文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展
纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展

摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。对未来纳米MoS2在润滑材料中的应用与研究进行了展望。关键词:纳米MoS2;润滑材料;摩擦

The research progress of molybdenum disulfide

nanoparticles(MoS2) in lubrication materials

Abstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed.

Key words: nano-MoS2; lubrication materials; friction

0 引言

二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。故MoS2粘结固体润滑膜是真空机械润滑的首选润滑材料[1]。从MoS2基固体润滑涂层的发展来看,自1946年美国的NASA路易斯宇航中心开发出第一种含MoS2的有机粘结固体润滑膜以后,20世纪60年代初期,美国就制定了航空飞行器使用的热固化二硫化钼基固体润滑涂层军用标准[2]。我国研制的耐辐射性较好的PI、PPS、EM-1、EMR[3]等二硫化钼基固体润滑涂层,因其性能独特,在航空航天领域的极端工况下及某些民用机械设备上获得了成功的应用[4,5]。近年来研究发现,纳米MoS2比微米MoS2具有更优异的润滑性能[6]。研究纳米MoS2润滑材料对航空及工业生产等具有重要的实际意义。

1 MoS2的润滑性状

如图1[7],MoS2具有层状结构,其晶体为六方晶系。MoS2的润滑作用取决于其晶体结构,层与层间的S原子结合力(范德华力)较弱,故易于滑动而表现出很好的减摩作用。另一方面,Mo原子与S原子间的离子键赋于MoS2润滑膜较

高的强度,可防止润滑膜在金属表面突出部位被穿透;而S原子暴露在MoS2晶体层的表面,对金属表面产生很强的粘附作用。MoS2的化学性质相当稳定,可耐大多数酸和耐辐射[7]。

二硫化钼的层状结构决定了其相对良好的润滑性能。相比于其他润滑剂,用二硫化钼制成的系列润滑剂具有诸多优点:抗压强度高、耐磨性好、附着性强,且摩擦因数较低;具有较好的成膜结构特性,能生成一种在高压下仍具有良好稳定性的薄膜;在多数溶剂中可保持较好的稳定性;在高温、高压、高转速、超低温和高真空条件下仍具有高效的润滑性能;对黑色和有色金属具有较强的吸附亲和力。因此,二硫化钼以固体润滑剂、润滑油或润滑脂添加剂的形式被广泛应用于各种抗磨减摩领域[8]。

图1 2H-MoS2的晶体结构模型

2 纳米二硫化钼的性能

随着MoS2的粒径变小,它在摩擦副表面的附着性与覆盖程度明显提高,抗磨减摩性能也得到成倍提高,文献[9]与[10]报道了纳米MoS2作为润滑油添加剂时,能显著改善润滑油的润滑性能,且性能明显比添加了普通MoS2的润滑油要优。文献认为,纳米MoS2表现出优异的润滑性能的主要原因是:纳米MoS2易于吸附在摩擦副接触表面,在摩擦过程中形成含MoO3的低剪切强度的防护薄膜[11]。

2.1 纳米富勒烯状MoS2

无机类富勒烯(Inorganic fullerene-like,以下简称IF)过渡金属硫化物(WS2和MoS2等)具有嵌套中空结构或类似于碳纳米管的中空管状结构,其具有良好的化学稳定性和优异的摩擦学性能,且有潜在的工程应用前景而引起了人们的广泛关注。球形无机类富勒烯状(IF)纳米微粒的良好的润滑性能归咎于它的化学稳定

性与可滚动、变形、剥层转移等特性。IF结构优于2H片层结构的主要原因是IF 球形结构不存在活性高的悬空键,悬空键的消除使得IF粉末具有更高的化学稳定性,所以IF纳米颗粒不容易被氧化而失去润滑作用。Chhowalla等采用局部的高压电弧的方法沉积得到富勒烯状MoS2,并测定了其摩擦学性能。实验表明在氮气和45%的水蒸汽中,富勒烯状MoS2比溅射的MoS2薄膜摩擦系数和磨损量要低很多。并认为在潮湿环境下中空的富勒烯状MoS2纳米颗粒薄膜的优良的摩擦学性能是由于卷曲的S?Mo?S层防止了氧化并保持了层状结构;理想的IF 的球形结构还为有效的滚动摩擦机理提供了可能,变两摩擦副接触表面之间的滑动摩擦为滚动摩擦。IF 的中空的笼式结构有良好的弹性,在高载荷下可以通过弹性变形抵抗摩擦力;此外,在摩擦过程中IF 受到破坏后会发生剥离形成纳米片,它们可以继续保持一定的润滑作用[11]。

