文档视界 最新最全的文档下载
当前位置:文档视界 › 风力发电机组叶片的故障分析及维护毕业设计

风力发电机组叶片的故障分析及维护毕业设计

风力发电机组叶片的故障分析及维护毕业设计
风力发电机组叶片的故障分析及维护毕业设计

酒泉职业技术学院

毕业设计(论文)

10 ___ 级风能与动力技术专业

s:风力发电机组叶片的故障分析及维护

毕业时间:二0 — 0年六月

学生姓名:

指导教师:

班级:风能与动力技术(1)班

2012 年H 月20 R

摘要

一、风机叶片简介

二、维护叶片的目的

三、叶片产生问题的原因及故障分析

(一)叶片产生问题的原因类型

(二)风机叶片的常见损坏类型及诊断方法

四、叶片的维护13

总结

(一)叶片裂纹维护(二)叶片砂眼形成与维护

(三)叶尖的维

参考文献致谢13 13 13 14 14 15

风力发电机组叶片的故障分析及维护

扌商要:风机叶片是发电机组的动力源泉,是风电机组的关键部件之一,叶片状态的好坏直接影响到整机的性能和发电效率,应该引起风电企业的高度重视。风机多是安装在

环境恶劣、海拔高、气候复杂的地区,而叶片乂恰恰是工作在高空、全天候条件下, 经常受到空气介质.大气射线、沙尘、雳电、暴雨、冰雪的侵袭,其故障率在整机中约占三分之一以上。定期检査,早期发现,尽快采取措施,把问题解决在萌芽状态是避免事故、减少风险、稳定电场收益的最有效方武。如果对问题的萌芽和苗头不重视,时间越长,问题积累

越多,后果就越严Mo ih于叶片的事故多发在盛风期,停机修复必将带

来很大的经济损失,如果是叶片彻底失效,不得不更换,造价昂贵的叶片,加上定货、运输、安装、调试……,企业将面临发电损失、高额的叶片费用和维修费用。叶片的设计寿命应该与主机一样至少工作20年,但是只有对叶片进行定期维护、维修,精心呵护,才能保证叶片与风机的其他部件一样长期稳定的丄作,才能为电场安全运行提供有力的保障。

关键词:叶片:故障分析:维护

一、风机叶片简介

风力发电机叶片是一个复合材料制成的薄壳结构,结构上分根部、外壳、龙骨三个部分。类型多种,有尖头、平头、钩头、带襟翼的尖部等。制造工艺主要包括阳模一翻阴模

f铺层f加热固化一脱模一打磨表面一喷漆等。设讣难点包括叶型的空气动力学设

IN强度、披劳、噪声设计、复合材料铺层设计。工艺难点主要包括阳模加工、模翻制、

树脂系统选用。叶片是一个大型的复合材料结构,其重量的90%以上山复合材料组成,每

台发电机一般有三支叶片,每台发电机需要用复合材料达四吨之多。

二.维护叶片的目的

风机叶片是风电机组关键部件之一,其性能直接影响到整个系统的性能。叶片工作在高空,环境十分恶劣,空气中各种介质儿乎每时每刻都在侵蚀着叶片,春夏秋冬、酷?昌严寒、雳电、冰雹、雨雪、沙尘随时都有可能对风机产生危害,隐患每天都有可能演变成事故。据统讣,风电场的事故多发期多是在盛风发电期,而山叶片产生的事故要占到事故的三分之一,叶片发生事故电场必须停止发电,开始抢修,严重的还必须更换叶片,这必将导致高额的维修费用,也给风电场带来很大的经济损失。在我国风电开发还

处于一个发展阶段,风场管理和配套服务机制尚不完善,尤其是风电企业对叶片的维护还

没有引起充分认识,投入严重不足,风电场运转存在许多隐患,随时都会出现许多意想不

到的事故,直接影响到风电场的送电和经济效益。根据对风电场的调査和有关数据分析,

并参阅了许多国外风电场维护的成功经验,我们对风电场的日常维护的必要性有了更深刻

的了解。我认为,建立良好的叶片正常维护制度是保证风电场效益的基础,以少量的投入

避免巨大的损失、换取最佳经济效益的最好方式。

三、叶片产生问题的原因及故障分析

(一)叶片产生问题的原因类型

我们将从四个方面讨论叶片产生问题的主要原因:即设计?不完善、生产缺陷、自然原

因和运行不当。

1.设计方面的原因

(1)管理层要求降低成本的压力

生产厂家管理层片面追求利润,设讣部门经常会受到来自管理层的压力,要求他们设

计成本低廉的部件,以便使企业有更大的利润空间。面对来自管理层的压力,设讣部门有

时不得不做出妥协,比如,减小叶片的叶根直径的方式来减少轮毂和叶片的成本, 但是叶根

尺寸减小后会导致叶片强度不够,再例如选择质量不佳但价格便宜的原材料, 这往往导致叶

片出现致命的缺陷。

(2)未经设计者批准就改变生产工艺

在叶片生产加工过程中,有时候生产部门未经设计?部门批准就私自修改工艺,这样会

破坏叶片的整体性能。

(3)生产部门和设计部门缺乏沟通

有时,设讣部门的某项设计旨在降低叶片的成本、重量或为了开发一种新产品,他们

将这些设计构想寄希望于生产部门,但实际上这些设讣在工艺上是很难保证的,如果设计

部门和生产者之间缺乏必要的沟通,缺乏团队精神,产品就会出现问题。

(4)极限设计

叶片的设讣要考虑到机组其他部件的要求与配合,例如,塔架与叶片的间距通常是设

计叶片强度需要考虑的一个原因,主轴和轴承的尺寸也会对叶片的重量提出要求,如果这

些参数考虑不周就会使叶片设il?到达极限值。

(5)安全余量降低

在叶片设讣的任何一个阶段中,实际运行载荷和静态载荷总是很难准确预测,设计不当就会降低运行载荷的安全余量,这样设计参数生产出来的产品因为降低安全余量很容易损毁。

2.生产

(1)使用不合格的材料

为降低成本,生产厂家会寻求更便宜的胶衣、树脂或纤维,如果这些材料不符合叶片的设计要求,这会导致叶片很快失效。

(2)不严格的质量控制

生产过程中缺乏质量控制是导致叶片出现问题的主要原因之一。在生产过程中必须在关键环节设置质量检验点,只有通过了该工序的质量检验,生产加工才能继续。如果忽略了或者不存在这些检验点,生产工艺很难保证,就会存在质量问题。生产过程的质量检验和出厂

