文档视界 最新最全的文档下载
当前位置:文档视界 › 各种条件下多种螯合剂对钙离子和铁离子螯合值数据

各种条件下多种螯合剂对钙离子和铁离子螯合值数据

各种条件下多种螯合剂对钙离子和铁离子螯合值数据
各种条件下多种螯合剂对钙离子和铁离子螯合值数据

各种条件下多种螯合剂对钙离

子和铁离子螯合值数据准确称取一定量

样品(约0.1 g?0. 2 g),将其用少量蒸馏水溶解,

再移取10 mL氯化钙标准溶液(0.100 moL/L)于上

述溶液中,间歇震荡后,加10 ml氨-氯化铵缓冲

溶液和3?4滴铬黑T指示剂,然后用0. 050moL/L

EDTA标准溶液滴定,以溶液从酒红色变为纯蓝色

为终点。以下式计算样品的钙螯合值:

钙离子螯合值。=螯合剂所螯合的CaCO质量/所用螯合剂质量

=100.08 x (10C1-C2V)/m

式中C为CaCb标准溶液的浓度,mol/L ; G为EDTA B准溶液的浓度,

mol/L ;

V为滴定时消耗EDTA标准溶液的体积,mL m为样品质量,g。

表一,室温40C各种pH值条件下钙离子螯合值汇总:

氨基酸螯合铁作为铁添加剂的优缺点

氨基酸螯合铁作为铁添加剂的优缺点 引言 这篇文章论述了氨基酸螯合铁作为铁添加剂的价值。约三年前,世界生命科学研究组织举行了一个氨基酸螯合铁的技术研讨会。在这次会上现有的研究数据不足以对氨基酸螯合铁中铁的生物利用率作出总结;然而,一些设计优良的实验已研究了这些化合物用作食品添加剂的价值。这将下面的篇幅中一一论述。 二甘氨酸亚铁盐和三甘氨酸正铁盐的结构 二甘氨酸亚铁盐由一分子Fe2+与二分子甘氨酸结合而成。Fe2+与甘氨酸的酰基形成阴离子健,与氨基形成共价健,构成两个杂环。这个结构可以保护Fe2+不与食物中吸收铁离子的防腐剂反应,使之潜在的成为一种理想的富含防腐剂(例如植酸)食品的添加剂。理论上相对可溶性Fe2+它可以较少的引发聚脂肪酸和维生素的过氧化作用。假如亚铁鳌合物被完全吸收,重要的是要知道从这种分子里吸收的Fe2+是否一般会随着Fe2+含量的上升而减少。 三甘氨酸正铁盐作为除味剂也有商业销售,它由三个甘氨酸分子与一分子Fe3+结合而成(Albiion Laboratories, Clearfield, UT)。这篇文章的主要篇幅将用于论述二甘氨酸亚铁盐(三铁螯合物)作铁添加剂的质量问题,也会简略地讨论一下三甘氨酸盐中的Fe3+吸收。 近期氨基酸螯合物中铁离子吸收的研究进展 在这里提到的四篇研究报告的作者分别是智利的Olivares、英格兰的Fox、美国的BovellBenjamin和委内瑞拉的Layrisse。在所有的这些报告中铁离子的吸收评估都是用放射性的或稳定的铁同位素来标定氨基酸螯合物,并且测定两个星期后血红细胞中铁同位素的含量。 在Olivares的研究中,14名成年妇女对二甘氨酸亚铁盐水溶液中Fe2+的吸收试验是对比另一组相同条件的14名妇女对牛奶中Fe2+的吸收同时进行。这两组被测者都是贫铁的。由于每组测试有着各自的研究对象,那么每个人吸收的铁离子含量会由他们摄取的铁离子形态决定,所有的被测者也服用一定量的抗坏血酸亚铁盐来协调相互之间在铁离子形态上的差异。亚铁螯合物的Fe2+在牛奶中的吸收(11%)远没有在水溶液中的吸收好(46%)。同时,添加抗坏血酸可使牛奶中亚铁螯合物Fe2+的吸收从15%增长到38%。这些结果表明抑制剂和强化剂能够影响二甘氨酸盐中Fe2+的吸收。作者报道说在以前的一个实验中,当抗坏血酸加到硫酸亚铁中时Fe2+的吸收大大提高了(250%)。此实验的另一个缺点就是没有牛奶中硫酸亚铁的Fe2+吸收评估值;作者报道说在以前的一个实验中发现这个值仅有4%,这意味着牛奶中二甘氨酸亚铁盐的Fe2+吸收是硫酸亚铁的近3倍。 在英格兰学者Fox的研究中,用稳定同位素标定过的二甘氨酸亚铁盐或硫酸亚铁的食物给婴儿食用。不论这两种铁源加在蔬菜婴儿食品还是高植酸含量的谷类婴儿食品中,它们的铁离子吸收没有明显的不同;植酸使这两种添加剂的铁离子吸收降低到了相同的范围之内。重要的是,在硫酸亚铁对照实验中,每毫克铁离子添加0.83毫克抗坏血酸的硫酸亚铁比不添加的硫酸亚铁有更高的铁离子吸收。 在美国Bovell-benjamin的研究中,二甘氨酸亚铁盐与硫酸亚铁中的铁离子吸收是对比进行的,两种铁源都是加在高植酸含量的全玉米粥里给同样的10位男性服用。测试的目的是确定植酸的抑制作用是否对亚铁螯合物的铁离子吸收有促进作用,以及亚铁螯合物的Fe2+是否与硫酸亚铁的Fe2+在肠液中互换。在第一个实验中两种铁源是分别在相邻的两天喂服的,在第二个实验中则是在同一餐喂服的。每种铁源都用不同的同位素标记。如果亚铁螯合物在肠道中分解,并且它的Fe2+与硫酸亚铁的Fe2+交换,观测到的两种来源的铁离子吸收应该是一样的;这是因为自由的同位素铁离子在肠腔里混合。然而,当两种铁源分别在两餐玉米粥里食用, 二甘氨酸亚铁盐中铁离子的吸收比硫酸亚铁高出五到六倍(平均上,大约6~

