文档视界 最新最全的文档下载
当前位置:文档视界 › 聚类分析学习总结

聚类分析学习总结

聚类分析学习总结
聚类分析学习总结

聚类分析学习体会聚类分析是多元统计分析中研究“物以类聚”的一种方法,用于对事物的类别尚不清楚,甚至在事前连总共有几类都不能确定的情况下进行分类的场合。

聚类分析主要目的是研究事物的分类,而不同于判别分析。在判别分析中必须事先知道各种判别的类型和数目,并且要有一批来自各判别类型的样本,才能建立判别函数来对未知属性的样本进行判别和归类。若对一批样品划分的类型和分类的数目事先并不知道,这时对数据的分类就需借助聚类分析方法来解决。

聚类分析把分类对象按一定规则分成组或类,这些组或类不是事先给定的而是根据数据特征而定的。在一个给定的类里的这些对象在某种意义上倾向于彼此相似,而在不同类里的这些对象倾向于不相似。

1.聚类统计量

在对样品(变量)进行分类时,样品(变量)之间的相似性是怎么度量?通常有三种相似性度量——距离、匹配系数和相似系数。距离和匹配系数常用来度量样品之间的相似性,相似系数常用来变量之间的相似性。样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。通常变量按取值的不同可以分为:1.定量变量:变量用连续的量来表示,例如长度、重量、速度、人口等,又称为间隔尺度变量。

2.定性变量:并不是数量上有变化,而只是性质上有差异。定性变量还可以再分为:

⑴有序尺度变量:变量不是用明确的数量表示,而是用等级表示,例如文化程度

分为文盲、小学、中学、大学等。

⑵名义尺度变量:变量用一些类表示,这些类之间既无等级关系,也无数量关系,

例如职业分为工人、教师、干部、农民等。

下面主要讨论具有定量变量的样品聚类分析,描述样品间的亲疏程度最常用的是距离。

.距离

1. 数据矩阵

x为第i个样品的第j个指标,数据矩阵如下表

ij

表1 数据矩阵

在上表中,每个样品有p 个变量,故每个样品都可以看成是p R 中的一个点,n 个样品就是p R 中的n 个点。在p R 中需定义某种距离,第i 个样品与第j 个样品之间的距离记为ij d ,在聚类过程中,相距较近的点倾向于归为一类,相距较远的点应归属不同的类。所定义的距离ij d 一般应满足如下四个条件:

⑴0≥ij d ,对一切j i ,;且0),(=j i x x d 当且仅当j i x x =

⑵ji ij d d =,对一切j i ,;

⑶kj ik ij d d d +≤,对一切k j i ,,

2.定量变量的常用的距离

对于定量变量,常用的距离有以下几种:

⑴闵科夫斯基(Minkowski )距离

这里q 为某一自然数。闵科夫斯基距离有以下三种特殊形式:

1)当1=q 时,∑=-=p

k jk ik ij x x d 1)1(称为绝对值距离,常被形象地称为“城市街区”

距离;

2) 当2=q 时,2

112][)2(∑=-=p k jk ik ij x x d ,称为欧氏距离,这是聚类分析中最常用的

距离;

3)当∞=q 时,jk ik p

k ij x x d -=∞≤≤1m ax )(,称为切比雪夫距离。 )(q d ij 在实际中用得很多,但是有一些缺点,一方面距离的大小与各指标的观测单位有关,另一方面它没有考虑指标间的相关性。

当各指标的测量值相差悬殊时,应先对数据标准化,然后用标准化后的数据计算距离;最常用的标准化处理是:

令 j j ij ij s x x x -=*

其中∑==n i ij j x n x 11为第j 个变量的样本均值,∑=--=n

i j ij j x x n s 1

2)(11为第j 个变量的样本方差。

⑵兰氏(Lance 和Williams )距离

当0>ij x (;,,2,1n i Λ= p j ,,2,1Λ=)时,第i 个样品与第j 个样品间的兰氏距离为

这个距离与各变量的单位无关,但没有考虑指标间的相关性。

⑶马氏距离(Mahalanobis )距离

第i 个样品与第j 个样品间的马氏距离为

其中)',,,(21ip i i i x x x x Λ=,),,(21jp j j j x x x x Λ=,S 为样品协方差矩阵。

使用马氏距离的好处是考虑到了各变量之间的相关性,并且与各变量的单位无关;但马氏距离有一个很大的缺陷,就是S 难确定。由于聚类是一个动态过程,故S 随聚类过程而变化,那么同样的两个样品之间的距离可能也会随之而变化,这不符和聚类的基本要求。因此,在实际聚类分析中,马氏距离不是理想的距离。