产品的测试检验是质量控制体系的一个重要组成部分,生产厂家要保证对产品质量的持续改进,避免把有缺陷的叶片发给客户。例如,2008年3月苏司兰公司将要花费0. 25亿美元修复在美国发现的出现裂纹的叶片,修复工作将超过6个月O

(3)擅自修改生产工艺

生产者决定改变工艺时,必须按正常程序得到设计部门的批准,并得到质量验证, 擅自修改工艺会导致产品质量不合格。

(4)生产工艺过于复杂很难产生质量一致的产品

如果生产工艺过于复杂,很难批量生产出质量一致的产品。

3.自然原因

⑴雷击

遭受雷击是叶片毁坏的主要原因之一。如果避雷系统丄作不正常,当雳击击中一个叶片时,电流将会直接传递给发电机。如果叶片有砂眼下雨时就会积水,在受到雳击的时候这些水分会瞬间蒸发,产生的蒸汽压力会使叶片爆炸或裂开,这对机组来说是灾难性的、致命的。我们虽然无法控制雷击这种自然现象,但是如果经常检査叶片防雷系统, 修复有问题的避雷系统,将叶尖的排水孔里的杂质清理干净,就能最大限度的保护叶片, 减少叶片遭受雷击。

⑵冰

叶片上的积冰非常危险,最好的办法是把风力机上的冰都除去。冰减少了翼型的效率,使叶轮失去平衡。在极端结冰条件下,风力机经常被迫关掉。

G)空气中的颗粒

山于叶片转动,它不可避免会与空气中的颗粒产生摩擦和撞击。在许多悄况下,叶片的叶尖速度超过70m/S,在这个速度下,空气中的颗粒会导致前缘磨损,前缘粘合会因此开裂。即使不是结构性损坏,前缘磨损也会造成很大的发电损失。

(4)髙速风、剪切风、恶劣气候

通常随着风速增加,叶片顺桨,当风速超过额定值时,叶片顺桨直至机组完全停止。

强的剪切风或大的阵风可以将叶片载荷超过其设计载荷,即使叶片处在静态状态,也会损坏叶片。暴雨、雷电、暴风雪、冰童、飓风、寒潮等恶劣气候都可能会给叶片造成损坏。

(5)疲劳寿命

如果生产的叶片疲劳寿命实验值达到了其设计要求,说明叶片抗疲劳性能良好,这是叶片很关键的一个技术指标。

4,运行和维护不当

(1)漏油

因为油渗漏后会穿透叶片层板,引起叶片分离。叶片内部缝隙需要清洁控制。叶片外层的油渗漏能造成污垢,降低其运行效果。

(2)裂缝

U测叶片裂缝,这是最容易的一种检査叶片有问题的方法。所有的裂缝应及时报告,

以保证它在变成大问题前及时修复。山于裂缝会生长,随着时间的延长,修补起来会比较贵。裂缝会使水进入叶片,在冰融气候中引起叶片损坏。

⑶污垢

当翼型变脏后,其性能受到影响。就象一辆汽车的挡风板,叶片也会很快地聚集污垢和虫子。失速调桨风力机在高风速下失速以保护风力机。这些翼型对前缘上的污垢或虫子很敏感,它们会使叶片提前失速。

一个变脏的失速定浆翼型可能会损失20%效率,因此保持干净很重要。在一些地区,每儿

个星期对叶片进行清洁是很经济的。变桨风力机翼型可避免失速,它和失速定桨叶片不

同,不受污垢影响。

(4)前缘腐蚀

在世界上一些地方,前缘腐蚀是一个严fi的问题,而其它地方可能根本不是一个问题。如果你发现前缘腐蚀在你的地区是一个问题时,我们建议使用前缘保护带,它用于叶片前缘。这些带子非常耐用,可以防止腐蚀。

(5)超额定功率运行

许多风机操作者操作风机,让机组在超高风速下运转,这样做短时间带来很大的好处是产生的功率大幅增加,但是导致的结果是机组超功率运行,叶片开始出现早期失效。

(6)失控

失控是风力机不能停下来。它可能是由于制动或桨系统出错造成。也可能是控制器或操作误差引起。这是很危险的悄况,因为叶片产生的功率随着转速增加继续上升。如果发电机不在线,没有载荷可阻止每分钟转速上升。当转速增加,就会产生儿种请况。

叶片可能回弹,撞到塔架,或者因为离心力增加,引起叶片飞散。如果这种情况发生, 叶轮会失控甩出去,风力机可能摇晃脱离塔架。因为没有一个系统是被设讣用来对付极限超

速,所以塔架或地基可能倒塌,掀翻整个风力机。不要靠近一个失控的风力机,因为它的

某些部件可能被甩出儿百英尺远。山于现代风力机奇度很高,倒塌时它要超过一个足球场

大小。

(7)叶片平衡

叶片必须平衡,使它们不会对风力机其余部分或塔架造成过载。就象汽车的轮子, 如果叶片不平衡,旋转叶片会引起载荷反复摆动。

(8)静载荷力矩

这是叶片被吊着叶根时的重量。每次轮毂旋转180度,该重量反向。反向的载荷造成许多损坏,如果叶片设计或制造有误,它就会在叶根附近断裂,因为根端所受载荷最大。当叶片越来越长时,它就成为一个关键的设计载荷。

(9)叶片震动缺陷

当叶片越来越大时,风力机就更昂贵,要使用更多的安全装置。叶片震动可以用加速计测出。控制仪能改变叶片的节矩、风力机速度或其它参数以减小不需要的震动。如果你的风力机在这点上有错,它就会变成一个严重的事故。叶片震动缺陷通常需要专门的探测工具,大多数现场技术人员不具备。我们建议用一名风力机工程师收集和分析数据,以找出原因。