螯合分散剂

; 雨水不含任何金属离子,是天然的软水.但雨水从地表渗出后,能从它流经的土壤和岩石中吸收金属离子,若雨水流经软质岩石如石垩或石灰石,它能溶解这些矿物质,当溶解更多的钙、镁等碱土金属后,水的硬度就会变大冰中含有一些会影响生产工艺的有害元素,其中钙、 镁、铁、锰的存在会产生较严重的问题. 染整加工产品的疵病大约50%是因水质不好而造成的,水中碱土金属和重金属离子会与其他物质发生各种化学反应而造成疵病,因为从前处理的退浆、煮练、漂白和染色、印花、后整理无不在水中进行,所以,要消除疵布形成的根源需从水质处理着手,而螯合剂起着重要的不可取代的作用. 1螯合剂在印染工业中的应用 1.1螯合剂在前处理工艺中的应用 1.1.1退浆工艺 钙、镁、重金属离子与浆料反应形成溶解度很小的钙、镁、重金属盐或络合物,经烧毛后在织物上形成难溶的浆膜,尤其是PVA浆,因吸附金属离子而凝胶化,降低在水中的溶解度.金属离子也不利于酶退浆,在退浆液中加入螯合剂可将金属离子络合,提高了浆膜的可溶性,也提高了浆料与退浆剂的反应性,从而较易去除织物上浆料,退浆率明显提高,选用络合常数高、络合容量大的螯合剂退浆效果较好,螯合分散剂的退浆效果不如螯合剂,但可使浆料更易膨化、脱离纤维并分散成胶体状而去除,同时可防止浆料再次沉积在织物上,因此可两者复配使用. 1.1.2煮练工艺 钙、镁离子可与煮练水解产物的高碳羧酸结合成难溶的羧酸盐,并牢固地吸附在棉纤维上,很难清除.甚至形成有阻染作用的斑,造成染色不匀.在煮练液中加入螯合剂和螯合分散剂可以解决以上问题,有利于水解产物的去除,也有利于去除果胶及棉籽壳.一般在水硬度不是很高时选用螯合分散剂,足以将水中的钙、镁离子络合,其分散性又可将金属络合产物分散在水中而不沾污到织物上去,如果水质硬度很高,则需将螯合剂和螯合分散剂复配使用.1.1.3漂白工艺 铁离子催化双氧水加速分解,造成纺织品在漂白过程中局部过度氧化,使纤维损伤甚至产生破洞,用螯合剂作为氧漂稳定剂后将铁离子络合,以控制双氧水分解速度. 螯合剂还能去除使织物泛黄的锰离子,Mn2+和Mn4+都是强氧化剂,会使织物氧化而泛黄.当水中的锰离子超过3 mg/kg时就出现织物泛黄,随着锰离子浓度增加,泛黄程度急剧上升,练漂后的杂质容易吸附在纤维上很难洗除,特别是冷轧堆工艺,因所用药剂浓度高,浴比小,杂质吸附更严重.在洗液中加入螯合分散剂可以大大提高洗涤效果.它的作用是络合水中的

EDTA-Fe及其它金属螯合物的自制法

EDTA-Fe及其它金属螯合物的自制法 现代无土栽培生产中一般均以螯合铁来作为铁源,以解决无机铁源在营养液中由于受空气中氧气的氧化或营养液pH值的升高而失效的问题。现介绍用硫酸亚铁或其它无机金属盐和乙二胺四乙酸二钠盐(EDTA-2Na)来自制EDTA-Fe或其它金属螯合物的方法。用该方法制成的螯合铁的价格较购买的固体EDTA-Fe来得低廉,而且有效性也很高。 一、0.05mol/L EDTA-Fe贮备液的配制 1、先配制0.1mol/L EDTA-2Na溶液:称取乙二胺四乙酸二钠盐 [(NaOOCH 2) 2 .NCH 2 CH 2 .N.(CH 2 COOH) 2 .2H 2 O,EDTA-2Na]37.7g于1个烧杯中,加入 600~700mL新煮沸放冷至60~70℃的温水,搅拌至完全溶解。冷却后倒入1 000mL 容量瓶中,加入新煮沸并放置冷却的水,摇均匀。此溶液即为0.1mol/L EDTA-2Na 溶液。 2、再配制0.1mol/L硫酸亚铁溶液:称取硫酸亚铁(FeSO 4.7H 2 O)27.8g于一 烧杯中,加入约600mL新煮沸放置冷却的水,搅拌至完全溶解,再倒入1 000mL 容量瓶中,加水至刻度,摇匀。此溶液即为0.1mol/L硫酸亚铁溶液。 3、将已预先配制好的0.1mol/L硫酸亚铁溶液和0.1mol/L EDTA-2Na溶液等体积混合,即可得到0.05mol/L EDTA-Fe贮备液。该溶液含铁2 800mgFe/L。生产上可按实际需要来加入。 二、其它金属螯合物的配制 按下表分别称取无机金属盐,按上述的方法分别配制0.1mol/L EDTA-2Na 和金属盐溶液,然后等体积混合,所得的溶液即为0.05mol/L金属螯合物溶液。