⑷斜交空间距离

第i 个样品与第j 个样品间的斜交空间距离定义为

其中kl r 是变量k x 与变量l x 间的相关系数。当p 个变量互不相关时,p d d ij ij )2(=*,即斜

交空间距离退化为欧氏距离(除相差一个常数倍外)。

以上几种距离的定义均要求样品的变量是定量变量,如果使用的是定性变量,则有相应的定义距离的方法。

3.定性变量的距离

下例只是对名义尺度变量的一种距离定义。

例1 某高校举办一个培训班,从学员的资料中得到这样6个变量:性别(1x )取值为男和女;外语语种(2x )取值为英、日和俄;专业(3x )取值为统计、会计和金融;职业(4x )取值为教师和非教师;居住处(5x )取值为校内和校外;学历(6x )取值为本科和本科以下。

现有两名学员:

=1x (男,英,统计,非教师,校外,本科)ˊ

=2x (女,英,金融,教师,校外,本科以下)ˊ

这两名学员的第二个变量都取值“英”,称为配合的,第一个变量一个取值为“男”,另一个取值为“女”,称为不配合的。一般地,若记配合的变量数为1m ,不配合的变量数为2m ,则它们之间的距离可定义为

按此定义本例中1x 与2x 之间的距离为3

2。 .匹配系数

当样品的变量为定性变量时,通常采用匹配系数作为聚类统计量。

第i 个样品与第j 个样品的匹配系数定义为

∑==p

k k ij Z S 1,其中

显然匹配系数越大,说明两样品越相似。

.相似系数

聚类分析方法不仅用来对样品进行分类,而且可用来对变量进行分类。在对变量进行分类时,常常采用相似系数来度量变量之间的相似性。

设ij c 表示i x 与j x 的相似系数,它一般应满足如下三个条件:

⑴ 1≤ij c ,对一切j i ,;

⑵ 1±=ij c ,当且仅当存在常数a 和b ,使得b ax x j i +=;

⑶ ji ij c c =,对一切j i ,.

最常用的相似系数有以下两种:

1. 夹角余弦

变量i x 与j x 的夹角余弦定义为

它是n R 中变量i x 的观测向量'21),,,(ni i i x x x Λ与变量j x 的观测向量'21),,,(nj j j x x x Λ之间夹角ij θ的余弦函数,即ij ij c θcos )1(=.

2. 相关系数

变量i x 与j x 的相关系数为 其中∑==n k ki i x x 1,∑==n

k kj j x x 1

2.聚类分析

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS 、SAS 等。

从机器学习的角度看,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。

从实际应用的角度看,聚类分析是数据挖掘的主要任务,是模式识别的重要前提。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。

.聚类分析的流程及数据来源

聚类分析法的主要流程包括: 数据预处理、为衡量数据点间的相似度定义一个距离函数、聚类或分组和评估输出, 用流程图描述如图1所示。

图 1 聚类分析流程图

聚类分析的源数据通常是待聚类或分组的数据。对机械故障模式识别而言, 首先要获取关于本机组的大量运行参数, 既要有机器平稳运行、正常工作时的数据, 更要有机器出现故障时的数据, 并且获知故障的类别。这样, 由已知故障类别、故障发生时的各运行参数、历史记录组成的数据库便构成了数据挖掘的训练学习样本库。这里用到的数据就是设备的点检数据。

2.2. 常用的聚类分析方法

(1)系统聚类法

系统聚类法(Hierarchical clustering method )是目前使用最多的一种方法。其基本思想是首先将n 个样品看成n 类(即一类包括一个样品),然后规定样品之间的距离和类与类之间的距离。将距离最近的两类合并为一个新类,在计算新类和其他类之间的距离,再从中找出最近的两类合并,继续下去,最后所有的样品全在一类。将上述并类过程画成聚类图,便可以决定分多少类,每类各有什么样品。

系统聚类法的步骤为:①首先各样品自成一类,这样对n 组样品就相当于有n 类;②计算各类间的距离,将其中最近的两类进行合并;③计算新类与其余各类的距离,再将距离最近的两类合并;④重复上述的步骤,直到所有的样品都聚为一类时为止。下面以最短距离法为例来说明系统聚类法的过程。最短距离法的聚类步骤如下: 规定样品之间的距离,计算样品的两两距离,距离矩阵记为()0S ,开始视每个样品分别为一类,这时显然应有pq d q p D =),(;

选择距离矩阵()0S 中的最小元素,不失一般性,记其为),(q p D ,则将p G 与q G 合并为一新类,记为m G ,有q p m G G G ?=;

计算新类m G 与其他各类的距离,得到新的距离矩阵记为()1S ;

