中干混4~6h,在钢模中进行压制,压制压力为0.5Gpa,然后在高纯氮气保护气氛下烧结60 min。得到的样品,对其进行性能测试。主要是对其样品进行力学性能、物相分析、金相分析及摩擦学性能的测试。 通过实验的测试结果可得到以下结论[2]: 1)在铅和石墨总含量不变的情况下,随着石墨含量的增加,铝铅石墨固体自润滑复合材料的力学性能下降,但石墨含量对强度的影响不如对硬度的影响程度大。 2)铅和石墨有着良好的协同润滑效应,随着石墨含量的增加,复合材料的摩擦因数减小,同时材料的磨损量也明显下降。 3)在固体润滑剂含量相同的情况下,铝铅石墨材料的力学性能略低于铝铅材料,但是其摩擦磨损性能好得多,这是因为石墨的润滑性能比铅好,而且存在良好的协同润滑效应。 1.2石墨含量、粒度及温度对铜基自润滑材料力学和摩擦磨损性能的影响 铜基自润滑材料具有抗氧化、耐腐蚀及磨合性好等特性,含油粉末冶金铜基自润滑轴承和轴瓦在纺织机械、食品机械、办公机械及汽车工业中得到了广泛的应用.然而当温度高于300℃后,铜基材料强度明显降低、耐磨性变差.为了充分发挥铜基材料的优良特性,提高铜基自润滑材料的使用温度显得尤为重要。通过基体多元合金化和选用不同粒度的石墨颗粒,采用常规粉末冶金方法制备了铜基石墨固体自润滑材料,在大越式OAT-U型摩擦磨损试验机上考察了复合材料从室温到500℃温度条件下的摩擦磨损性能,利用扫描电子显微镜观察分析磨损表面形貌,进而探讨其摩擦磨损机理。深入研究铜基自润滑材料在较高温度条件下的摩擦磨损性能及机理,对研制开发高温铜基自润滑材料具有重要意义。选用不同粒度的石墨颗粒作为主要润滑组分,并对铜合金基体进行合金化优化设计,采用常规的粉末冶金方法制备了铜基石墨固体自润滑复合材料,考察了其在室温至500℃温度条件下的摩擦磨损性能。 通过实验测试可得到石墨含量对室温力学和摩擦磨损性能的影响、石墨粒度对室温力学和摩擦磨损性能的影响及温度对铜基石墨自润滑摩擦磨损性能的影响[3]。

常用润滑油基本知识简介(免费)

设备的润滑管理 设备的润滑管理是设备技术管理的重要组成部分,也是设备维护的重要内容,搞好设备润滑工作,是保证设备正常运转、减少设备磨损、防止和减少设备事故,降低动力消耗,延长设备修理周期和使用寿命的有效措施。 ①润滑的基本原理 把一种具有润滑性能的物质,加到设备机体摩擦副上,使摩擦副脱离直接接触,达到降低摩擦和减少磨损的手段称为润滑。 润滑的基本原理是润滑剂能够牢固地附在机件摩擦副上,形成一层油膜,这种油膜和机件的摩擦面接合力很强,两个摩擦面被润滑剂分开,使机件间的摩擦变为润滑剂本身分子间的摩擦,从而起到减少摩擦降低磨损的作用。 设备的润滑是设备维护的重要环节。设备缺油或油变质会导致设备故障甚至破坏设备的精度和功能。搞好设备润滑,对减少故障,减少机件磨损,延长设备的使用寿命起着重要作用。 ②润滑剂的主要作用 a. 润滑作用:减少摩擦、降低磨损; b. 冷却作用:润滑剂在循环中将摩擦热带走,降低温度防止烧伤; c. 洗涤作用:从摩擦面上洗净污秽,金属粉粒等异物; d. 密封作用:防止水分和其他杂物进入; e. 防锈防蚀:使金属表面与空气隔离开,防止氧化; f. 减震卸荷:对往复运动机件有减震、缓冲、降低噪音的作用,压力润滑系统有使设备启动时卸荷和减少起动力矩的作用; g. 传递动力:在液压系统中,油是传递动力的介质。 ③润滑油选择的基本原则 设备说明书中有关润滑规范的规定是设备选用油品的依据,若无说明书或规定时,由设备使用单位自己选择。选择油品时应遵循以下原则: a. 运动速度:速度愈高愈易形成油楔,可选用低粘度的润滑油来保证油膜的存在。选用粘度过高,则产生的阻抗大、发热量多、会导致温度过高。低速运转时,靠油的粘度来承载负荷,应选用粘度较高的润滑油。 b. 承载负荷:一般负荷越大选用润滑油的粘度越高。低速重载应考虑油品允许承载的能力。 c. 工作温度:温度变化大时,应选用粘度指数高的油品,高温条件下工作应选用粘度和闪点高、油性和抗氧化稳定性好,有相应添加剂的油品。低温条件下工作应选用粘度低水分少、凝固点低的耐低温油品。

固体自润滑复合材料分类

固体自润滑复合材料分类 根据基体材质不同大致可将固体自润滑复合材料分为聚合物基、陶瓷基和金属基等三大类。 A.聚合物固体自润滑复合材料 目前常见的减摩用聚合物有:聚酰亚胺、聚醚醚酮(PEEK)、聚四氟乙烯、尼龙(PA)、聚甲醛(POM)、聚乙烯(PE)等。其中PTFE本身也是一种良好的固体润滑剂,是研究较早且应用最广的耐热性聚合物基自润滑材料,其分子结构规整,静摩擦系数可达0.04,是已知的可实用的滑动材料中摩擦系数最小的。然而,聚合物材料机械强度低、耐热和传热性能不理想,即使环境温度不升高,但在摩擦条件十分苛刻的条件下,传热性能低的聚合物材料很容易发生局部升温而达到耐热极限,因此不适宜高温、高速、重载等工作条件。 B.陶瓷基固体自润滑复合材料 新型结构陶瓷材料具有高强度、高硬度、低密度,以及优异的化学稳定性和高温力学性能等特点,因此有关陶瓷基自润滑复合材料及摩擦学性能的研究日益 受到重视。Sliney等选择了Cr 3C 2 为陶瓷相,以Ni为粘结相,CaF 2 和BaF 2 的共 熔物与银为润滑剂,制备了性能优异的高温自润滑金属陶瓷涂层PS200,对上述 配方进行调整可制得PS212涂层及PM212陶瓷复合材料,对解决斯特林发动机等的高温润滑问题有重要意义。王静波等考察了Ni-WC-PbO系自润滑金属陶瓷的高温摩擦学特性,发现摩擦化学产物PbW0 4 是该类材料具有优异摩擦学特性的主要 原因,直接加入PbW0 4 时材料的摩擦学性能较好,但其机械性能略差。陈晓虎研究了润滑组元(石墨、氮化硼)与氧化铝基体化学相容、物理匹配关系及其对自润 滑陶瓷材料摩擦学性能的影响,将石墨和氮化硼同时引入A1 20 3 陶瓷基体之中, 润滑减摩性能明显提高。总体上讲,自润滑陶瓷材料成为解决极端苛刻工况条件下实现自润滑要求的有效途径,但目前自润滑陶瓷材料的研究仍处于起步阶段,离实际应用还存在一定的距离。 C.金属基固体自润滑复合材料 金属基固体自润滑复合材料是固体润滑剂作为组元加入到金属基体中形成的复合材料,它具有如下特点:熔点高,机械强度高,有较好的韧性和延展性;热传导性和导电性好;尺寸稳定,耐潮湿,摩擦因数小,耐磨寿命长等优良的摩

相关文档
相关文档 最新文档