2.2 纳米MoS2夹层化合物

MoS2等层状结构的过渡金属硫化物作为固体润滑剂已得到广泛的应用,但由于其晶体边缘的不饱和悬挂键具有化学活性,在摩擦过程中易被氧化,使得摩擦学性能急剧降低,这种现象在潮湿的气氛中尤其严重。一些研究表明MoS2夹层化合物也具有较为优异的润滑性能。利用原位插层法制备的聚酰亚胺MoS2插层复合材料(PI/MoS2-IC),其无机物/聚合物体系接近纳米级分散。所合成的PI/MoS2插层复合材料作为锂基脂添加剂时,对钢-钢摩擦副表现出良好的减摩与抗磨作用。在摩擦过程中钢球表面形成了由FeSO4、MoO3及Fe 的氧化物等产物组成的边界润滑及防护薄膜,从而改善了聚合物基体的摩擦学性能。最近,Wang 等人利用重堆积MoS2,利用原位聚合反应,合成了聚甲醛(POM)与MoS2的夹层化合物,发现MoS2与POM形成插层化合物后,MoS2在POM基体中以纳米薄片形式存在,分散十分均匀,同时POM 的润滑性能也得到进一步改善。由此可知,MoS2插层技术与其夹层化合物是分散MoS2的有效途径,同时也为纳米MoS2在基体材料中的分散提供了一种可能的解决方案[11]。

3 MoS2在几种润滑材料中的应用研究

3.1 纳米MoS2用于轧制过程

传统冷轧液以油为基础,添加极压剂、乳化剂等配制成乳化液使用[12];而目前环保型轧制液的配制主要使用基础油与生物降解率高的添加剂复配来实现[13]。为此,王冰等[14]课题组初步研制了纳米MoS

水基轧制液,经过表面修饰及

2

超声波分散,将Nano-MoS2粒子分散在水中配制成新型纳米水基板带钢轧制液,通过考察摩擦系数、磨斑直径、最大无卡咬负荷PB值等摩擦学参数,研究了Nano-MoS2对摩擦学性能的影响;进一步进行接触角实验及冷轧润滑实验,研究了Nano-MoS2在轧制过程中的润滑效果,并结合轧后板带钢表面质量的分析,对纳米粒子在轧制过程中抗摩擦磨损机理进行了初步探讨。研究表明:含纳米

MoS2水基轧制液与通用乳化液的PB值相同,但其摩擦系数与磨斑直径与乳化液相比分别降低1.4%和17.7%,表现出良好的抗磨损性能,同时,改善了润湿性能以及冷轧过程中的润滑性能;从板面质量来看,表面轧制纹理清晰,划痕少而浅,结合粗糙度曲线及EDS能谱分析,表明纳米粒子能够填充在带钢表面“犁沟”处,减少了磨损和缺陷的发生,从而有效提高了后带钢表面质量。该研究为纳米添加剂的开发及环保型冷轧轧制液的研究提供了重要参考依据[15-16]。也为解决板带钢冷轧乳化液消耗高、生产操作环境油雾污染严重,特别是含油和硫、磷元素废液排放对环境造成污染问题提供了新途径。

3.2纳米MoS2作为机械油添加剂

沃恒洲等[17]人由硫化钠和钼酸钠水溶液反应生成棕色三硫化钼膏状沉淀,将三硫化钼粉末干燥后在氢气保护气氛中于适宜温度下煅烧脱硫,制得了粒径为20~30nm的纳米MoS2颗粒。用X射线衍射仪和透射电子显微镜分析了MoS2纳米颗粒的相组成和微观形貌;利用四球摩擦磨损试验机测定了纳米MoS2作为N46机械油添加剂的摩擦学性能;采用X射线光电子能谱仪分析了磨痕表面元素的化学状态,用扫描电子显微镜观察了磨痕表面形貌,探讨了纳米MoS2的减摩抗磨机理。结果表明,同普通MoS2微粒相比,纳米MoS2更易发生化学反应并在钢球磨损表面形成含三氧化钼的表面膜,纳米MoS2添加剂的极压、抗磨和减摩性能优于普通MoS2。

3.3纳米MoS2润滑脂用于铜导线拉拔工艺中

具有类富勒烯结构的纳MoS2微球具有优异的自润滑特性和超低摩擦特性,能够显著改善铜基复合材料和某些表面涂层的摩擦磨损性能,而表面修饰MoS2纳米微粒LB膜在较宽的温度范围内表现出良好的减摩和抗磨作用,在常温至中等高温范围内的连续润滑方面具有潜在的应用价值。可以通过多种方法获得纳米MoS2,而由不同方法得到的MoS2纳米颗粒的形态特征和性能等存在明显差异。同时,纳米级MoS2很难通过机械搅拌的方法,采用含微米级MoS2润滑脂的制备工艺,可达到均匀分散的目的。

魏锦等[18]介绍利用化学共沉淀方法制备纳米MoS2的工艺,并探讨了所制备的纳米MoS2作为铜合金拉拔润滑脂添加剂的摩擦学性能和抗磨减摩机理。实验中介绍了二硫化钼的制备和纳米二硫化钼润滑脂的制备工艺过程。通过四球机的摩擦磨损实验和四连拉铜导线拉拔工艺的现场考核,发现:(1) 通过四球机上进行摩擦磨损实验,发现在相同的载荷和二硫化钼含量相同时,含有纳米二硫化钼的润滑脂的摩擦系数和磨斑直径均较小。(2) 随着二硫化钼在润滑脂中添加量的增加,摩擦系数和磨斑直径均减小。但含纳米二硫化钼的润滑脂的磨斑直径是最小的,说明其抗磨性最好。(3) 铜线四连拉拔的工业应用结果也表明含纳米二硫化钼的润滑脂,其抗磨性能明显高于微米二硫化钼的润滑脂。从而得出含纳米二