对()1S 重复开始进行第②步,…,直到所有样本成为一类为止。

值得注意的是在整个聚类的过程中,如果在某一步的距离矩阵中最小元素不止一个时,则可以将其同时合并。

(2) 动态聚类法

开始将n 个样品粗略地分成若干类,然后用某种最优准则进行调整,一次又一次地调整,直至不能调整了为止。此法非常类似于计算方法的迭代法。

(3) 分解法

它的程序正好和系统聚类相反,开始时所有的样本都在一类,然后用某种最优准则将它分成两类。再用同样准则将这两类各自试图分裂为两类,从中选出一个使目标函数较好者,这样由两类变成了三类。如此下去,一直分裂到每类只有一个样品为止(或用其他停止规则)。

(4) 加入法

将样品依次输入,每次输入后将它放到当前聚类图的应有位置上,全部输入后,即得聚类图。

3.总结体会

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分

析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。比如说现在要把n个产品按产品的m 个指标继续聚类,因为产品可能之前的特色是不一样的。而这个时候影响产品的因素有m个,不可能一个一个的考虑,那样是分不出类来的。所以只能对产品的m个指标综合考虑,采用SPSS中的样本聚类方法,就可以直接将产品分好类。并且从分析结果还可以看出各类产品的特色分别是什么。

聚类分析不仅可以用于样本聚类,还可以用于变量聚类,就是对m个指标进行聚类。因为有时指标太多,不能全部考虑,需要提取出主要因素,而往往指标之间又有很多相关联的地方,所以可以先对变量聚类,然后从每一类中选取出一个代表型的指标。这样就大大减少了指标,并且没有造成巨大的信息丢失。

PAM聚类算法的分析与实现

毕业论文(设计)论文(设计)题目:PAM聚类算法的分析与实现 系别: 专业: 学号: 姓名: 指导教师: 时间:

毕业论文(设计)开题报告 系别:计算机与信息科学系专业:网络工程 学号姓名高华荣 论文(设计)题目PAM聚类算法的分析与实现 命题来源□√教师命题□学生自主命题□教师课题 选题意义(不少于300字): 随着计算机技术、网络技术的迅猛发展与广泛应用,人们面临着日益增多的业务数据,这些数据中往往隐含了大量的不易被人们察觉的宝贵信息,为了得到这些信息,人们想尽了一切办法。数据挖掘技术就是在这种状况下应运而生了。而聚类知识发现是数据挖掘中的一项重要的内容。 在日常生活、生产和科研工作中,经常要对被研究的对象经行分类。而聚类分析就是研究和处理给定对象的分类常用的数学方法。聚类就是将数据对象分组成多个簇,同一个簇中的对象之间具有较高的相似性,而不同簇中的对象具有较大的差异性。 在目前的许多聚类算法中,PAM算法的优势在于:PAM算法比较健壮,对“噪声”和孤立点数据不敏感;由它发现的族与测试数据的输入顺序无关;能够处理不同类型的数据点。 研究综述(前人的研究现状及进展情况,不少于600字): PAM(Partitioning Around Medoid,围绕中心点的划分)算法是是划分算法中一种很重要的算法,有时也称为k-中心点算法,是指用中心点来代表一个簇。PAM算法最早由Kaufman和Rousseevw提出,Medoid的意思就是位于中心位置的对象。PAM算法的目的是对n个数据对象给出k个划分。PAM算法的基本思想:PAM算法的目的是对成员集合D中的N个数据对象给出k个划分,形成k个簇,在每个簇中随机选取1个成员设置为中心点,然后在每一步中,对输入数据集中目前还不是中心点的成员根据其与中心点的相异度或者距离进行逐个比较,看是否可能成为中心点。用簇中的非中心点到簇的中心点的所有距离之和来度量聚类效果,其中成员总是被分配到离自身最近的簇中,以此来提高聚类的质量。 由于PAM算法对小数据集非常有效,但对大的数据集合没有良好的可伸缩性,就出现了结合PAM的CLARA(Cluster LARger Application)算法。CLARA是基于k-中心点类型的算法,能处理更大的数据集合。CLARA先抽取数据集合的多个样本,然后用PAM方法在抽取的样本中寻找最佳的k个中心点,返回最好的聚类结果作为输出。后来又出现了CLARNS(Cluster Larger Application based upon RANdomized

K - M e a n s 聚 类 算 法

基于K-means聚类算法的入侵检测系统的设计 基于K-means聚类算法的入侵检测系统的设计 今天给大家讲述的是K-means聚类算法在入侵检测系统中的应用首先,介绍一下 聚类算法 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,有关世界空间地域的研究,则形成了地理学。 又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。 事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analysis)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 (聚类分析我们说得朴实一点叫做多元统计分析,说得时髦一点叫做数据挖掘算法,因为这个算法可以在一堆数据中获取很有用的信息,这就不就是数据挖掘吗,所以大家平时也不要被那些高大上的名词给吓到了,它背后的核心原理大多数我们都是可以略懂一二的,再