我国有机螯合铁及螯合剂EDDHA的研发进展

我国有机螯合铁及螯合剂EDDHA的研发进展 一、研发有机螯合态肥微肥的重要意义 现代农业的发展对肥料的施用提出了更高、更新的要求。传统农业中肥料的主要作用是提高作物产量,而随着现代农业的发展,施肥的技术和目的发生了很大的变化,施肥不仅要能增产,还要能改善作物品质、节省资源,有利于培肥地力、调节土壤结构、减轻劳动强度,更重要是要能提高肥料利用率,减少环境污染,提高经济效益,有利于绿色农业和可持续发展。 植物的生长发育主要依赖于大量元素氮、磷、钾,但对中量元素和微量元素的需求亦不可缺,在植物生长过程中所必须的七种微量元素中,缺少铁、锌就会引起主茎节间的缩短,植株矮小,叶面茎部萎缩,叶脉间出现白色条纹和坏死斑,致使幼小分蘖黄化,嫩叶完全变黄变白,从上到下出现坏死;缺锰引起的症状是早期维管束之间的正常绿色消失,幼叶茎部失绿,然后发展为清楚明显的黄绿色病症,进而变成白色纵向条纹,出现花蕾不育,叶片失绿,少光泽,干瘪等现象。 传统上对微量元素铁、锌、锰等的补充使用其无机盐形式,如硫酸锌、硫酸亚铁和硫酸锰等,但存在有很大的问题(如硫酸亚铁在自然条件下极易转化为三价铁而失去作用,硫酸锌、硫酸锰极易流失),应用范围较窄、效能低下,不利于作物吸收,而且由于土壤的自身碱性反应和氧化还原反应,使之形成难溶的氢氧化物等,降低其生物学活性,造成土壤板结,不利于环境保护和农业的可持续发展。 钛和稀土元素是近年来植物科学施肥出现的新亮点,其作用是强有力地促进植物对N、P、K和其他微量元素的吸收和运转,增进活性,增强光合作用,提高植物叶绿素和果实养分的含量,但无机钛盐性质不稳定,易在自然条件下生成不溶于水的二氧化钛,不被植物吸收利用,难以发挥其“肥料催化剂”的作用。 国内外对微量元素的使用和研究已进行了大量的工作,市面上也出现了少量的有机微量元素肥料,部分弥补了无机肥的不足,但大多数存在着生物学活性差,适应范围窄的缺点,如有机酸铁、乳酸锌,葡萄糖酸锌等。近来还有许多对有机螯合肥的研究,主要是螯合剂的选择应用,市面上以EDTA螯合态微肥为主,还有DTPA螯合肥,HEDTA螯合肥,EDDHA螯合肥等系列产品。不同的螯合剂各有不同的特点,在不同作物和土壤中应用。 施肥技术主要根据肥料形态和剂型,目前主要有固体和液体两种形态,施用以根施和喷雾两种,存在着固体肥料溶解差或溶解慢,沤肥底部有沉淀物,使用起来产生诸多不便,不仅常堵塞喷头,更重要是利用效率低,时效短,液滴易随风和重力自然滑落且被氧化而不利吸收。 目前国内微肥技术的发展水平极低,市场急需生物活性强,适用范围广,符合绿色农业和可持续发展的微肥产品及新的剂型以改变传统施用技术。开发新型螯合剂和系列螯合态肥料,并加工成新剂型以提高微量元素的使用效率,降低盲目施肥的环境污染和浪费,减轻劳动强度,降低成本,有利于绿色农业和可持续发展。 二、研发高质量微肥的必要性和市场需求分析 1.技术攻关的必要性 目前农作物施微量元素仍以无机盐为主,不仅生物学活性低,而且大量浪费造成环境污染,而少量螯合态肥以EDTA为主的有机肥,存在着生物学活性低、价格昂贵和适用范围窄的缺陷,EDDHA肥和目前使用肥料相比,有着以下优点:对金属离子螯合力强;适用范围广,在酸性至碱性PH3~10范围内均可使用;生物学活性高,使用量少;环境污染小。 目前只有荷兰阿克苏诺贝尔化学公司推出该产品Fe-EDDHA肥,在我国经大面积大田试验,取得了极佳的效果,但价格极为昂贵,6%的Fe-EDDHA市场价格为20万/吨,极大的阻碍了本产品的应用。因此,开发Me-EDDHA系列肥成为必然。 2.市场需求分析 我国是个农业大国,近年来,由于高产作物的应用,微肥投入量的不足,北方石灰性土壤自身碱性反应及

各种条件下多种螯合剂对钙离子和铁离子螯合值数据

各种条件下多种螯合剂对钙离子和铁离子螯合值数据

钙离子螯合值测定------铬黑T指示剂络合滴定法 准确称取一定量样品(约0.1 g~0.2 g),将其用少量蒸馏水溶解,再移取10 mL氯化钙标准溶液(0.100 moL/L)于上述溶液中,间歇震荡后,加10 ml氨-氯化铵缓冲溶液和3~4滴铬黑T指示剂,然后用0.050moL/L EDTA标准溶液滴定,以溶液从酒红色变为纯蓝色为终点。以下式计算样品的钙螯合值: 钙离子螯合值C=螯合剂所螯合的CaCO3质量/所用螯合剂质量=100.08×(10C1-C2V)/m 式中C1为CaCl2标准溶液的浓度,mol/L;C2为EDTA标准溶液的浓度,mol/L; V为滴定时消耗EDTA标准溶液的体积,mL;m为样品质量,g。 表一,室温40℃各种pH值条件下钙离子螯合值汇总: 名称 (测试样品均折算成100%有效含量)测试条 件40℃ PH=7 测试条 件40℃ PH=11 测试条 件40℃ PH=13 氨基三甲叉膦酸 ATMP 910 mg/g 670 mg/g 320 mg/g 乙二胺四甲叉膦酸钠 EDTMPS 638 mg/g 550 mg/g 280 mg/g 羟基乙叉二膦酸 HEDP 833 mg/g 610 mg/g 197 mg/g 二乙烯三胺五甲叉膦酸 DTPMPA 850 mg/g 660 mg/g 155 mg/g 聚丙烯酸钠PAAS 350 mg/g 370 mg/g 370 mg/g 乙二胺二邻羟苯基大乙酸钠 EDDHANa 845 mg/g 700 mg/g 218 mg/g