硫化钼添加剂的润滑脂的摩擦学特性、拉拔模具寿命和线材表面质量均优于含微米级二硫化钼添加剂润滑脂。

3.4纳米MoS2应用于空间润滑材料

程亚洲[19]以纳米MoS2作为空间润滑脂的添加剂,在大气环境和模拟空间环境下,对其在润滑脂中所起的减摩与抗磨作用进行了实验研究,并用扫描电子显微镜、非接触式三维轮廓仪和X 光电子能谱仪对摩擦表面进行了分析。对MoS2在空间润滑脂中的润滑机理进行了分析。得出以下结论:大气环境中,纳米MoS2的减摩与抗磨性能好于微米MoS2,添加MoS2纳米片的空间润滑脂具有最好的极压性能和减摩抗磨性能。如图2[19],MoS2纳米片和MoS2纳米空心球可以在摩擦表面发生摩擦化学反应,形成润滑膜。

图2 MoS2纳米球(a)和MoS2纳米片(b)的TEM照片

罗湘燕等[20]研究认为没有加入纳米MoS2微粒/聚酯聚合物的航空润滑油基础油D800N30min较大,加入纳米MoS2微粒/聚酯聚合物后D800N30min明显下降,且随着添加量的增大而下降,当添加量增加到3%时,D800N30min为0131mm,比没有加入纳米MoS2微粒/聚酯聚合物的润滑油下降40%,随后D800N30min下降缓慢并逐渐趋于稳定,其最佳浓度为310~410wt%。其认为,之所以出现这样的结果是因为在没有加入纳米MoS2微粒/聚酯聚合物时,金属磨擦接触区的减摩机理为常规边界润滑和流体润滑,但加入纳米MoS2微粒/聚酯聚合物后,金属磨擦接触区的减摩机理发生了变化,具体有以下几点:(1) 纳米MoS2微粒能强烈地吸附在金属表面,由于其尺寸小,所以能填平金属表面的微坑和损伤部位,在金属表面形成一层比原表面更平整、更光滑的“修复层”,从而降低磨擦、减少磨损。(2) MoS2本身就是一种优异的固体润滑剂,其分子结构为六方晶系的层状结构,因此一定量的纳米MoS2微粒的加入可与润滑基础油协同作用,从而耐较高的接触压力和较高的摩擦速度。(3) 在较高的速度下部分纳

米MoS2微粒在金属接触区停留时间较短,外载荷来不及压扁MoS2微粒,同时也没被金属表面吸附,纳米MoS2微粒已离开接触区,此时的纳米微粒能起到一种类似微型“球轴承”的作用,能形成滚动轴承效应,从而起到减少摩擦和磨损的作用。这三种作用随着纳米MoS2微粒加入量的增加而增加。

4总结及展望

4.1总结

纳米MoS2润滑剂比普通MoS2润滑剂具有更优的减摩耐磨性能,其润滑机理为其表面具有大量的悬空键,高的化学活性和反应活性,在摩擦表面能形成牢固吸附膜和化学反应膜。目前主要应用的纳米MoS2形式为纳米空心球和纳米片。其在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中已得到研究与应用。

4.2展望

国内外对纳米MoS2在润滑材料中的研究还十分有限,本文也只是进行了部分总结,因此对含纳米MoS2润滑材料的研究工作还有很大的空间。今后可以在以下几个方面进一步开展研究:

(1)探索不同形态尺寸的MoS2微粒,以及MoS2纳米微粒与其它润滑剂之间的协同润滑效应,从而进一步增强含纳米MoS2润滑材料的润滑性能;

(2)寻找纳米MoS2在空间润滑脂中更好的分散方法,并对分散效果进行必要的分析表征;

(3)虽然纳米MoS2粘结固体润滑膜成功应用的报告比较多,但粘结膜的摩擦系数总体较高,如何在保证耐磨寿命的基础上降低粘结膜的摩擦系数应是今后研究的重点。

参考文献

[1] 张泽抚, 刘维民, 薛群基, 曾继华. 钼化合物润滑材料的摩擦学应用与研究发展现

状[J]. 摩擦学学报. 1998. 18(4): 377-382.

[2] 郑友华, 李冀生, 王美玲. 固体润滑涂层的评价和使用[J]. 润滑与密封. 2003. (2):

14-17.

[3] 孙荣禄, 孙树文, 郭立新, 杨德庄. 固体润滑技术在空间机械中的应用[J]. 宇航材

料工艺. 1999. (1): 17-22.

[4] 陈建敏, 冶银平, 党鸿辛. 粘结固体润滑膜及其应用[J]. 摩擦学学报. 1994.14(2):

180-189.

[5] 邵鑫, 毛邵兰, 高金堂. 聚合物基高温润滑涂层的研究现状[J]. 润滑与密封. 1998.

(5): 2-7.

[6] 胡坤宏, 徐玉福, 孙晓军, 胡献国. 纳米MoS2填充聚甲醛自润滑复合材料摩擦学特性研

究[C]. 第八届全国摩擦大会论文集. 2007.11: 223-229.