比如说现在AI这么火,如果大家还有印象的话,以前我们在大二上学习概率论的时候,我也和大家分享过自然语言处理的数学原理,就是如何让机器人理解我们人类的自然语言,比如说,苹果手机上的Siri系统,当时还让杨帆同学帮我在黑板上写了三句话,其实就是贝叶斯公式+隐含马尔可夫链。估计大家不记得了,扯得有点远了接下来还是回归我们的正题,今天要讨论的聚类算法。) K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,结果稳定,聚类的效果也还不错, 相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个特征变量来刻画,就比如说我们举一个例证,就有一项比较神奇的技术叫面部识别技术,其实听起来很高大上,它是如何做到的,提取一个人的面部特征,比如说嘴巴的长度,鼻梁的高度,眼睛中心到鼻子的距离,鼻子到嘴巴的距离,这些指标对应得数值可以组成一个向量作为每一个个体的一个标度变量(),或者说叫做每一个人的一个特征向量。 如果对于一群有待分类的样本点需用p 个特征变量值描述,则每

AP聚类算法

AP聚类算法 1.分类与聚类 1.1 分类算法简介 分类(classification )是找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。 在分类算法中输入的数据,或称训练集(Training Set),是一条条的数据库记录(Record)组成的。每一条记录包含若干条属性(Attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(Class Label)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为 样本向量:(v 1, v 2 , ... , v n ; c)。在这里v i 表示字段值,c表示类别。 分类的目的是:分析输入的数据,通过--在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 下面对分类流程作个简要描述: 训练:训练集——>特征选取——>训练——>分类器 分类:新样本——>特征选取——>分类——>判决 常见的分类算法有:决策树、KNN法(K-Nearest Neighbor)、SVM法、VSM法、Bayes法、神经网络等。

1.2 聚类算法简介 聚类(clustering)是指根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。 与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。 它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。 聚类分析的算法可以分为:划分法(Partitioning Methods)、层次法(Hierarchical Methods)、基于密度的方法(density-based methods)、基于网格的方法(grid-based methods)、基于模型的方法(Model-Based Methods)。 经典的K-means和K-centers都是划分法。 分类与聚类的区别 聚类分析也称无监督学习或无指导学习,聚类的样本没有标记,需要由聚类学习算法来自动确定; 在分类中,对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来。聚类学习是观察式学习,而不是示例式学习。 可以说聚类分析可以作为分类分析的一个预处理步骤。 2.K-MEANS算法 k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较低。簇的相似度是关于簇中对象的均值度量,可以看作簇的质心(centriod)或重心(center of gravity)。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

聚类分析练习题20121105

聚类分析和判别分析练习题 一、选择题 1.需要在聚类分析中保序的聚类分析是( )。 A.两步聚类 B.有序聚类 C.系统聚类 D.k-均值聚类 2.在系统聚类中2R 是( )。 A.组内离差平方和除以组间离差平方和 B.组间离差平方和除以组内离差平方和 C.组间离差平方和除以总离差平方和 D.组间均方除以总均方。 3.系统聚类的单调性是指( )。 A.每步并类的距离是单调增的 B.每步并类的距离是单调减的 C.聚类的类数越来越少 D.系统聚类2R 会越来越小 4.以下的系统聚类方法中,哪种系统聚类直接利用了组内的离差平方和。( ) A.最长距离法 B.组间平均连接法 C.组内平均连接法 D.WARD 法 5.以下系统聚类方法中所用的相似性的度量,哪种最不稳健( )。 A.2 1()p ik jk k x x =-∑ B. 1p ik jk k ik jk x x x x =-+∑ C. 21p k =∑ D. 1()()i j i j -'x -x Σx -x 6. 以下系统聚类方法中所用的相似性的度量,哪种考虑了变量间的相关性( )。A.2 1()p ik jk k x x =-∑ B. 1 p ik jk k ik jk x x x x =-+∑ C. 21 p k =∑ D. 1()()i j i j -'x -x Σx -x 7.以下统计量,可以用来刻画分为几类的合理性统计量为( )? A.可决系数或判定系数2R B. G G W P P -