(10)共振频率

当一个物体的震动固有频率与风力机转动速度相匹配时,就产生共振频率。设计叶片时,其固有频率必须和叶轮每分钟转动的频率和塔架摇摆频率不同。否则,正常的叶片跳动在叶片和风力机其它部件共振时被放大,在叶片结构上引起极限载荷。山于叶片形状象翅膀,它们在拍动方向,以边缘间不同频率震动。

当叶片装在变速风力机上,这些频率都需被理解,同时共振问题更加复杂。在叶片制造中大的修补或偏离设计会改变叶片重量,也改变共振频率。这就是为什么风力机可能装有一个叶片振动传感器,如果叶片运作接近任何固有频率,它能使风力机产生故障。

(11)叶片到塔架的间距

在现代风力机设讣中,这是一个重要的设计考虑。因为大多数风力机杲迎风的,它们往往会向后弯向塔架。

叶尖和塔架的间距受到以下因素影响:叶片刚度、叶轮转速、风速、叶片塔架距离、机舱

罩倾斜、偏航轴溢出和塔架的形状。随着时间延长,偏航轴磨损和叶片老化可能降低叶片

和塔架的间距。如果一个叶片撞到了塔架,对叶片是一个灾难性事件,它会损坏整个风机

和塔架

(12)叶片涂饰

好的叶片涂饰是比较贵的。因为叶片也很贵,所以我们建议在修补后采用好的涂饰。

不要使用辗筒或刷子来进行涂饰。一些涂饰丄作会使你不能产能,如在叶片前缘上胶衣中的刷痕。除非气动工程师把这些刷痕并入翼型中,否则它们不应该存在。你可能要化时间把它们从新叶片上打磨掉。

(13)可展开的叶尖

这些可移动的叶尖用作刹车装置,防止产生失控。它们用在定桨风力机上。拥有可展开叶尖的叶片需要叶尖维护。针对裂缝和磨损部件,要检査所有的机构。大多数带叶尖的大叶片用电缆连接叶尖至叶根处的激励机构。这些地方的问题涉及叶尖锁断裂、电缆断裂。叶片可以在没有叶尖锁的请况下起作用。但因为叶尖将展开,所以电缆断了, 叶片就不起作用了。

在我看来,有必要问是否所有的叶片应有可展开的叶尖,作为一个最后的安全措施以防止出现失控。在独立桨叶片的风力机上已出现过失控。

(14)防止叶片损坏

在搬运叶片时,适当保护翼型的薄弱之处很重要。我们经常会看到在搬运叶片时不小心,造成后缘损坏。在用皮带捆扎起来进行搬运前,我们用一个的护套来保护后缘。

(15)叶距刻痕

这些刻痕通常在叶片外面。对于小叶片这没什么,但对于大叶片,叶距刻痕应放在叶片

风力发电机叶片数目与风能利用率

风力发电机叶片数目与风能利用率 曹连芃 摘要:介绍风轮实度大小对风力机运行特性的影响,为什么现在风力发电机多为“一根杆子三根针”的结构。 关键字:风轮,风轮实度,叶尖速比,风能利用系数,一根杆子三根针,实度比,风能,风力发电机 图1是我们常见的风力发电机外观图,它有三个叶片,三个叶片与轮毂构成风轮,风轮转轴带动机舱内的发电机,由于风轮的转轴是水平的,故称为水平轴风力发电机。 图1-水平轴风力发电机 我们看到绝大多数风力发电机是三个叶片,这是为什么? 在谈这个问题之前,先介绍一个有关风力机叶片数目的概念——风轮实度。风力机叶片(在风向投影)的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度(或称实度比、容积比),是风力机的一个参考数据。 图2是几种水平轴风力机叶轮,绘有单叶片、双叶片、三叶片、多叶片四种

风轮的示意图,风轮实度的计算方法如下: S为每个叶片对风向的投影面积,R为风轮半径,B为叶片个数, σ为实度比 σ=BS/πR2 图2-单叶片至多叶片的风轮实度 在图2中从单叶片到三叶片的风轮实度比小,是低实度风轮,12叶片的风轮实度比高,是高实度风轮。 从图中看三个细细的叶片似乎让大多数风都漏掉了,为什么不采用多叶片风轮以便接受更多风能呢。 我们通过图3来做简单的解释:图上部分是风通过普通三叶片的气流示意图,气流通过叶轮做功后速度减慢,由于速度变慢气流体积有所增大,就有图中所示的气体发散的流动曲线。图2下部分是风通过多叶片的气流示意图,多叶片大大增加了气体通过的阻力,气流会分开绕过叶轮流向后方,只有部分气流通过叶轮做功,由于阻力大,通过叶片的风速也会降低得较多,所以叶轮实际得到的风功率减少了,这就是多叶片风力机得不到更多风能的重要原因。

1500型风机叶片维护

1500型风力发电机组转动系统调试与运行维护 叶片 目前1500型风机是国内风电厂的主力风机,1500型风力发电机组多采用变桨距、变速、恒频等技术,是当今世界风力发电最先进的技术代表,具有发电量大、发电品质高、结构紧凑等优点。 叶片:1500型风机发电机组采用变速变桨叶片,叶片为玻璃纤维增强环氧树脂(NOI叶片)或玻璃纤维增强聚氨酯(LM叶片)制成的多格的梁/壳体结构。 各个叶片由内置的防雷电系统,包括一个位于叶尖的金属接闪器、一根直径不小于70mm的铜电缆沿着前缘侧肋板根部向法兰区铺设且连接到变桨轴承的锲块上(对于NOI 叶片),或者是一根直径为50mm的镀锡铜电缆连接到与根部法兰相连接的避雷导杆上(对于LM叶片),不允许雷电通过紧固螺栓传到 1.叶片技术参数:

2.叶片的检查与维护 1)叶片外观检查:叶片表面应该检查是否有裂纹、 损害和脱胶现象。在最大玄长位置附近的后缘应该格外 注意。 2)叶片清洁:在通常情况下,用变桨来调节功率 的风力机,不是特别脏,部推荐清洁叶片。污垢经常周 期性的发生在叶片边缘,在前缘处或多或少会有一些污物,但是在雨季期间将会去除。叶片是否清洁,取决于 局部条件,过多的污物可影响叶片的性能和噪声等级。 3)裂缝检查:找到的所有裂纹必须记录并报告, 如果可能,必须在裂纹末端做好标记和写下日期,并且 进行拍照记录。在下一次检查中必须检查此裂纹,如果 裂纹未发展,就无需更深一步检查。 裂缝检查可通过敲击表面。可能的裂缝处必须用防 水记号笔做好标记,缺裂缝处必须记录、拍照。 如果在叶片根部或叶片承载部分找到裂纹或裂缝, 风机必须停机。 4)裂纹修补:裂纹发展至玻璃纤维处,必须修补。 如果仅仅是叶片外壳受损且生产厂家标准修补过程 允许,可立即执行修补。叶片修补完,风机先不要运行,等胶完全固化后再运行。 5)防腐检查:检查叶片表面是否有腐蚀现象,腐 蚀为前缘表面上的小坑,有时候会彻底穿透图层。叶片 应该检查是否有气泡。当叶片图层和层与层之间没有足 够的结合时会产生气泡。由于气泡腔可以聚集湿气,在 温度低于0℃时会膨胀和产生裂缝,所以这种情况要及 时进行修补。

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机组安装

4风力发电机组安装 4.1风力发电机安装 (1)风机设备吊装总体部署 结合风电场区域地形条件,根据吊装重量及起吊高度,吊装车辆采用800t 履带吊作为风机及塔架的主力吊装机械,150t液压汽车吊一台作为辅助机械,配合主吊车提升塔架和叶轮,使部件在吊装时保持向上位置,同时还可单独用于在地面组装叶轮。另外,还需配备2台50t吊车,用于在设备安装期间风场内搬运设备附件和重型工具。 风机设备安装采用组合与散装相结合的施工方案,总体安装顺序如下: 塔架下段吊装→塔架中段吊装→塔架上段吊装→机舱吊装→叶轮组合→叶轮组件吊装。 (2)塔架安装 ①塔架下段吊装 在塔架中下法兰对角安装2个“塔架中下段吊具”,在塔架下法兰安装1个“塔架辅助吊具”。 使用800t履带吊吊住塔架中下法兰面上的2个“塔架中下段吊具”;辅吊抬吊塔架下法兰的1个“塔架辅助吊具”。两车配合将塔架立直,然后辅吊摘钩,由主吊将塔架下段吊装就位。 ②塔架中段吊装 在塔架中下法兰安装1个“塔架辅助吊具”,在塔架中上法兰对角安装2个“塔架中下段吊具”。 使用主吊住塔架中上法兰面上的2个“塔架中上段吊具”,辅吊抬吊塔架中下法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后辅吊摘钩,由主吊单车将塔架中段吊装就位。 ③塔架上段吊装 在塔架上段法兰安装2个“塔架上段吊具”,在塔架中上法兰对角安装1个“塔架辅助吊具”。 使用主吊吊住塔架上法兰面上的2个“塔架上段吊具”,辅吊抬吊塔架中上法兰的1个“塔架辅助吊具”,两车配合将塔架立直,然后汽车吊摘钩,由主吊单车将塔架上段吊装就位。 (3)机舱安装 该项工作需用800t履带吊一台。 i)将固定机舱和塔架的螺栓及固定叶轮的螺栓放置在机舱内。 ii)将机舱专用吊具安装在机舱的四个吊点上,挂上吊钩。 iii)起吊机舱时机舱纵轴线应处于偏离主风向90°的位置,以便于叶轮的安装。 iv)使用800t履带吊缓慢吊起机舱至上法兰约1厘米处,安装人员用导正棒调整机舱的相对位置,同时指挥吊车缓慢下落机舱,拧上连接螺栓,按对角线顺序均匀地紧固上法兰与偏航轴承连接螺栓。 v)进入机舱,卸开吊具。 (4)叶轮组合及安装 ①叶轮组合

国家风力发电机组并网安全性评价标准

华北区域风力发电机组并网安全性评价标准 (试行) 国家电力监管委员会华北监管局 二○○八年十月

目录 一、华北区域风力发电机组并网安全性评价标准(试行)说明 (1) 二、必备项目 (4) 三、评分项目 (8) 1、电气一次设备 (8) 1.1、发电机组 (8) 1.3、主变压器和高压并联电抗器 (8) 1.4、外绝缘和构架 (9) 1.5、过电压保护和接地 (10) 1.6、高压电器设备 (10) 1.7、场(站)用配电系统 (12) 1.8、防误操作技术措施 (13) 2、二次设备 (14) 2.1、并网继电保护及安全自动装置 (14) 2.2、调度自动化 (16) 2.3、通信 (19) 2.4、直流系统 (22) 2.5、二次系统安全防护 (23) 2.6、风力发电机组控制系统 (23) 3、调度运行 (25) 4、安全生产管理 (26)

华北区域风力发电机组并网安全性评价标准(试行)说明 一、根据电监会《发电机组并网安全性评价管理办法》要求,风力发电机组并网安全性评价主要内容包括:风力发电机组的电气一次、二次设备、调度运行和安全生产管理。其中电气一次设备包括:发电机组、变压器和高压并联电抗器、电容器(包括无功动态补偿装置)、外绝缘和构架、过电压保护和接地、高压电器设备、站用配电系统和防误操作技术措施。电气二次设备包括:继电保护及安全自动装置、调度自动化、通信、直流操作系统、二次系统安全防护及风力发电机组控制系统。 二、根据对电网安全、稳定、可靠运行的影响程度,风力发电机组并网安全性评价内容分成“必备项目”和“评分项目”两部分。 “必备项目”是指那些如果不满足本评价标准的要求,则可能对电网的安全、稳定运行造成严重后果的项目。 “评分项目”是指除了必备项目之外,对电网安全稳定运行也会造成不良影响,应当满足本评价标准的其他项目。 三、本评价标准中,“必备项目”18条;“评分项目”包括四个评价单元,各单元应得分为:电气一次设备925分、二次设备1075分、调度运行100分、安全生产管理450分,共计2550分。