[7] 石淼森. 固体润滑技术[M]. 北京:中国石化出版社. 1998. 41, 68, 31, 84, 230.

[8] 吴壮志. 纳米结构二硫化钼(钨)的制备及其性能研究[D]. 长沙: 中南大学, 2012.

[9] 沃恒洲, 胡坤宏, 胡献国. 纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J]. 摩擦学学报, 2004, 24 (1): 33-37.

[10] Hu X G, Hu S L, Zhao Y S. Synthesis of nanometer molybdenum disulfide particles and evaluation of friction and wear properties [J]. Lubr Sci, 2005, 17(3): 295-308.

[11] 胡坤宏. 纳米二硫化钼的形态可控合成及催化与润滑性能研究[D]. 合肥:合肥工业大学,2010.

[12] Mc CARTNEY D G.Grain refining of aluminum audits alloys using inoculants[J]. Int Mater Rev,1989,34 ( 5) : 247-260.

[13] 克莱因TW, 威琵斯PJ 著. 余永宁, 房志刚译. 金属基复合材料导论[M]. 北京:冶金工业出版社, 1996.

[14]王冰, 孙建林, 武元元, 王一助. 纳米MoS2轧制液摩擦特性与轧后钢板表面研究[J].材料科学与工艺.2011,19(6): 28-32.

[15] LEVI C G,ABBASCHIAN G J,MEHRABIAN R.interface interactions during Fabrication of aluminumalloy-alumina fiber composites[J]. Metallurgical Transactions,1978,9 A(5): 697-711.

[16] 方洪渊,冯吉才. 材料连接过程中的界面行为[M]. 北京: 国防工业出版社,2005.

[17]沃恒洲, 胡坤宏, 胡献国.纳米二硫化钼作为机械油添加剂的摩擦学特性研究[J]. 摩擦学学报.2004,24 (1):33-37.

[18]魏锦, 熊小兵, 徐玉福, 胡献国.纳米MoS2润滑脂在铜导线拉拔工艺中的应用研究[J].电线电缆.2007, 5: 6-9.

[19]程亚洲. 含纳米MoS2空间润滑脂的制备与摩擦学性能表征[D]. 合肥:合肥工业大学,2012.

[20] 罗湘燕, 唐振杰, 汪定江, 陈名华. 原位合成的纳米MoS2微粒/聚酯聚合物改善航空润滑油抗磨性能的研究[J]. 润滑与密封.2003,5: 57-58.

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

二硫化钼的润滑机理

二硫化钼的润滑机理 一种固体润滑材料若愈能成为优良的润滑剂。起码应具备两种特性: 1.该材料晶体内剪切强度低,有许多良好的天然滑移面。 2.该材料应能牢固附着于底材金属表面上。 只有当该材料与金属底材面间的附着力大于晶体内剪切强度时,滑动才会发生在该材料的晶体内部,而不发生在底材金属与底材金属之间,或底材金属和润滑剂之间。附着力与剪切强度相差得愈大,该材料的润滑性能愈好,其摩擦系数(μ)与磨损(√)也愈小。 下面从这几方面来研究探讨二硫化钼的润滑机理: 1.二硫化钼的晶体结构 MoS2中含钼%,硫%。自然界天然产出的晶体MoS2呗称作“辉钼矿”。其组成部分与上述理论值相近。偶有钨、铼、锇或硒、碲作为类质同象元素取代钼或硫,进入晶格,而成为辉钼矿中的微量元素。 2.二硫化钼的晶体结构图 二硫化钼的晶体结构是六方晶体系结构,在两层位置相同的硫原子密堆积层中,形成许多三方棱柱体孔隙。钼原子就处在由六个硫原子形成的三方棱柱配位体的个数恰为钼原子个数的两倍。 二硫化钼的多型与润滑 当二硫化钼层片之间平行相叠加构成了二硫化钼晶体,其叠加方式不同,形成多种同质异构体。矿物学里称它为“辉钼矿”。 近年来有人依据对称原理和紧密堆积原理,在七层范围内重叠时,用

电子计算机推导出了112种类型。但迄今,自然界里已确定的辉钼矿的类型有两种: 2H(六方晶型)辉钼矿石1923年由Dickinson与Pauling所确定。它系二硫化钼层片接两层相重复的形式叠加。 3R(三方晶型)辉钼矿是1957年由Bell与Herfert发现,它系二硫化钼层片按三层相重叠的形式叠加。 2H与3R型辉钼矿的形成规律与其生成温度有关。二硫化钼晶型与生成温度的关系: 自然界分出的钼矿物质中98%为辉钼矿,而辉钼矿的80%为2H型,仅3%为3R型。其余17%为2H与3R混合型,它们可以通过Xˉ射线衍射图来区别。 3R系亚稳定态,当温度上升到600~1300℃后,它会转化为2H行辉钼矿。 对不同二硫化钼而言,合成多面因声场温度较低,通常为3R型;而天然工艺多面因保持着自然界辉钼矿原料面目,通常为2H型。在应用时,大多数人认为2H比3R型二硫化钼的润滑效果好。反之若无特别标明,所涉及二硫化钼均系2H(六方)晶型辉钼矿。 二硫化钼分子成键规律与滑移面