C.()/(1) /() G G W P G P n G -- - D.() G W P W - 8.以下关于聚类分析的陈述,哪些是正确的() A.进行聚类分析的统计数据有关于类的变量 B.进行聚类分析的变量应该进行标准化处理 C.不同的类间距离会产生不同的递推公式 D.递推公式有利于运算速度的提高。D(3)的信息需要D(2)提供。 9.判别分析和聚类分析所要求统计数据的不同是() A.判别分析没有刻画类的变量,聚类分析有该变量 B.聚类分析没有刻画类的变量,判别分析有该变量 C.分析的变量在不同的样品上要有差异 D.要选择与研究目的有关的变量 10.距离判别法所用的距离是() A.马氏距离 B. 欧氏距离 C.绝对值距离 D. 欧氏平方距离 11.在一些条件同时满足的场合,距离判别和贝叶斯判别等价,是以下哪些条件。 () A.正态分布假定 B.等协方差矩阵假定 C.均值相等假定 D.先验概率相等假定 12.常用逐步判别分析选择不了的标准是() A.Λ统计量越小变量的判别贡献更大 B.Λ统计量越大变量的判别贡献更大 C.判定系数越小变量的判别贡献更大 D.判定系数越大变量的判别贡献更大 二、填空题 1、聚类分析是建立一种分类方法,它将一批样本或变量按照它们在性质上的_______________进行科学的分类。 2.Q型聚类法是按_________进行聚类,R型聚类法是按_______进行聚类。 3.Q型聚类相似程度指标常见是、、,而R型聚类相似程度指标通常采用_____________ 、。 4.在聚类分析中需要对原始数据进行无量纲化处理,以消除不同量纲或数量级的影响,达到数据间

k-means聚类算法的研究全解

k-means聚类算法的研究 1.k-means算法简介 1.1 k-means算法描述 给定n个对象的数据集D和要生成的簇数目k,划分算法将对象组织划分为k个簇(k<=n),这些簇的形成旨在优化一个目标准则。例如,基于距离的差异性函数,使得根据数据集的属性,在同一个簇中的对象是“相似的”,而不同簇中的对象是“相异的”。划分聚类算法需要预先指定簇数目或簇中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终聚类结果。这类方法分为基于质心的(Centroid-based)划分方法和基于中心的(Medoid-based)划分方法,而基于质心的划分方法是研究最多的算法,其中k-means算法是最具代表和知名的。 k-means算法是1967年由MacQueen首次提出的一种经典算法,经常用于数据挖掘和模式识别中,是一种无监督式的学习算法,其使用目的是对几何进行等价类的划分,即对一组具有相同数据结构的记录按某种分类准则进行分类,以获取若干个同类记录集。k-means聚类是近年来数据挖掘学科的一个研究热点和重点,这主要是因为它广泛应用于地球科学、信息技术、决策科学、医学、行为学和商业智能等领域。迄今为止,很多聚类任务都选择该算法。k-means算法是应用最为广泛的聚类算法。该算法以类中各样本的加权均值(成为质心)代表该类,只用于数字属性数据的聚类,算法有很清晰的几何和统计意义,但抗干扰性较差。通常以各种样本与其质心欧几里德距离总和作为目标函数,也可将目标函数修改为各类中任意两点间欧几里德距离总和,这样既考虑了类的分散度也考虑了类的紧致度。k-means算法是聚类分析中基于原型的划分聚类的应用算法。如果将目标函数看成分布归一化混合模型的似然率对数,k-means算法就可以看成概率模型算法的推广。 k-means算法基本思想: (1)随机的选K个点作为聚类中心; (2)划分剩余的点; (3)迭代过程需要一个收敛准则,此次采用平均误差准则。 (4)求质心(作为中心); (5)不断求质心,直到不再发生变化时,就得到最终的聚类结果。 k-means聚类算法是一种广泛应用的聚类算法,计算速度快,资源消耗少,但是k-means算法与初始选择有关系,初始聚类中心选择的随机性决定了算法的有效性和聚

第二章作业聚类分析

第二章作业 1.画出给定迭代次数为n的系统聚类法的算法流程框图. 答:算法流程图如下:

2.对如下5个6维模式样本,用最小距离准则进行系统聚类分析: x 1: 0, 1, 3, 1, 3, 4 x 2: 3, 3, 3, 1, 2, 1 x 3: 1, 0, 0, 0, 1, 1 x 4: 2, 1, 0, 2, 2, 1 x 5: 0, 0, 1, 0, 1, 0 解:将每一样本看成单独一类,得 (0) 11{}G x =, (0)22{}G x =,(0)33{}G x = (0)44{}G x =, (0) 55{}G x = 计算各类之间的欧式距离,可得距离矩阵(0)D (表1-1)。 表1-1 ① 矩阵(0) D ,它是(0)3G 和(0) 5G 之间的距离,将它们合并为一类,得 到新的分类为 (1)(0)11{}G G =,(1)(0)22{}G G =,(1)(0)(0) 335{,}G G G = (1)(0) 44{}G G = 计算聚类后的距离矩阵(1)D 。按最小距离准则,分别计算(0)3G 与(1)1G 、(1)2G 、(1)4G ,(0) 5 G 与(1)1G 、(1)2G 、 (1) 4G 之间的两种距离,并选用最小距离。如