三聚磷酸钠275 mg/g 275 mg/g 288 mg/g 焦磷酸钠188 mg/g 190 mg/g 192 mg/g 磷酸三钠160 mg/g 155 mg/g 147 mg/g 柠檬酸钠330 mg/g 280 mg/g 190 mg/g 葡萄糖酸钠280 mg/g 290 mg/g 285 mg/g 酒石酸钾钠420 mg/g 330 mg/g 280 mg/g 2-膦酸丁烷-1,2,4-三羧酸 PBTCA 680 mg/g 320 mg/g 180 mg/g 2-羟基膦酸基乙酸 HPAA 600 mg/g 120 mg/g 90 mg/g 己二胺四甲叉膦酸 HDTMPA 790 mg/g 90 mg/g 33 mg/g 630 mg/g 470 mg/g 325 mg/g 双1,6-亚己基三胺五甲叉膦酸 BHMTPMPA 840 mg/g 305 mg/g 二乙酰胺四乙酸钠EDTTINa 1150 mg/g 聚天冬氨酸钠 PASP 455 mg/g 280 mg/g 106 mg/g 聚环氧琥珀酸钠 PESA 390 mg/g 330 mg/g 285 mg/g 马来酸-丙烯酸共聚物 MA-AA 820 mg/g 610 mg/g 488 mg/g 二乙烯三胺五乙酸五钠DTPA5Na 420 mg/g 180 mg/g 85 mg/g 次氮基三乙酸NTA 480 mg/g 330 mg/g 260 mg/g 亚氨基二乙酸IDA 460 mg/g 190 mg/g 70 mg/g 硅酸钠模数=1 270 mg/g 280 mg/g 320 mg/g 硅酸钠模数=3 380 mg/g 335 mg/g 360 mg/g

螯合剂种类总结及其在不同pH下的对金属离子的螯合能力比较

螯合剂的种类及其在不同pH值条件下螯合剂的螯合常数 一、螯合剂与螯合物 具有可供配位孤电子对的分子、原子或离子的化合物能够与具有空轨道的金属离子形成配位键,该化合物称为络合物,如能与配位金属离子形成环状结构的化合物称为螯合剂,形成的络合物称为螯合物。螯合剂中至少含有一对孤电子对,而金属离子必须有空的价电子轨道,孤电子对填充入金属离子空轨道,电子对属2个原子共享,形成配位键,中心金属离子空轨道杂化。不同的提供孤电子对的配位体分别与不同金属离子形成正四面体、正六面体、正八面体的螯合物。 1.类型 1.1无机类螯合剂 聚磷酸盐螯合剂: 主要是三聚磷酸钠(STPP)、六偏磷酸钠、焦磷酸钠为主,含磷酸基空间配位基团。 特点:高温下会发生水解而分解,使螯合能力减弱或丧失。而且其螯合能力受pH值影响较大,一般只适合在碱性条件下作螯合剂。 1.2有机类螯合剂 形态分析表明螯合剂提取的重金属主要来源于可交换态或酸溶态、还原态和氧化态。1.21羧酸型 (1)氨基羧酸类:含羧基和胺(氨基)配位基团, 如乙二胺四乙酸(EDTA),氨基三乙酸(又称次氮基三乙酸NTA),二亚乙基三胺五乙酸(DTPA)及其盐等。如:EDTA的4个酸和2个胺(—NRR′)的部分都可作为配体的齿,两个氮原子和四个氧原子可提供形成配位键的电子对。 特点:络合能力强,络合稳定常数大,耐碱性好,但分散力弱且不易被生物降解。(2)羟基羧酸类含羟基、羧基配位基团 这类羧酸主要是柠檬酸(CA)、酒石酸(TA)和葡萄糖酸(GA)。 特点:可生物降解,在酸性条件下羟基与羧基不会离解为氧负离子,因而络合能力很弱,不适宜在酸性介质中应用。 (3)羟氨基羧酸类 这类酸用作螯合剂的典型代表是羟乙基乙二胺三乙酸(HEDTA)和二羟乙基甘氨酸