无叶片风力发电机--VORTEX

VORTEX——没有叶片的风力发电机就是这么酷 一.前言 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW[1]。随着全球经济的发展,所面临的能源问题和环境问题越来越严峻,使得风能等可再生能源迅速发展起来。根据国家能源局数据,2014年中国全部发电设备容量为1360GW,其中并网风电的容量达到了95.8GW,也就是说说,风电装机量在中国发电装机总量当中占据大约7%的份额。 一般情况下,我们所看见的风力发电机都是水平轴扇叶风机,他们有着很大的风机叶片,以此来吸收风能并发电。然而,这样的风电机有一些弊端。一个风电场的众多风机之间的排列需要较大的安全距离,也就是说一块固定大小的地面上能够安装的风电机数量是有限的;另外,扇叶的旋转也对鸟类带来了危险。 想象一下,一个没有叶片的风机会是什么样纸?它需要更少的材料,成本更低,噪声更小,对环境友好度更好……关上你的脑洞,来一睹它的风采吧↓↓↓

这个酷炫的没有叶片的风机是由西班牙公司Vortex Bladeless开发。无叶片风机Vortex 的工作原理是利用结构的振荡捕获风的动能,从而利用感应发电机或压电发电机将风的动能转变成电能输出。该设计理念将减少常规涡轮机中很多零部件的设计与制造,如叶片,机舱,轮毂,变速器,制动装置,转向系统等,从而使无叶片风机Vortex具有无磨损、性价比高、便于安装和维护、环境友好型及土地利用率高等显著特点。 二.Vortex的发电原理——卡门涡街 无叶片风机Vortex的基本发电原理是卡门涡街,维基百科上这样描述它,“在流体中安置阻流体,在特定条件下会出现不稳定的边界层分离,阻流体下游的两侧,会产生两道非对称地排列的旋涡,其中一侧的旋涡循时针方向转动,另一旋涡则反方向旋转,这两排旋涡相互交错排列,各个旋涡和对面两个旋涡的中间点对齐,如街道两边的街灯般,这种现象,因匈牙利裔美国空气动力学家西奥多·冯·卡门最先从理论上阐明而得名卡门涡街”[2-3]。 卡门涡街可以解释许多现象。1940年11月7日美国华盛顿州塔科马海峡吊桥(Tacoma Narrow Bridge)崩塌事件。华盛顿州政府特为此而设立专案调查组,经过美国空气动力学家西奥多·冯·卡门在加州理工学院风洞进行模型测试,证明塔科马海峡吊桥倒塌事件的元凶,是卡门涡街引起吊桥共振。原设计为了求美观及省钱,使用过轻的物料,造成其发生共振的破坏频率,与卡门涡街接近,从而随强风而剧烈摆动,导致吊桥崩塌。

(完整版)风力发电场安全规程DLT796-2012

风机发电场安全规程 1 范围 本标准规定了风力发电场人员、环境、安全作业的基本要求,风力发电机组安装、调试、检修和维护的安全要求,以及风力发电机组应急处理的相关安全要求。 本标准适用于陆上并网型风力发电场。 2 规范性引用文件 下列文件对于本文件的应用时必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 2894 安全标志及其使用导则 GB/T 2900.53 电工术语风力发电机组 GB/T6096安全带测试方法 GB 7000.1 灯具第一部分:一般要求与试验 GB 18451.1 风力发电机组设计要求 GB19155 高处作业吊篮 GB/T20319 风力发电机组验收规范 GB 26164.1电业安全工作规程第一部分:热力和机械 GB 26859电力安全工作规程电力线路部分 GB 26860 电力安全工作规程发电厂和变电站电气部分

GB 50016 建筑设计防火规范 GB 50140建筑灭火器配置设计规范 GB 50303建筑电气工程施工质量验收规范 DL/T 572 电力变压器运行规程 DL/T 574 变压器分接开关运行维修导则 DL/T 587 微机继电保护装置运行管理规程 DL/T 741 架空输电线路运行规程 DL/T 969 变电站运行导则 DL/T 5284 履带起重机安全操作规程 DL/T 5250 汽车起重机安全操作规程 JGJ 46 施工现场临时用电安全技术规范 3 术语和定义 下列术语和定义适用于本标准 3.1 风电场输变电设备 风电场升压站电气设备、集电线路、风力发电机组升压变等。3.2 坠落悬挂安全带 高出作业或登高人员发生坠落时,将坠落人员安全悬挂的安全带。 3.3

风电机组维保安全操作规程(通用版)

风电机组维保安全操作规程 (通用版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0421

风电机组维保安全操作规程(通用版) 第一条基本原则 安全是一切工作的根本。因此,负责风电场运行维护的管理人员有责任和义务教育指导并督促所有工作人员和能够接触到风机的其他人员执行风机的安全工作要求。 第二条风电场工作人员基本要求 (1)经检查鉴定没有妨碍工作的病症,能适应野外作业和高空作业。 (2)具备必要的机械、电气、安装知识。 (3)熟悉风力发电的工作原理及基本结构,掌握判断一般故障的产生原因及处理方法,掌握计算机监控系统的使用方法。 (4)维保人员应认真学习风力发电技术,提高专业水平。至少每年一次组织员工系统的专业技术培训。每年度要对员工进行专业技

术考试,合格者继续上岗。 (5)新聘维保人员应有3个月实习期,实习期满后经考核合格方能上岗。实习期内不得独立工作。 (6)所有维保人员必须熟练掌握触电现场急救方法,所有工作人员必须掌握消防器材使用方法。 第三条安全及防护设备 为了个人的安全,所有人员在风力发电设备上面或周围工作时,都必须穿戴个人防护装备以防止受伤。 个人安全保护装置包括: (1)安全帽:在风机现场及风机内停留或工作的每个人必须佩戴 (2)安全带、钢丝绳止跌扣、防坠连接装置:根据自己的体型调整安全带的松紧,系好所有的带扣。钢丝绳止跌扣是一种防跌落装置。按箭头朝上的方向将其固定在安全钢丝绳上,另一端挂在安全带(胸前的卡口)上 (3)安全鞋:在现场或风机内工作时,安装和服务人员都必须无条件穿戴安全鞋