(1)(0)(1)(0)(1) 133151min{D G G G G =与的距离,与的距离} }=5 由此可求得距离矩阵(1)D (表1-2) ② 距离矩阵(1) D ,它是(1)3G 和(1)4G 之间的距离,于是合并(1)3G 和(1)4G , 得到新的分类为 (2)(1)11{}G G =,(2)(1)22{}G G =,(2)(1)(1) 334{,}G G G = 按最小距离准则计算距离矩阵(2)D ,得表1-3 表1-3 选择距离阈值(2) D 则算法停止,得到聚类结果G 1(2) ={X1} G 2(2) ={X2} G 3(2)={X3,X5, X4}。 3. 模式样本如下: {X1(0,0),X2(1,0),X3(0,1),X4(1,1),X5(2,1),X6(1,2),X7(2,2),X8(3,2),X9(6,6),X10(7,6),X11(8,6), X12(6,7), X13(7,7), X14(8,7), X15(9,7), X16(7,8), X17(8,8), X18(9,8), X19(8,9), X20(9,9). 选K=2,11210(1)=(00),(1)(7 6)t t z x z x ===,用K —均值算法进行分类。

聚类算法总结

聚类算法的种类:

--------------------------------------------------------- 几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

--------------------------------------------------------- 目前聚类分析研究的主要内容: 对聚类进行研究是数据挖掘中的一个热门方向,由于以上所介绍的聚类方法都 存在着某些缺点,因此近些年对于聚类分析的研究很多都专注于改进现有的聚 类方法或者是提出一种新的聚类方法。以下将对传统聚类方法中存在的问题以 及人们在这些问题上所做的努力做一个简单的总结: 1 从以上对传统的聚类分析方法所做的总结来看,不管是k-means方法,还是CURE方法,在进行聚类之前都需要用户事先确定要得到的聚类的数目。然而在 现实数据中,聚类的数目是未知的,通常要经过不断的实验来获得合适的聚类 数目,得到较好的聚类结果。 2 传统的聚类方法一般都是适合于某种情况的聚类,没有一种方法能够满足各 种情况下的聚类,比如BIRCH方法对于球状簇有很好的聚类性能,但是对于不 规则的聚类,则不能很好的工作;K-medoids方法不太受孤立点的影响,但是 其计算代价又很大。因此如何解决这个问题成为当前的一个研究热点,有学者 提出将不同的聚类思想进行融合以形成新的聚类算法,从而综合利用不同聚类 算法的优点,在一次聚类过程中综合利用多种聚类方法,能够有效的缓解这个 问题。 3 随着信息时代的到来,对大量的数据进行分析处理是一个很庞大的工作,这 就关系到一个计算效率的问题。有文献提出了一种基于最小生成树的聚类算法,该算法通过逐渐丢弃最长的边来实现聚类结果,当某条边的长度超过了某个阈值,那么更长边就不需要计算而直接丢弃,这样就极大地提高了计算效率,降 低了计算成本。 4 处理大规模数据和高维数据的能力有待于提高。目前许多聚类方法处理小规 模数据和低维数据时性能比较好,但是当数据规模增大,维度升高时,性能就 会急剧下降,比如k-medoids方法处理小规模数据时性能很好,但是随着数据 量增多,效率就逐渐下降,而现实生活中的数据大部分又都属于规模比较大、 维度比较高的数据集。有文献提出了一种在高维空间挖掘映射聚类的方法PCKA (Projected Clustering based on the K-Means Algorithm),它从多个维度中选择属性相关的维度,去除不相关的维度,沿着相关维度进行聚类,以此对 高维数据进行聚类。 5 目前的许多算法都只是理论上的,经常处于某种假设之下,比如聚类能很好 的被分离,没有突出的孤立点等,但是现实数据通常是很复杂的,噪声很大, 因此如何有效的消除噪声的影响,提高处理现实数据的能力还有待进一步的提高。

CLOPE-快速有效的聚类算法

CLOPE:针对交易的数据快速有效聚类算法 摘要 本文研究分类数据的聚类问题,特别针对多维和大型的交易数据。从增加聚簇直方图的高宽比的方法得到启发,我们开发了一种新的算法---CLOPE,这是一种非常快速、可伸缩,同时又非常有效的算法。我们展示了算法对两个现实数据集聚类的性能,并将CLOPE与现有的聚类算法进行了比较。 关键词 数据挖掘,聚类,分类数据,可伸缩性 1.简介 聚类是一种非常重要的数据挖掘技术,它的目的是将相似的交易[12, 14, 4, 1]分组在一起。最近,越来越多的注意力已经放到了分类数据[10,8,6,5,7,13]的聚类上,分类数据是由非数值项构成的数据。交易数据,例如购物篮数据和网络日志数据,可以被认为是一种特殊的拥有布尔型值的分类数据,它们将所有可能的项作为项。快速而精确地对交易数据进行聚类的技术在零售行业,电子商务智能化等方面有着很大的应用潜力。 但是,快速而有效聚类交易数据是非常困难的,因为这类的数据通常有着高维,稀疏和大容量的特征。基于距离的算法例如k-means[11]和CLARANS[12]都是对低维的数值型数据有效。但是对于高维分类数据的处理效果却通常不那么令人满意[7]。像ROCK这类的分层聚类算法在分类数据聚类中表现的非常有效,但是他们在处理大型数据库时表现出先天的无效。 LargeItem[13]算法通过迭代优化一个全局评估函数对分类数据进行聚类。这个评估函数是基于大项概念的,大项是在一个聚簇内出现概率比一个用户自定义的参数——最小支持度大的项。计算全局评估函数要远比计算局部评估函数快得多,局部评估函数是根据成对相似性定义的。这种全局方法使得LargeItem算法非常适合于聚类大型的分类数据库。 在这篇文章中,我们提出了一种新的全局评估函数,它试图通过增加聚簇直方图的高度与宽度之比来增加交易项在聚簇内的重叠性。此外,我们通过引用一个参数来控制聚簇紧密性的方法来泛化我们的想法,通过修改这个参数可以得到