铁螯合剂在地中海贫血治疗中的临床应用

铁螯合剂在地中海贫血治疗中的应用 学员旅十五营二连一排二班 地中海贫血简称“地贫”又名海洋性贫血,是一组遗传性溶血性贫血疾病。 1925年Thomas Cooley和Pear Lee首次描述这种发生在意大利儿童的严重贫血,由于早期的病例均来自地中海地区,故称为地中海贫血或海洋性贫血。以后发现这种疾病不仅发生在地中海地区,在美国黑人、东南亚、印度次大陆、以及我国西南、华南地区也有较高的发病率。在我国,地中海贫血已经成为我国长江以南各省发病率最高、影响最大的遗传病之一,尤以广东、广西、贵州、四川、湖北、湖南、福建、云南、海南等省发病为高。 地中海贫血是一种常染色体遗传病,由于珠蛋白基因缺失或突变,导致珠蛋白肽链生成障碍,引起一种或几种珠蛋白肽链生物合成不足或完全缺乏,从而引起的一组溶血性贫血[1]。根据受累珠蛋白基因不同,地中海贫血可分为α型、β型、αβ型和δ型4种,其中以β和α地中海贫血较为常见。[2] 临床治疗以定期输血为常用疗法,但由于人体缺乏有效的排铁途径,长期输血导致的铁累积,加上贫血状态促进的胃肠道铁吸收,使得机体处于铁过载状态,进而引起慢性心肝内分泌系统损害等严重并发症。故应给予铁螯合剂祛铁治疗,铁螯合剂与体内铁离子结合可有效提高铁的排泄,从而降低体内铁水平并减少其在体内各器官的病理性沉积。目前临床上的铁螯合剂有去铁胺(Defetoxamine,DFO)、去铁酮(Defriprone,DFP)和地拉罗斯。 1. 去铁胺 DFO作为首个以地中海贫血为主要适应症的铁螯合剂,在1963 年率先应用于临床,同时也开创了铁螯合剂在医疗领域的研究热潮。DFO是由链球菌发酵液中提取的天然产物,对铁离子有很强的亲和性和选择性,它通过分子中的羟肟酸基团与游离铁或蛋白结合铁( 不包括转铁蛋白、血红蛋白、肌红蛋白等) 结合,以六齿螯合的方式构成配比为1:1的螯合物,并经尿液和粪便排出体外。 但是DFO对细胞膜的穿透性差,对心肌细胞内沉积的铁质排除效率较低,由此引发的心力衰竭依旧是地贫患者最常见的死因。常规剂量下使用DFO 较少发生不良反应,但高剂量下会伴有听力障碍、白内障、骨骼发育异常等不良反应。且肠胃不易吸收DFO,其在血浆中的半衰期仅为0.4小时,因此需8-12小时持续给药,患者依从性差。[3] 2. 去铁酮 由于DFO 治疗费用高昂,患者依从性差,且长期高剂量使用会带来严重不良反应,促使人们寻找一种具有口服活性的铁螯合剂,并在1982年找到了一种新的铁螯合剂----去铁酮。这种去铁剂仅需每日口服三次就可达到良好的去铁效果。DFP 有电中性、亲脂性以及小分子量等特点,易在胃肠道吸收,同时能够穿透组织细胞膜,以3:1的形式螯合细胞内铁,并在口服0.2-2小时内达到最大血浆浓度。虽然对铁的亲和性不如DFO,但在临床综合效果

螯合剂的概念

双功能螯合剂(bifunctional chelator,BFC)既有很强的金属 螯合基团,又能与生物分子以共价键的形式连接。生物分子 接上BFC 后,既能与金属牢固结合,又可以保证引入的金属 元素远离生物分子以保证其生物活性不受损失[1 - 3]。BFC 包 含3 部分:螯合单元,结合基团和配体构架。理想的BFC 应 该能够在BFC-生物分子低浓度条件下,与放射性核素牢固结 合,并且有很高的标记速度[2]。 N2S2 类BFC 由于其结构、性质的特殊性(骨架结构体积 小;易于形成稳定络合物;与生物分子连接时,较好地保持 了其原有的生化性质),成为BFC 领域研究的重点[4 - 21]。其 中,单胺单酰胺二硫醇(monoamino-monoamide dithiol,MAMA)等 类联接剂近年来备受关注,并已经被广泛应用于联接受体配 基、多肽、蛋白质、单克隆抗体等[13 - 21];但在合成路线以及改 善其稳定性方面,尚待进一步探索[12 - 16],以符合现今环境及 绿色化学发展的要求。 本文以半胱胺盐酸盐为起始原料,将其巯基用对甲氧苄 基保护后与溴乙酰溴经“one-pot reaction”合成MAMA 联接剂 前体,N-(2"-对甲氧苄巯乙基)-2-[(2'-对甲氧苄巯乙基)氨基] 乙酰胺,并将其制成更稳定且易于保存的盐酸盐。 螯合剂,是一类能与金属离子形成多配位络合物的交联功能有机材料,其组成是由一个简单正离子和几个中性分子或离子结合而成的复杂离子,称为配离子(又称络离子),含有配离子的化合物叫配位化合物[18]。它能与重金属离子强力螯合,形成絮凝,达到去除各种重金属目的。与传统去除水中重金属污染的方法相比,螯合剂具有可处理低重金属离子浓度废水、可同时去除多种重金属离子、可去除胶质重金属、不受共存盐类的影响、可在较宽pH范围内反应等许多优点[19]。

强碱条件下如何滴定螯合剂的螯合能力

第13卷第21期 2009 年12月香港理工大學學報 Vol.13 No.21 Dec 2009 各種螯合劑的螯合值對照表 紡織與成衣研發中心 黃偉雄彙整 鈣離子螯合值測定------鉻黑T指示劑絡合滴定法 準確稱取一定量樣品(約0.1 g~0.2 g),將其用少量蒸餾水溶解,再移取10 mL氯化鈣標準溶液(0.100 moL/L)於上述溶液中,間歇震盪後,加10 ml氨-氯化銨緩衝溶液和3~4滴鉻黑T指示劑,然後用0.050moL/L EDTA 標準溶液滴定,以溶液從酒紅色變為純藍色為終點。以下式計算樣品的鈣螯合值: 鈣離子螯合值C=螯合劑所螯合的CaCO3品質/所用螯合劑品質=100.08×(10C1-C2V)/m 式中C1為CaCl2標準溶液的濃度,mol/L;C2為EDTA標準溶液的濃度,mol/L; V為滴定時消耗EDTA標準溶液的體積,mL;m為樣品品質,g。 表一,室溫40℃各種pH值條件下鈣離子螯合值: 名稱 (測試樣品均折算成100%有效含量)測試條件40℃ PH=7 測試條件40℃ PH=11 測試條件40℃ PH=13 氨基三甲叉膦酸ATMP 910 mg/g 670 mg/g 320 mg/g 乙二胺四甲叉膦酸鈉EDTMPS 638 mg/g 550 mg/g 280 mg/g 羥基乙叉二膦酸HEDP 833 mg/g 610 mg/g 197 mg/g 二乙烯三胺五甲叉膦酸DTPMPA 850 mg/g 660 mg/g 155 mg/g 聚丙烯酸鈉PAAS 350 mg/g 370 mg/g 370 mg/g 乙二胺二鄰羥苯基乙酸鈉EDDHA-Na 845 mg/g 700 mg/g 318 mg/g 三聚磷酸鈉275 mg/g 275 mg/g 288 mg/g 焦磷酸鈉188 mg/g 190 mg/g 192 mg/g 磷酸三鈉160 mg/g 155 mg/g 147 mg/g 檸檬酸鈉330 mg/g 280 mg/g 190 mg/g 葡萄糖酸鈉280 mg/g 290 mg/g 285 mg/g 酒石酸鉀鈉420 mg/g 330 mg/g 280 mg/g 2-膦酸丁烷-1,2,4-三羧酸PBTCA 680 mg/g 320 mg/g 180 mg/g 2-羥基膦酸基乙酸HPAA 600 mg/g 120 mg/g 90 mg/g 己二胺四甲叉膦酸HDTMPA 790 mg/g 90 mg/g 33 mg/g 雙1,6-亞己基三胺五甲叉膦酸BHMTPMPA 630 mg/g 470 mg/g 325 mg/g 二乙醯胺四乙酸鈉EDTTI-Na 1150 mg/g 840 mg/g 305 mg/g 聚天冬氨酸鈉PASP 455 mg/g 280 mg/g 106 mg/g 聚環氧琥珀酸鈉PESA 390 mg/g 330 mg/g 285 mg/g 馬來酸-丙烯酸共聚物MA-AA 620 mg/g 410 mg/g 288 mg/g