东汽1.5MW风电机组定期维护指导书

东方汽轮机有限公司1500KW风电机组定期维护指导书 编号:版本号: FD70B-000303ASM B 风电服务处 2012年5月

本文件换版记录

1.目的及适用范围 为了统一规范定期维护工作的操作方法及维护要求,确保定期维护质量符合产品要求,特编制本文件。本文件适用于东方汽轮机有限公司1500KW风电机组的定期维护工作,维护的所有项目均包含在本手册中。 2.维护基本要求 2.1只有经过严格培训的人员才能实施服务工作,同时,东方汽轮机有限公司提 供适当的技术条件和指导。 2.2服务人员应阅读并熟悉东方汽轮机有限公司相关风场安全管理要求,并在维 护作业中严格执行。 2.3服务人员应阅读并熟悉所维护风场机组的润滑油脂清单、螺栓力矩表,熟知 高湿/盐雾地区金属件的防护要求。 2.4服务工作完成后,服务人员必须在服务报告上签字、确认。 3.维护工作内容 3.1叶片 3.2变桨轴承 3.3轮毂 3.4导流罩 3.5变桨控制机构 3.6变桨润滑系统 3.7主轴及轴承 3.8主轴润滑系统 3.9齿轮箱 3.10通讯滑环 3.11联轴器 3.12紧急刹车 3.13发电机 3.14发电机润滑系统

3.15液压系统 3.16偏航刹车系统 3.17偏航轴承 3.18偏航控制驱动机构 3.19机舱及主控柜 3.20机舱吊车 3.21机舱加热系统(低温型机组) 3.22塔筒 3.23动力、控制电缆、定转子电缆及导电轨 3.24塔基 3.25螺栓防锈处理 3.26变频器 3.27机组启动测试 3.28记录与消缺报告处理 4.维护工具 液压力矩扳手、1型扳手头、力矩扳手、套筒、测量仪表等。详见工具清单表。 5.维护注意事项 5.1所有维护工作都要严格按照有关维护要求进行。 5.2在进行维护工作时,工具、零件必须手到手传递,不得空中抛接。工具、零 件必须摆放有序,维护结束后必须清点工具及零件,不得遗留在机组内。5.3登机作业时风机必须停止运行,登机前应将远程控制系统锁定,防止误操作。 5.4不得一个人在维护现场作业。 5.5在机组维护过程中,严禁使用火源,如禁止抽烟、使用打火机等。 5.6使用机舱吊车时,应注意观察风速,必要时需使用揽风绳,必要时需手动偏 航,让吊链远离高压线路及变压器,起吊时塔基人员应远离吊物,防止吊物坠落造成人员伤害。 5.7所有旋转部件维护时,注意安全操作,小心旋转部件伤人。 5.8所有电气部件维护时,必须使用万用表测量,确认不带电后方可进行维护作

风力发电机标准IEC中文版

IEC61400-1第三版本2005-08 风机-第一分项:设计要求 1.术语和定义 1.1声的基准风速acoustic reference wind speed 标准状态下(指在10m高处,粗糙长度等于0.05m时),8m/s的风速。它为计算风力发电机组视在声功率级提供统一的根据。注:测声参考风速以m/s表示。 1.2年平均annual average 数量和持续时间足够充分的一组测试数据的平均值,用来估计均值大小。用于估计年平均的测试时间跨度应是一整年,以便消除如季节性等非稳定因素对均值的影响。 V annual average wind speed 1.3年平均风速 ave 基于年平均定义的平均风速。 1.4年发电量annual energy production 利用功率曲线和在轮毂高度处不同风速频率分布估算得到的一台风力发电机组一年时间内生产的全部电能。假设利用率为100%。 1.5视在声功率级apparent sound power level 在测声参考风速下,被测风力机风轮中心向下风向传播的大小为1pW点辐射源的A—计权声级功率级。注:视在声功率级通常以分贝表示。 1.6自动重合闸周期auto-reclosing cycle 电路发生故障后,断路器跳闸,在自动控制的作用下,断路器自动合闸,线路重新连接到电路。这过程在约0.01秒到几秒钟内即可完成。 1.7可利用率(风机)availability 在某一期间内,除去风力发电机组因维修或故障未工作的时数后余下的小时数与这一期间内总小时数的比值,用百分比表示。 1.8锁定(风机)blocking 利用机械销或其它装置,而不是通常的机械制动盘,防止风轮轴或偏航机构运动,一旦锁定发生后,就不能被意外释放。 1.9制动器(风机)brake 指用于转轴的减速或者停止转轴运转的装置。注:刹车装置利用气动,机械或电动原理来控制。 1.10严重故障(风机)catastrophic failure 零件或部件严重损坏,导致主要功能丧失,安全受到威胁。 1.11特征值characteristic value 在给定概率下不能达到的值(如超越概率,超越概率指出现的值大于或等于给定值的概率)。

风力发电机组维护检修流程及工艺要求

风力发电机组维护检修流程及工艺要求维护检修时应对风机各部件按照维护手册和维护计划逐项详细检查,特别是叶片、轮毂、导流罩、主轴、齿轮箱、集电环(及传动轴)、联轴器、发电机、空气和机械制动系统、传感器、偏航系统、控制部分、电气回路、塔筒、监控系统及配套设备检查等。 控制部分 概述控制计算机、变频器和变桨控制器通过接口彼此联系。每个组件都带有自己的监视功能。 控制计算机位于塔顶(机舱内)的机舱控制柜内,它通过玻璃光纤数据传输 电缆与塔基内的显示屏相连。控制计算机连续不断的发出转矩设定给变频器控制计算机,发出叶片角度设定值给同步控制器,同步控制器驱动在轮毂中的变桨控制电机。出现内部故障时,控制计算机可以通过所谓的看门狗电路中断安全链。 刹车通过刹车瓦的磨损和刹车是否完全松开来监视刹车情况。控制计 算机和变桨控制装置之间的通讯通过不同的系统功变频器系统由几个控制柜组成,位于塔基。变频器系统配置了自己的计算机控制系统。变频器能自己关闭,它能给信号给控制计算机使变桨控制机构立即开始工作。在同步控制器中,变桨控制自身监视只对故障起作用,象下列故障:叶片和叶片角度偏差等。它能够通过始终联结的电缆请求控制计算机快速停机。 控制面板基本功能 -按C T R L激活显示灯(屏幕节电功能)。 -连续按两次任何按键可以激活控制面板。 -某些功能的激活需要同时按两个键。如同时按下C T R L或S HI FT 键可以激活想要的功能。功能键 EN T ER用来确定通过数字键盘输入的参数值和某些菜单的确认ST OPWEC停机:风机正常停机。RE S E T复位和执行自动运行。 ST AR T快速启动。 F1指示选择菜单的位置 F2指示有关联的其他菜单 F3对按键0-9向前或向后转换数字或字母。按下F3后,当按键1 时将显示字母A,再次按 键1将显示字母B,第3次将显示