应用多元统计分析习题解答_第五章

第五章 聚类分析 判别分析和聚类分析有何区别 答:即根据一定的判别准则,判定一个样本归属于哪一类。具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。聚类分析是分析如何对样品(或变量)进行量化分类的问题。在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。 试述系统聚类的基本思想。 答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。 对样品和变量进行聚类分析时, 所构造的统计量分别是什么简要说明为什么这样构造 答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。因为我们把n 个样本看作p 维空间的n 个点。点之间的距离即可代表样品间的相似度。常用的距离为 (一)闵可夫斯基距离:1/1 ()() p q q ij ik jk k d q X X ==-∑ q 取不同值,分为 (1)绝对距离(1q =) 1 (1)p ij ik jk k d X X ==-∑ (2)欧氏距离(2q =) 21/2 1 (2)() p ij ik jk k d X X ==-∑ (3)切比雪夫距离(q =∞) 1()max ij ik jk k p d X X ≤≤∞=- (二)马氏距离 (三)兰氏距离 对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。 将变量看作p 维空间的向量,一般用 2 1()()()ij i j i j d M -'=--X X ΣX X 11()p ik jk ij k ik jk X X d L p X X =-=+∑

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象<- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

机器学习聚类算法实现

《人工智能与机器学习》 实验报告 年级__ xxxx班____________ 专业___________xxxxx____ _____ 学号____________6315070301XX___________ 姓名_____________gllh________________ 日期___________2018-5-12 __

实验五聚类算法实现 一、实验目的 1、了解常用聚类算法及其优缺点 2、掌握k-means聚类算法对数据进行聚类分析的基本原理和划分方法 3、利用k-means聚类算法对已知数据集进行聚类分析 实验类型:验证性 计划课间:4学时 二、实验内容 1、利用python的sklearn库函数对给定的数据集进行聚类分析 2、分析k-means算法的实现流程 3、根据算法描述编程实现,调试运行 4、对所给数据集进行验证,得到分析结果 三、实验步骤 1、k-means算法原理 2、k-means算法流程 3、k-means算法实现 4、对已知数据集进行分析 四、实验结果分析 1.利用python的sklearn库函数对给定的数据集进行聚类分析: 其中数据集选取iris鸢尾花数据集 import numpy as np from sklearn.datasets import load_iris iris = load_iris() def dist(x,y):

return sum(x*y)/(sum(x**2)*sum(y**2))**0.5 def K_means(data=iris.data,k=3,ping=0,maxiter=100): n, m = data.shape centers = data[:k,:] while ping < maxiter: dis = np.zeros([n,k+1]) for i in range(n): for j in range(k): dis[i,j] = dist(data[i,:],centers[j,:]) dis[i,k] = dis[i,:k].argmax() centers_new = np.zeros([k,m]) for i in range(k): index = dis[:,k]==i centers_new[i,:] = np.mean(data[index,:],axis=0) if np.all(centers==centers_new): break centers = centers_new ping += 1 return dis if __name__ == '__main__': res = K_means() print(res) (1)、首先求出样本之间的余弦相似度: sum(x*y)/(sum(x**2)*sum(y**2))**0.5 (2)、设置k类别数为3,最大迭代次数为100 K_means(data=iris.data,k=3,ping=0,maxiter=100):

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

聚类分析实例分析题(推荐文档)

5.2酿酒葡萄的等级划分 5.2.1葡萄酒的质量分类 由问题1中我们得知,第二组评酒员的的评价结果更为可信,所以我们通过第二组评酒员对于酒的评分做出处理。我们通过excel计算出每位评酒员对每支酒的总分,然后计算出每支酒的10个分数的平均值,作为总的对于这支酒的等级评价。 通过国际酿酒工会对于葡萄酒的分级,以百分制标准评级,总共评出了六个级别(见表5)。 在问题2的计算中,我们求出了各支酒的分数,考虑到所有分数在区间[61.6,81.5]波动,以原等级表分级,结果将会很模糊,不能分得比较清晰。为此我们需要进一步细化等级。为此我们重新细化出5个等级,为了方便计算,我们还对等级进行降序数字等级(见表6)。 通过对数据的预处理,我们得到了一个新的关于葡萄酒的分级表格(见表7):