EDTA-2N--螯合剂

聚丙烯酰胺概论 聚丙烯酰胺(cpolyacrylamids)简称PAM,是一种线性高分子聚合物,是水溶性高分子化合物中应用最为广泛的品种之一,聚丙烯酰胺和它的衍生物可以作为有效的絮凝剂,增稠剂,纸张增强剂,以及液体的减阻剂等,广泛应用于水处理、造纸、石油、煤炭、矿冶、地质、轻纺、建筑等工业部门。 一、产品规格及主要技术指标技术指标名称 PAM阴离子 PAM非离子 PAM阳离子 PAM复合离子 外观白色或微黄色粉末 粒径,mm ∠2 固含量(%)≥88 溶速(min)≤1.5 不溶物(%)≤2 分子量(万) 500—2400 300—600 300—800 800—1500 水解度(%) 13—30 5—15 离子度5—50 10—20 注:根据用户要求,分子量控制在表格所定指标的范围内二、PAM物理性质及使用特征 1、物理性质:分子式(CH2CHCONH2)r 结构式(CH2—CHO)n C O NH2 PAM是一种线性高分子聚合物,它易溶于水。几乎不溶于苯、乙醇、酯类、丙酮等一般有机溶剂,其水溶液几近透明的粘稠液体,属于非危险品,无毒、无腐蚀性。固体PAM有吸湿性,吸湿性随离子度的增加而增加,PAM热稳定性好,加热到100℃稳定性良好但在150℃以上时易分解产生氮气,在分子间发生亚胺化作用而不溶于水,密度(克)毫升23℃ 1.302,玻璃化温度153℃,PAM在应力作用下表现出非牛顿流动性。 2、使用特性 1)絮凝性:PAM能是悬浮物质通过电中和,架桥吸附作用,其絮凝作用。 2)粘合性:能通过机械的、物理的、化学的作用,其粘合作用。 3)降阻性:PAM能有效地降低流体的摩擦阻力,水中加入微量PAM就能减阻50—80%。 4)增稠性:PAM在中性和酸性条件下均有增稠作用,当PH值在10以上PAM易水解,呈半网状结构时,增稠将明显。 3、PAM的作用原理简介 1)絮凝作用原理简介: PAM用于絮凝时,与被絮凝物种类表面性质,特别是动电位,粘度、浊度用悬浮液的PH值有关,颗粒表面的动电位,是颗粒阻聚的原因加入表面电荷相反的PAM,能迅速使动电位降低而絮凝。 2)吸附架桥: PAM分子量固定在不同的表面上,各颗粒之间形成聚合物的桥,使颗粒形成聚集体而沉降。 3)表面吸附: PAM分子上的极性基团颗粒的各种吸附。 4)增强作用: PAM分子链与分散相通过各种机械、物理、化学等作用,将分散相牵连在一起,形成网状,从而起增强作用。 三、PAM的合成及工艺 PAM:由丙烯腈与水灾骨架铜催化剂作用下直接反应生成聚丙烯酰胺再经离子交换聚合干燥、磨粉等工序即得成品。工艺简介如下: 1、催化水合CH2=CHCN+H2O骨架铜催化剂CH2=CHCONH2 湿度 聚合nCH2=CHCONH2 引发剂 (CH2CHCONH2) 四、聚丙烯酰胺主要用途 聚丙烯酰胺(PAM)分子量高,水溶性好,可调节分子量,并可以引进各种离子基团以得到