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

风力发电机组安装质量验收讲解

风力发电机组安装工程质量验收标准

1、编制依据 1.1风力发电场项目工程验收规程 DL/T5191-2004; 1.2风力发电机组塔架 GB/T19072-2003; 1.3风力发电机组验收规范 GB/T 20319—2006; 1.4风力发电场运行规程 DL/T 666-1999; 1.5风力发电场安全规程DL 796-2001; 1.6风力发电场检修规程 DL/T 797-2001; 1.7风力发电机组安全要求 GB 18451.1-2001; 1.8风力发电机组装配和安装规范 GB/T 19568-2004; 1.9风力发电机组第2部分:通用试验方法 GB/T 19960.2-2005; 1.10风力发电机组异步发电机第2部分:试验方法 GB/T 19071.2-2003; 1.11风力发电机组功率特性试验 GB/T 18451.2-2003; 1.12风力发电机组控制器试验方法 GB/T 19070-2003; 1.13风力发电机组齿轮箱 GB/T 19073-2003; 1.14风力发电机组风轮叶片JB/T 10194-2000; 1.15风力发电机组偏航系统第2部分:试验方法 JB/T 10425.2-2004; 1.16风力发电机组制动系统第2部分:试验方法 JB/T 10426.2-2004; 1.17风力发电机组一般液压系统 JB/T 10427-2004; 1.18电气设备交接试验标准 GB 50150-2006; 1.19电气装置安装工程质量检验及评定规程DL/T5161-2002; 1.20参照《风力发电工程施工与验收》中国水利水电出版社2009、华锐风电科技(集团)股份有限公司、广东明阳风电产业集团有限公司等风机生产厂家的风力发电机组安装手册。 2、总则 2.1 本标准适用于xxx风力发电有限公司所属1.5MW及以上风力发电机组安装工程的质量验收,其它型号的风电机组可参照执行。 2.2 相关单位应按本标准及有关规定的要求,及时进行质量检查验收并签证。对本标准中尚未涉及的项目和不具体、不完善的质量标准,由建设单位负责组织设计、制造、监理等单位代表,在现场依据有关标准,协商制订补充规定作为该工程质量检验依据。 2.3 本标准按每台机组安装为一个子单位工程,共有机舱叶轮安装、塔架安装和电缆敷设

最新风力发电标准大全

风力发电标准大全 本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。1、风力发电国家标准 GB/T 2900.53-2001电工术语风力发电机组 GB 8116—1987风力发电机组型式与基本参数 GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件 GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981—1992风力设计通用要求 GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709—2002风电场风能资源测量方法 GB/T 18710—2002风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件

GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件 GB/T 21150-2007失速型风力发电机组 GB/T 21407-2008双馈式变速恒频风力发电机组 2、风力发电电力行业标准 DL/T 666-1999风力发电场运行规程 DL 796-2001风力发电场安全规程 DL/T 797—2001风力发电厂检修规程 DL/T 5067—1996风力发电场项目可行性研究报告编制规程 DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准 JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件

风力发电机组的运行维护技术

编订:__________________ 单位:__________________ 时间:__________________ 风力发电机组的运行维护 技术 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6351-59 风力发电机组的运行维护技术 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重要。现在就风机的运行维护作一下探讨。 一.运行 风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的

运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。 1.远程故障排除 风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。 除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种: (1)风机控制器误报故障;

风力发电机叶片的维护讲解

酒泉职业技术学院 毕业设计(论文) 11 级风能与动力技术专业 题目:风力机叶片的故障分析及维护 毕业时间:二O一四年六月 学生姓名:王立伟 指导教师:甄亮 班级:风能与动力技术(1)班 2013年11月2日

酒泉职业技术学院届各专业毕业论文(设计)成绩评定表

目录 摘要 (3) 一、风机叶片简介 (3) 二、维护叶片的目的 (3) 三、叶片产生问题的原因及故障分析 (4) (一)叶片产生问题的原因类型 (4) (二)风机叶片的常见损坏类型及诊断方法 (9) 四、叶片的维护 (13) (一)叶片裂纹维护 (13) (二)叶片砂眼形成与维护 (13) (三)叶尖的维护 (13) 总结 (14) 参考文献 (15) 致谢 (16)

风力机叶片的故障分析及维护 摘要:叶片是风力发电机将风能转化为机械能的重要部件之一,是获取较高风能利用系数和经济效益的基础,叶片状态的好坏直接影响到整机的性能和发电效率,应该引起风电企业的高度重视。风机多是安装在环境恶劣、海拔高、气候复杂的地区,而叶片又恰恰是工作在高空、全天候条件下,经常受到空气介质、大气射线、沙尘、雷电、暴雨、冰雪的侵袭,其故障率在整机中约占三分之一以上。定期检查,早期发现,尽快采取措施,把问题解决在萌芽状态是避免事故、减少风险、稳定电场收益的最有效方式。。 关键词:叶片;故障分析;维护 一、风机叶片简介 风力发电机叶片是一个复合材料制成的薄壳结构,结构上分根部、外壳、龙骨三个部分。类型多种,有尖头、平头、钩头、带襟翼的尖部等。制造工艺主要包括阳模→翻阴模→铺层→加热固化→脱模→打磨表面→喷漆等。设计难点包括叶型的空气动力学设计、强度、疲劳、噪声设计、复合材料铺层设计。工艺难点主要包括阳模加工、模翻制、树脂系统选用。叶片是一个大型的复合材料结构,其重量的90%以上由复合材料组成,每台发电机一般有三支叶片,每台发电机需要用复合材料达四吨之多。 二、维护叶片的目的 风机叶片是风电机组关键部件之一,其性能直接影响到整个系统的性能。叶片工作在高空,环境十分恶劣,空气中各种介质几乎每时每刻都在侵蚀着叶片, 春夏秋冬、酷暑严寒、雷电、冰雹、雨雪、沙尘随时都有可能对风机产生危害,隐患每天都有可能演变成事故。据统计,风电场的事故多发期多是在盛风发电期,而由叶片产生的事故要占到事故的三分之一,叶片发生事故电场必须停止发电,开始抢修,严重的还必须更换叶片,这必将导致高额的维修费用,也给风电场带来很大的经济损失。在我国风电开发还处于一个发展阶段,风场管理和配套服务机制尚不完善,尤其是风电企业对叶片的维护还没有引起充分认识,投入严重不足,风电场运转存在许多隐患,随时都会出现许多意想不到的事故,直接影响到风电场的送电和经济效益。根据对风电场的调查和有关数据分析,并参阅了许多国外风电场维护的成功经验,我们对风电场的日常维护的必要性有