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

第一节(三)固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法

固体润滑材料二硫化钼-(MoS2)固体润滑材料的制备方法 文章来源:开拓者钼业 公司网址:https://www.docsj.com/doc/3b7070887.html, 三、固体润滑材料二硫化钼-(MoS2)的制备方法 在密闭的齿轮箱内放进一定量的固体润滑剂粉末,通过齿轮运动将其飞溅在摩擦表面,依靠它的粘着力附着在轮齿表面,便组成了最简单的固体润滑摩擦副。随着对固体润滑材料二硫化钼-(MoS2)要求的不断提高和科学技术的进步,固体润滑材料二硫化钼-(MoS2)的制备工艺也不断完善。从制备原理来讲,刚本润滑材料二硫化钼-(MoS2)的制备可归纳为以下几种方法。 1. 二硫化钼-(MoS2)机械混合 将几种作用互补的物质进行机械混合,使其成为均质混合体。 2. 二硫化钼-(MoS2)热压烧结 在一种粉末型基材中加人另一种(或多种)其他粉末,经机械混合后成为均质混合体。然后进行热压烧结(在不同的气氛、压力和温度下),使其成为具有一定物理机械和摩擦学性能的整体。用这种方法制备的固体润滑材料二硫化钼-(MoS2)较多,适用于金属基、非金属基和陶瓷等润滑材料二硫化钼-(MoS2)。 3. 二硫化钼-(MoS2)粘结 利用粘结剂将润滑剂粉末粘结在基材表面。如果将具有相当强度的金属或有机编织材料二硫化钼-(MoS2)作为背衬,其上再粘结润滑层,使形成了既有强度又有润滑性的复合层润滑材料二硫化钼-(MoS2)。 4 . 二硫化钼-(MoS2)气相沉积 通过物螋∫气相沉积(包括溅射、离子镀和等离子喷涂等)或化学气相沉积将润滑剂微粒粘着在基材表面形成固体润滑涂层。其粘着力由原子间的结合力呈现。 5 . 二硫化钼-(MoS2)化学反应 通过电镀化学镀,包括多层镀和复合镀等,将润滑剂微粒粘着在基材表癣形成固体润滑镀层。

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

二硫化钼地润滑特性

二硫化钼的润滑特性 摘要 二硫化钼不仅在常规环境,而且能在重载荷、高真空或低温、高速或低速、强辐射等恶劣环境里,充分发挥出低摩擦系数、高磨损寿命和润滑可靠等优点,而被广泛应用。 主题词:二硫化钼润滑特性抗报压真空润滑 1.二硫化钼的理化特性: 分子式:MoS2 分子量:16008 颜色:兰-灰到黑色 密度α/cm3:4.8-5.0(或4.85 --5.0、4.8) 熔点℃:约1500℃(或大于1800℃、1185℃) 硬度:mosh1--1.5(或knnop12--60) 显微硬度:基础面3.136×102Mpa,棱面8.82×103Mpa 表面能:基础面2.4×10-2J/M2,棱面7.0×10-1J/M2 热胀系数:10-7×10-6/K 温度稳定性:空气中-184~400℃(或-180℃~400℃400℃、399℃、450℃)。真空或惰性气体中,大于1100℃(或1200℃、1800℃)摩擦系数:约0.05--6.10(或0.04,没有气体吸附层时为0.03--0.06)承载能力,大于2.8×103Mpa(或大于3.45×103Mpa)。 化学稳定性: 氧化:干燥空气中,从417℃(750F)(或370℃、400℃、399℃、

350℃、450℃)开始氧化后。560℃后(或540℃)剧烈氧化。潮湿空气中,室温即发现有氧化,但很微弱,在湿度与酸值都很高时,氧化才变得明显。氧化产物为MoO3与So2,氧化系放热反应H=-266.7kcal/mol。 分解:真空或惰性气体里,1100℃(或1200℃、真空982~1093℃、氩气中1350~1472℃)后开始分解。分解产物为Mo与S。 能耐除王水,热而浓的盐酸、硫酸、硝酸外的任何酸,在氟、氯中可分解,但在无水HF中不分解,能与液氧相容。 能腐蚀碱金属(如Li、Na、K、Rb、Cs、Fe等)。 在水、石油制品和各种合成润滑剂中不溶解,能按任意比例混合使用。 2、二硫化钼与载荷 工件表面微观是不平整的,一旦彼此间发生滑动,真是接触仅局限于一些很小的高点上。用电阻法或其他方法估测,真实接触面还不到表观面积的万分之一。因而,即使施以很小载荷,接触点局部压强也会很大,载荷加大,会因压强过大而升温,甚至熔化。润滑目的即在于防止工件间直接接触。 油脂润滑时,当载荷过大,润滑膜会被“压破”或温度上升润滑油流失,这将导致润滑膜破裂,工建直接接触而发生黏着(熔合)磨损。 用二硫化润滑,当载荷上升时,润滑效果非旦不下降,还会提高。即使超过了钢铁屈服压强的重载荷3.45×103Mpa下,润滑依旧。