考虑到葡萄酒的质量与酿酒葡萄间有比较之间的关系,我们将保留葡萄酒质量对于酿酒葡萄的影响,先单纯从酿酒葡萄的理化指标对酿酒葡萄进行分类,然后在通过葡萄酒质量对酿酒葡萄质量的优劣进一步进行划分。 5.2.2建立模型 在通过酿酒葡萄的理化指标对酿酒葡萄分类的过程,我们用到了聚类分析方法中的ward 最小方差法,又叫做离差平方和法。 聚类分析是研究分类问题的一种多元统计方法。所谓类,通俗地说,就是指相似元素的集合。为了将样品进行分类,就需要研究样品之间关系。这里的最小方差法的基本思想就是将一个样品看作P 维空间的一个点,并在空间的定义距离,距离较近的点归为一类;距离较远的点归为不同的类。面对现在的问题,我们不知道元素的分类,连要分成几类都不知道。现在我们将用SAS 系统里面的stepdisc 和cluster 过程完成判别分析和聚类分析,最终确定元素对象的分类问题。 建立数据阵,具体数学表示为: 1111...............m n nm X X X X X ????=?????? (5.2.1) 式中,行向量1(,...,)i i im X x x =表示第i 个样品; 列向量1(,...,)'j j nj X x x =’,表示第j 项指标。(i=1,2,…,n;j=1,2,…m) 接下来我们将要对数据进行变化,以便于我们比较和消除纲量。在此我们用了使用最广范的方法,ward 最小方差法。其中用到了类间距离来进行比较,定义为: 2||||/(1/1/)kl k l k l D X X n n =-+ (5.2.2) Ward 方法并类时总是使得并类导致的类内离差平方和增量最小。 系统聚类数的确定。在聚类分析中,系统聚类最终得到的一个聚类树,如何确定类的个数,这是一个十分困难但又必须解决的问题;因为分类本身就没有一定标准,人们可以从不同的角度给出不同的分类。在实际应用中常使用下面几种

聚类算法分析报告汇总

嵌入式方向工程设计实验报告 学院班级:130712 学生学号:13071219 学生姓名:杨阳 同作者:无 实验日期:2010年12月

聚类算法分析研究 1 实验环境以及所用到的主要软件 Windows Vista NetBeans6.5.1 Weka3.6 MATLAB R2009a 2 实验内容描述 聚类是对数据对象进行划分的一种过程,与分类不同的是,它所划分的类是未知的,故此,这是一个“无指导的学习” 过程,它倾向于数据的自然划分。其中聚类算法常见的有基于层次方法、基于划分方法、基于密度以及网格等方法。本文中对近年来聚类算法的研究现状与新进展进行归纳总结。一方面对近年来提出的较有代表性的聚类算法,从算法思想。关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同的聚类算法的聚类情况进行对比分析。最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待解决的一些问题等。 实验中主要选择了K 均值聚类算法、FCM 模糊聚类算法并以UCI Machine Learning Repository 网站下载的IRIS 和WINE 数据集为基础通过MATLAB 实现对上述算法的实验测试。然后以WINE 数据集在学习了解Weka 软件接口方面的基础后作聚类分析,使用最常见的K 均值(即K-means )聚类算法和FCM 模糊聚类算法。下面简单描述一下K 均值聚类的步骤。 K 均值算法首先随机的指定K 个类中心。然后: (1)将每个实例分配到距它最近的类中心,得到K 个类; (2)计分别计算各类中所有实例的均值,把它们作为各类新的类中心。 重复(1)和(2),直到K 个类中心的位置都固定,类的分配也固定。 在实验过程中通过利用Weka 软件中提供的simpleKmeans (也就是K 均值聚类算法对WINE 数据集进行聚类分析,更深刻的理解k 均值算法,并通过对实验结果进行观察分析,找出实验中所存在的问题。然后再在学习了解Weka 软件接口方面的基础上对Weka 软件进行一定的扩展以加入新的聚类算法来实现基于Weka 平台的聚类分析。 3 实验过程 3.1 K 均值聚类算法 3.1.1 K 均值聚类算法理论 K 均值算法是一种硬划分方法,简单流行但其也存在一些问题诸如其划分结果并不一定完全可信。K 均值算法的划分理论基础是 2 1 min i c k i k A i x v ∈=-∑∑ (1) 其中c 是划分的聚类数,i A 是已经属于第i 类的数据集i v 是相应的点到第i 类的平均距离,即

相关文档