螯合铁肥原料

七微螯合铁是一种有机螯合铁肥,含有95.8的全水溶速溶氨基酸铁,纯铁元素含量19以上。它比EDDHA铁肥,EDTA铁肥含纯铁高3.5倍,性价比高!它是中国市场含铁高的有机螯合铁肥。 七微螯合铁用14种氨基酸做螯合剂,不仅含铁元素,同时含氨基酸营养物质,植物吸收率高,效果明显;它可以有效预防和矫治缺铁引起的黄化病,早衰落叶。具有适用土壤范围广,安全效果好等特点。特别是在花卉黄化,柑橘,桃树黄化等黄化治理方面,七微螯合铁具有其它鉄肥不具有的效果。从前,对作物铁元素的补充使用其无机盐形式较多,如硫酸亚铁,但是存在有很大的弊端(如硫酸亚铁在自然条件下极易转化为三价铁而失去作用),应用范围较窄、效能低下,作物吸收率低,而且由于土壤的自身碱性反应和氧化还原反应,使之形成难溶的氢氧化物等,降低其生物学活性,不但起不到补充微量元素的作用,而且还会造成土壤板结,不利于环境保护和农业的可持续发展。后来,应用螯合的EDHA铁,EDDHA铁,虽然比硫酸亚铁有很大进步,但是,铁含量低,仅有4.8-6,效果还是不太理想。加之EDTA和EDDHA都是无机螯合剂,作物吸收不好,农民对效果不太满意。七微螯合铁由于价位比较高,在农业生产中使用还不普及,随着市场逐步接受,相信农民朋友会越来越多的使用这种的铁肥。 原料商:以色列POTASSIUM LAKE公司 产品规格:规格:25公斤/袋(内塑外牛纸袋) 使用方法:1. 兑水1000-1500倍灌根或叶面喷施。 2.生产其它肥料时按5-10比例复配。 烟台七微是集研发、生产、销售为一体的高技术创新性企业。公司自2004年成立以来,一直致力于

新型肥料技术及产品、肥料增效剂、农药增效剂开发及应用。七微公司拥有3名博士后,5名硕士组成的研发团队,与中国农业大学、中国农科院等院校科研机构及多个跨国公司建立有良好合作关系。目前已经为1500余家农药制造商、肥料制造商、规模销售公司等组织提供原料供应及专业技术服务。产品销售遍及世界近30个国家和地区。

英文铁离子螯合剂XT-541XT-542说明

Ferric Ions Chelating Agent XT-541 Properties: XT-541 is an organic complex with special function to ferric ions. It can be used as chelating agent in boiling-out and bleaching process, leveling and dispersing agent for reactive dye, direct dye and VAT dye. XT-541 does not contain phosphorus, without pollution to the environment. Specification: Usage: 1. Scouring agent XT-541 can disperse dirts and impurities, chelate and disperse Cu, Fe ions in scouring liquid. It can help removing yellow spot and prevent the fabrics become yellowing, thus improving their vividness. Recommended dosage is 1-6g/L. 2. Bleaching agent When added into bleaching liquor, XT-541 have a good chelating ability to Fe,Cu, and prevent fabrics from strength decline and small holes, improve whiteness obviously. XT-541 can block off metal ions, indirectly control decomposition speed of hydrogen peroxide. Recommended dosage is 3-6g/L 3. When soaping, XT-541 can prevent stains and white defiled. Recommended dosage is 1-2g/L Package and Storage: Normally In 25kg net plastic woven bag. Storage for twelve months in room shady and dry place. Safety and Protection It is neutral to faintly acid, flash with water when contacting with skin.

螯合剂

螯合剂又名络合剂,是一种能和重金属离子发生螯合作用形成稳定的水溶性络合物,而使重金属离子钝化的有机或无机化合物。这种化合物的分子中含有能与重金属离子发生配位结合的电子给予体,故有软化、去垢、防锈、稳定、增效等一系列特殊作用。印染工艺中常见的螯合剂有以下几种:? (1)磷酸盐类:主要有三聚磷酸钠、多聚磷酸钠、六偏磷酸钠、焦磷酸钠等。此类螯合剂因有离子交换能力,是最早用于印染工业的水质软化剂,焦磷酸钠可与三价铁离子形成络合离子,故可用于双氧水稳定剂中。但无机磷酸盐在一些地区已被禁用。 (2)氨基羧酸类:主要有乙二胺四乙酸’(ED—TA),即软水剂B;氮川三乙酸(NTA),即软水剂A。此外还有二乙撑三胺五乙酸(DTPA)、N一羟乙基乙胺三乙酸(HEDTA)、乙二醇一双一(B一氨基乙醚)一N,N一四乙酸(EGTA)等。氨基羧酸型螯合剂的配位体是氮原子和带负电荷的羧酸根离子(COO—)。其配位体数目越多,与金属离子的络合作用越强。其中DTPA和大多数金属离子络合作用最强,其次是EDTA和HEDTA,NTA最差。其中DTPA作为双氧水稳定剂效果最好。但NTA、EDTA、DTPA 等因螯合金属后生物降解性极差,近年来欧洲一些国家已严禁使用。 (3)有机膦酸型类:主要有氨基三亚甲基膦酸(ATMP)、1一羟乙叉一1,1一二膦酸(HEDP)、乙二胺四甲叉膦酸(EDTMP)、二乙烯三胺五甲叉膦酸(DTPMP)、氨基三甲叉膦酸(ATP)等。此类螯合剂具有使污垢分散、悬浮的能力,在高温下不易水解,对防止产生锅垢效果优良,亦可作锅炉清洗剂。DTPMP是一种比DTPA效果更好的双氧水稳定剂,DTPA只是在有硅酸钠存在下,对Ca、Mg盐有较好稳定作用,而DTPMP在不加硅酸钠条件下,也能对双氧水起稳定作用。这类螯合剂既有较好的螯合、除垢作用,又易于被生物降解,目前使用较多。 (4)羟基羧酸类:主要有葡萄糖酸、聚丙烯酸(PAA)、马来酸(MAO)等。此类螯合剂的软水能力,一般取决于聚合物的链段结构和羧基数目及取代基,它们不仅有螯合能力,还有分散能力,此类螯合剂的最重要性质是生物降解性好,符合环境保护。 由上述螯合剂的种类可知,软水剂A和软水剂B是属于氨基羧酸型螯合剂中的品种之一,因此,这类螯合剂可以取代软水剂。但软水剂中.如六偏磷酸钠等和软水剂A和软水剂B,它们的性质与软水作用还有一定区别。六偏磷酸钠等软水剂的软水作用,只是离子交换。软水剂A和B能与金属离子形成络合物。软水剂A只是遇硬水中含有的钙、镁离子结合成可溶于水的络合物,从而达到软水的效果,而软水剂B能与许多金属离子(碱金属除外)形成稳定的络合物,通常能与二价钙、镁离子形成