风力发电机叶片材料的选用

风力发电机叶片材料的选用 叶片是风力发电机组的重要构件。它将风能传递给发电机的转子,使之旋转切割磁力线而发电。为确保在野外极其恶劣环境中长期不停、安全地运行,对叶片材料的要求是:①密度小且具有最佳的疲劳强度和力学性能,能经受住极端恶劣条件和随机的负荷(如暴风等)的考验,确保安全运转20年以上;②成本(精确说为分摊到每度电的成本)低;③叶片的弹性、旋转时的惯性及其振动频率特性曲红都正常,传递给整个发电系统的负荷稳定性好; ④耐腐蚀、耐紫外线(UV)照射和抗雷击性好;⑤维护费用低。 FRP完全可以满足以上要求,是最佳的风力发电机叶片材料。 1.1 GFRP 目前商品化的大型风机叶片大多采用玻璃纤维增强塑料(GFRP)制造。GFRP叶片的特点为: ①可根据风机叶片的受力特点来设计强度与刚度风机叶片主要是纵向受力,即气动弯曲和离心力,气动弯曲载荷比离心力大得多,由剪切与扭转产生的剪应力不大。利用玻璃纤维(GF)受力为主的受力理论,可将主要GF布置在叶片的纵向,这样就可使叶片轻量化。 ②翼型容易成型,可达到最大气动效率为了达到最佳气动效果,利用叶片复杂的气动外形,在风轮的不同半径处设计不同的叶片弦长、厚度、扭角和翼型,如用金属制造则十分困难。同时GFRP叶片可实现批量生产。 ③使用时间长达20年,能经受108以上疲劳交变载荷GFRP疲劳强度较高,缺口敏感性低,内阻尼大,抗震性能较好。 ④耐腐蚀性好由于GFRP具有耐酸、碱、水汽的性能,可将风机安装在户外,特别对于近年来大力发展的离岸风电场来说,能将风机安装在海上,使风力机组及其叶片经受各种气候环境的考验。 为了提高GFRP的性能,还可通过表面处理,上浆和涂覆等对GF进行改性。美国的研究表明,采用射电频率等离子体沉积去涂覆E-GF,其拉伸及耐疲劳性可达到碳纤维(CF)的水平。 GFRP的受力特点是在GF方向能承受很高的拉应力,而其它方向承受的力相对较小。 叶片由蒙皮和主梁组成,蒙皮采用夹芯结构,中间层是硬质泡沫塑料或Balsa木,上下面层为GFRP。面层由单向层和±45°层组成。单向层可选用单向织物或单向GF铺设,一般用7或4GF布,以承受由离心力和气动弯矩产生的轴向应力;为简化成型工艺,可不用

风力发电机组验收标准[]

国电电力山西新能源开发有限公司 风力发电机组验收规范 为确保风力发电机组在现场安装调试完成后,综合检验风电机组的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 一、编制依据: 1、风力发电机组验收规范 GB/T20319-2006 2、建筑工程施工质量验收统一标准GB50300 3、风力发电场项目建设工程验收规程 DL/T5191-2004 4、电气设备交接试验标准GB50150 5、电气装置安装工程接地装置施工及验收规范GB50169 6、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 7、电气装置安装工程低压电器施工及验收规范GB50254 8、电器安装工程高压电器施工及验收规范GBJ147 9、建筑电气工程施工质量验收规范GB50303 10、风力发电厂运行规程DL/T666 11、电力建设施工及验收技术规程DL/T5007 12、联合动力风电机组技术说明书、使用手册和安装手册 13、风电机组订货合同中的有关技术性能指标要求 14、风力发电机组塔架及其基础设计图纸与有关标准 二、验收组织机构 风电机组工程调试完成后,建设单位组建验收领导小组,设组长1名、副组长4名、组员若干名,由建设、设计、监理、施工、安装、调试、生产厂家等有关单位负责人及有关专业技术人员组成。

三、验收程序 1 现场调试 (1)风力发电机组安装工程完成后,设备通电前应符合下列要求:(a)现场清扫整理完毕; (b)机组安装检查结束并经确认(内容见附表1); (c)机组电气系统的接地装置连接可靠,接地电阻经检测符合机组的设计要求(小于4欧姆); (d) 测定发电机定子绕组、转子绕组的对地绝缘电阻,符合机组的设计要求; (e) 发电机引出线相序正确,固定牢固,连接紧密; (f) 照明、通讯、安全防护装置齐全。 (2) 机组启动前应进行控制功能和安全保护功能的检查和试验,确认各项控制功能好安全保护动作准确、可靠。 (3) 检查设定风力发电机组控制系统的参数,控制系统应能完成风力发电机组的正常运行控制。 (4)风机必须通过下列试验:紧急停机试验、振动停机试验、超速保护试验。(说明:依据《DL/T5191—2004 风力发电机项目建设工程验收规程》) 2 试运行 风力发电机组经过通电调试后,进行试运行,要求试运行的时间不得小于250小时。试运行前应具备齐全的安装验收报告、调试报告等必须的报告资料,业主、设备制造商、试运行单位达成共同认可的试运行验收协议。试运行时间从所签署预验收申请表中的时间开始算起。合同条款约定的备品备件、易耗品及运行维护专用工具已经全部交付建设单位。

相关文档
相关文档 最新文档