纳米材料的发展及研究现状

纳米材料的发展及研究现状 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单

元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基

二硫化钼的润滑特性

书山有路勤为径,学海无涯苦作舟 二硫化钼的润滑特性 二硫化钼——天然或合成的辉钼矿,以润滑油脂及其他固体润滑剂难比拟 的优点,被誉为“固体润滑之王”而被广泛应用。作为润滑剂要必备两个条件,即材料内部具良好滑移面,材料与基材有很强的附着力。二硫化钼以S—Mo—S 的三明治式夹层相迭加。层内,S—Mo 间以极性键紧密相连。层间,S—S 间以分子键相连,范德华-伦敦力的键合力太弱,当受到很小的剪切应力 后即能断裂产生滑移。而这样的滑移面在每两个夹心层间就有一个。也就是在1μM厚的二硫化钼薄层内就有399 个良好的滑移面。二硫化钼与基材强烈粘附,这也是其他润滑剂,比如石墨也难比拟的。除此外,它还具备有许多良好的润滑特性。(1)温度适应范围宽:高温航空硅油能耐250℃高温,冷冻机油耐-45℃低温,这在润滑油脂中已属姣姣者。而二硫化钼在空气中应用,可在349℃下长期使用,或399℃下短期使用;在真空中,二硫化钼可在1093℃下工作;在氩气等惰性气体中,二硫化钼可在1427℃下工作。除能在高温下工作,二硫化钼还能在-184℃或更低温度下工作。(2)耐重负荷:在重负荷下油脂润滑膜会因变薄甚至消失而使润滑失效。但厚度仅为2.5μm的二硫化钼润滑膜在2800MPa、40m/s 的重负荷、高速度下润滑性能良好。即使负荷加大到3200MPa 超过了钢铁屈服强度,二硫化钼的润滑效能依旧存在。这是其他任何液体和固体润滑剂所难达到的。因此,全世界所产二硫化钼的大部份都被当作“极性添加剂”与油脂合用,比如市面常见的二硫化钼锂基脂、二硫化钼钙基脂、各种二硫化钼齿轮成膜膏等等。(3)耐真空:航天器在500km 以上高空飞行,太空的真空度已达1.3×10-2μPa以上:此时,油脂润滑剂的蒸发已超过它的极限蒸发率。这不仅会使润滑失效,而且挥发气体还会污染仪表和环境,在真空中连石墨润滑剂的润滑性能也会大幅度下降,而二硫化钼在真空条件下

纳米材料研究进展

2011年第4期甘肃石油和化工2011年12月 纳米材料研究进展 李彦菊1,高飞2 (1.河北科技大学化学与制药工程学院,河北石家庄050018; 2.中核第四研究设计工程有限公司,河北石家庄050000) 摘要:纳米材料具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。综述了纳米材料 的分类、特性以及应用领域。 关键词:纳米材料;功能材料;复合材料 1前言 纳米(nm)是一个极小的长度单位,1nm=10-9m。当物质到纳米尺度以后,大约是在1~100nm 这个范围空间,物质的性能就会发生突变,呈现出特殊性能。这种既具有不同于原来组成的原子、分子,也不同于宏观物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。纳米技术正是利用纳米粒子这些特性实现其在各行各业中的特殊应用[1,2]。纳米技术和纳米材料的科学价值和应用前景已逐步被人们所认识,纳米科学与技术被认为是21世纪的三大科技之一。目前世界各国都对纳米材料和纳米科技高度重视,纷纷在基础研究和应用研究领域对其进行前瞻性的部署,旨在占领战略制高点,提升未来10~20年在国际上的竞争地位。我国政府对纳米科技十分重视,先进的纳米产业正在蓬勃发展[3,4]。 2纳米材料的分类 以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm[5]。在纳米材料发展初期,纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。广义而言,纳米材料是指在3维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。如果按维数[6],纳米材料的基本单元可以分为3类:①0维,指在空间3维尺度均在纳米尺度,如纳米尺度颗粒,原子团簇等;②1维,指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③2维,指在3维空间中有1维在纳米尺度,如超薄膜、多层膜、超晶格等。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料[7,8]。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的[9,10]。 3纳米材料的特性[11,12] 3.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面体 收稿日期:2011-07-05 作者简介:李彦菊(1981-),女,河北廊坊人,硕士,已发表论文10余篇,其中SCI2篇。主要从事纳米材料的研究工作。8

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

金属纳米材料研究进展

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:………….