【开题报告】铁对微生物生长的影响及螯合剂抑菌机理研究

开题报告 食品质量与安全 铁对微生物生长的影响及螯合剂抑菌机理研究 一、选题的背景与意义 由细菌、病毒和霉菌等导致的微生物危害,使人们长期以来采用各种方法与各类微生物的危害进行斗争,抗菌一直是人类所关注的课题。目前,已研制及应用的抗菌剂可归为:天然抗菌剂、有机抗菌剂及无机抗菌剂。当有些致病菌产生抗药性后,寻找新型抗菌剂及检验它们的抗菌效果就成了非常急迫的问题。铁是微生物最重要的营养之一,它是电子传递链中铁硫蛋白的氧化还原中心,它参与核苷酸前体的还原反应,是必不可少的营养因子。通过螯合作用,去除微生物生长环境中的铁以达到抗菌的效果,作用温和,可作为一种新型的抗菌剂应用于食品中。 二、研究的基本内容与拟解决的主要问题: 1、基本内容 (1) 分光光度法测定铁含量; (2) 确定基本培养基成分; (3) 确定细菌生长最适铁浓度; (4) 抑菌效果研究(①螯合能力研究;②抑菌实验); (5) 抑菌作用机理研究 2、拟解决的主要问题 (1) 基础培养基最佳成分的确定 (2) 最适铁浓度的确定 (3) 铁测定方法的选择 (4) 总菌数测定方法的选择 三、研究的方法与技术路线: 1、研究方法 (1) 文献研究法 (2) 比色法 (3) 原子吸收法 (4) 稀释倒平板法 2、技术路线

四、研究的总体安排与进度: 2010年10月~11月查找相关文献资料,撰写开题报告和综述 2010年12月开题论证会,实验设计,预实验 2011年1月~2011年3月正式实验,进行外文翻译 2011年4月28日前撰写论文并完成修改 2011年5月4日~11日论文答辩 五、主要参考文献: [1] 陆德源主编.医学微生物学[M].5版.北京:人民卫生出版社,2001:29~30 [2] Fishbane S. Review of issues relating to iron and infection[J].Am J Kidney Dis,1999,34(4 suppl 2):S47-S52. [3] 张培茵,阎喜霜,姜淑梅等.铁、锌对啤酒酵母生物特性的影响研究[J].食品工业科技[J],1996,(1):13~15. [4] Berlutti F,Morea C,Battistoni A,etal.Iron availability influences aggregation,biofilm,adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia[J].Int J Irnmunopathol Pharmacol,2005,(18):661~670. [5]Banin E,Brady KM,Greenberg EP.Chelator-induced dispersaland killing of Pseudomonas aeruginosa cells in a biofilm[J].Appl Environ Microbiol,2006, (72):2064~2069. [6] Singh PK,Parsek MR,Greenberg EP,et a1.A component of innate immunity prevents bacterial biofdm development[J].Nature,2002:417:552—555. [7] Musk DJ,Banko DA,Hergenrother PJ.Iron salts perturb biolilm formation and disrupt

EDTA-Fe及其它金属螯合物的自制法汇总

EDTA-Fe及其它金属螯合物的自制法 1、按配方依次称取氯化钙、硫酸镁、亚铁、锰、铜、锌,加水溶解,用硫酸调PH至澄清透明,称之为营养液。 2、称取EDTA、柠檬酸、加水溶解,称为螯合剂 3、40度下,PH6下,1、2混合30分钟,搅拌 4、称取硼酸、钼酸铵、尿素、二氢钾、腐植酸钾、氨基酸、混合 5、胺鲜酯1克兑水50千克,即20PPM 6、表面活性剂 现代无土栽培生产中一般均以螯合铁来作为铁源,以解决无机铁源在营养液中由于受空气中氧气的氧化或营养液pH值的升高而失效的问题。现介绍用硫酸亚铁或其它无机金属盐和乙二胺四乙酸二钠盐(EDTA-2Na)来自制EDTA-Fe或其它金属螯合物的方法。用该方法制成的螯合铁的价格较购买的固体EDTA-Fe来得低廉,而且有效性也很高。 一、0.05mol/L EDTA-Fe贮备液的配制 1、先配制0.1mol/L EDTA-2Na溶液:称取乙二胺四乙酸二钠盐 [(NaOOCH 2) 2 .NCH 2 CH 2 .N.(CH 2 COOH) 2 .2H 2 O,EDTA-2Na]37.7g于1个烧杯中,加入 600~700mL新煮沸放冷至60~70℃的温水,搅拌至完全溶解。冷却后倒入1 000mL 容量瓶中,加入新煮沸并放置冷却的水,摇均匀。此溶液即为0.1mol/L EDTA-2Na 溶液。 2、再配制0.1mol/L硫酸亚铁溶液:称取硫酸亚铁(FeSO 4.7H 2 O)27.8g于 一烧杯中,加入约600mL新煮沸放置冷却的水,搅拌至完全溶解,再倒入1 000mL 容量瓶中,加水至刻度,摇匀。此溶液即为0.1mol/L硫酸亚铁溶液。 3、将已预先配制好的0.1mol/L硫酸亚铁溶液和0.1mol/L EDTA-2Na溶液等体积混合,即可得到0.05mol/L EDTA-Fe贮备液。该溶液含铁2 800mgFe/L。生产上可按实际需要来加入。

相关文档
相关文档 最新文档