金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词: 纳米材料水热合成金属氧化物

Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ;

引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 1.1 纳米材料概述 纳米是长度的度量单位,1纳米=10-9米,1纳米大约为10个氢原子并排起来的长度,仅仅相当于一根头发丝直径的0.1%。纳米材料则是在纳米量级(lnm-100nm)内调控物质结构所制成的具有特殊功能的新材料,其三维尺寸中至少有一维小于100nm,且性质不同于一般的块体材料。 纳米材料是指在三维尺度上至少存在一维处于纳米量级或者由它们作为基本单元所构成的材料,一般将纳米材料分为零维、一维以及二维纳米材料: (1)零维纳米材料,是指在空间三维尺度上都处于纳米量级的纳米材料,如纳米球,纳米颗粒等; (2)一维纳米材料,是指在空间三维尺度上只有两维处于纳米量级,而第三维处于宏观量级的纳米材料,比如纳米棒、纳米管、纳米线/丝等; (3)二维纳米材料,是指在空间三维尺度上只有一维处于纳米量级,而其他两维处于宏观量级的纳米材料,比如纳米片,纳米薄膜等。 1.2纳米粒子基本效应的研究 纳米粒子是尺寸为1-100nm的超细粒子。纳米粒子的表面原子与总原子数之比随着粒径的减小而急剧增大,显示出强烈的体积效应(即小尺寸效应)、量子尺寸效应、表面效应和宏观量子隧道效应。 1.2.1 量子尺寸效应[1] 当粒子尺寸达到纳米量级时,金属费米能级附近的电子能级由准连续变为分立能级的现象称为量子尺寸效应。能带理论表明:金属纳米粒子所包含的原子数有限,能级间距发生分裂。当此能级间隔大于热能、磁能、静电能、静磁能、光子能量或超导态的凝聚能时,纳米粒子的磁、光、声、热、电及超导电性与宏观物体有显著的不同。 1.2.2 体积效应[2] 由于粒子尺寸变小所引起的宏观物理性质的变化称为体积效应。当纳米粒子的尺寸与德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米粒子的表面层附近原子密度减小,导致声、光、电、磁、热力学等特性呈现新的体积效应。例如:磁有序态向磁无序态、超导相向正常相的转变;光吸收显著增加;声子谱发生改变;强磁性纳米粒子(Fe-Co合金,氧化铁等)尺寸为单磁畴临界尺寸时具有很高的矫顽力;纳米粒子的熔点远远低于块状金属;等离子体共振频率随颗粒尺寸改变[3]。 1.2.3 表面效应[4] 表面效应是指纳米粒子的表面原子数与总原子数之比随着粒径减小而急剧增大后引起的性质上改变。随着粒径减小,表面原子数迅速增加,粒子的表面张力和表面能增加。原子配位不足以及高的表面能使原子表面有很高的化学活性,极不稳定,很容易与其他原子结合,这就是活性的原因。表面原子的活性引起了纳米粒子表面输运和构型的变化,也引起了表面原子自旋构象和电子能谱的变化。

纳米材料国内外研究进展

纳米材料国内外研究进展 一、前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)[1]。自20世纪80年代初, 德国科学家 Gleiter[2]提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)[3]。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。 二、国内外研究现状 1984年德国科学家Gleiter首先制成了金属纳米材料, 同年在柏林召开了第二届国际纳米粒子和等离子簇会议, 使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议, 标志着纳米科技的正式诞生;l994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。近年来,世界各国先后对纳米材料给予了极大的关注,对纳米材料的结构与性能、制备技术以及应用前景进行了广泛而深入的研究,并纷纷将其列人近期高科技开发项目。2004年度纳米科技研发预算近8.5亿美元,2005年预算已达到10亿美元,而且在美国该年度预算的优先选择领域中,纳米名列第二位。现在美国对纳米技术的投资约占世界总量的二分之一[4]。 自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料, 至今已有 30多年的历史, 但真正成为材料科学和凝聚态物理研究的前沿热点是在 80年代中期以后。因此 ,从其研究的内涵和特点来看大致可划分为三个阶段[5]。 第一阶段(1990年以前)主要是在实验室探索,用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。 第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复

纳米二硫化钼作为润滑油添加剂的润滑机理

MoS2晶体属于六方晶系,为典型三明治结构的层状化合物,每个平面层为S-Mo-S的结构,层内Mo和S以共价键结合为三方柱面体结构,层间以微弱的范德华力维系,因此,层状的MoS2容易受外界环境的影响破坏层与层之间的堆垛结构,并形成较为稳定的薄层,当MoS2用作润滑剂时,层状MoS2会转移到金属表面,缓和摩擦和磨损,这一性质使其在摩擦润滑领域有很好的应用,20世纪50年代,普通MoS2就作为固体润滑剂得到了广泛应用。 纳米材料是指至少有一维尺寸为纳米级别的材料,而当材料的尺寸缩小至纳米级别时,会凸显处诸如小尺寸效应、界面效应、量子隧道效应等性能特点。研究表明,一些纳米尺度的固体粒子加入到润滑油中,可以明显提升润滑油的性能,展现出许多优于传统添加剂的特点。近年来,将纳米MoS2用作润滑油添加剂得到了广泛关注,本文主要介绍纳米MoS2作为润滑油添加剂的润滑机理。 润滑机理 1物理吸附/沉积作用 学者们普遍认为,典型的MoS2晶体为层状结构,层与层之间以范德华力连接,在摩擦产生的剪切应力下层状结构剥离,并吸附到摩擦表面,这一过程对抗磨减摩有显著作用,如图1所示

摩擦过程中纳米MoS2的层状剥离 Wu等研究了纯MoS2和硼酸锌/MoS2纳米复合材料的摩擦学性能,研究发现当使用纯纳米MoS2作为添加剂时,有缺陷的MoS2纳米片和部分氧化的MoS2纳米片会导致润滑不良,在润滑油中加入硼酸锌/MoS2纳米复合材料时,具有极压性能的硼酸锌纳米颗粒能有效地填充MoS2纳米片的表面缺陷,并连续提供保护膜,以进一步降低摩擦系数,提高承载能力。还有学者指出,纳米MoS2可以填充摩擦表面的微裂纹区域,对磨损位置起到了修复作用 化学吸附/反应膜 纳米MoS2扩散能力强、表面能高、颗粒表面缺陷结构多,容易参加摩擦化学反应。有学者报道,在钢制摩擦副中纳米MoS2可以生成含FeS、FeSO4等产物的化学反应膜,反应膜的形成减少了摩擦基体的直接接触,降低了摩擦磨损,图2展示了纳米MoS2参加摩擦化学反应的一种典型方式。 纳米MoS2参加摩擦化学反应的一种典型方式

磁性纳米材料的研究进展

磁性纳米材料的研究进展 Progress of magnetic nanoparticles 李恒谦﹡贾雪珂李艳周康佳 (合肥工业大学,安徽宣城) (Hefei University of Technology, Xuancheng, Anhui, China) 摘要:纳米技术是近年来发展起来的一个覆盖面极广、多学科交叉的科学领域。而磁性纳米材料因其优异的磁学性能,也逐渐发挥出越来越大的作用。随着科学工作者在制备、应用领域的拓展逐渐深入,也使得纳米材料的外形、尺寸的控制日趋完善。因此,磁性纳米材料在机械、电子、化学和生物学等领域有着广泛的应用前景。文章综述磁性纳米材料的制备方法、性能及其近年来在不同领域的应用状况。 关键词:磁性;纳米;制备;性能;应用 Abstract: Nanotechnology is developed in recent years as a kind of science with wide coverage and multidisciplinary. Magnetic nanoparticles also play an increasing role due to its excellent magnetic properties.As scientists research take them deeper along the aspects of synthesis and application.the control of shape and dimensions of magnetic nanoparticles has become more mature.Therefore, magnetic nanoparticles have wide application propects in machinery, electronics, chemistry, biology, etc. In this paper,the synthesis method is discussed, the character is mentioned and the application of magnetic nanoparticles is summarized. Keywords:magnetic;nanoparticles;synthesis;character; application 1.引言 磁性纳米材料的特性不同于常规的磁性材料,其原因是关联于与磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。 纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用,其在全国更广泛的推广应用,能加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献。在纳米表征技术下,磁性纳米材料的应用日显勃勃生机。例如磁性材料与信息化、自动化、机电一体化、国防,国民经济的方方面面紧密相关,磁记录材料至今仍是信息工业的主体。 磁性纳米材料的应用可谓涉及到各个领域。在机械,电子,光学,磁学,化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生将对人类社会产生深远的影响。并有可能从根本上解决人类面临的许多问题。特别是能源,人类健康和环境保护等重大问题。下一世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性设计出顺应世纪的各种新型的材料和器件,通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品。已出现可喜的苗头,具备了形成下一世纪经济新增长点的基础。磁性纳米材料将成为纳米材料科学领域一个大放异彩的明星,在新材料,能源,信息,生物医学等各个领域发挥举足轻重的作用。 2.制备 在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。目前可选作磁性微粒的仅有少数几种,主要为金属氧化物,如三氧化二铁(Fe2O3)、MFe2O4(M为Co,Mn,Ni)、四氧化三铁(Fe3O4),二元和三元合金,如金属铁、钴、镍及其铁钴合金、镍铁合金,以及钕

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展 摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。对未来纳米MoS2在润滑材料中的应用与研究进行了展望。关键词:纳米MoS2;润滑材料;摩擦 The research progress of molybdenum disulfide nanoparticles(MoS2) in lubrication materials Abstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed. Key words: nano-MoS2; lubrication materials; friction 0 引言 二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。故MoS2粘结固体润滑膜是真空机械润滑的首选润滑材料[1]。从MoS2基固体润滑涂层的发展来看,自1946年美国的NASA路易斯宇航中心开发出第一种含MoS2的有机粘结固体润滑膜以后,20世纪60年代初期,美国就制定了航空飞行器使用的热固化二硫化钼基固体润滑涂层军用标准[2]。我国研制的耐辐射性较好的PI、PPS、EM-1、EMR[3]等二硫化钼基固体润滑涂层,因其性能独特,在航空航天领域的极端工况下及某些民用机械设备上获得了成功的应用[4,5]。近年来研究发现,纳米MoS2比微米MoS2具有更优异的润滑性能[6]。研究纳米MoS2润滑材料对航空及工业生产等具有重要的实际意义。 1 MoS2的润滑性状 如图1[7],MoS2具有层状结构,其晶体为六方晶系。MoS2的润滑作用取决于其晶体结构,层与层间的S原子结合力(范德华力)较弱,故易于滑动而表现出很好的减摩作用。另一方面,Mo原子与S原子间的离子键赋于MoS2润滑膜较

相关文档
相关文档 最新文档