文档视界 最新最全的文档下载
当前位置:文档视界 › 风电叶片维护研究进展

风电叶片维护研究进展

风电叶片维护研究进展
风电叶片维护研究进展

风电叶片维护研究进展

一.风电叶片维护的必要性

我国风电快速发展始于2006年,当时国内风机以600kw,700kw机型为主,2007年3月,我国首台1.5MW直驱永磁发电机组在新疆投运,拉开了兆瓦级风力发电发展的序幕。随着风电市场的逐渐成熟,大型风力发电机组相继出现,叶片长度也由原来的30-40m增加至60-70m。叶片长度的不断增长,同时带来叶片重量的增加,但是叶片设计使用寿命为20年,如何在叶片20年的生命周期内保持其高效运行至关重要。

风力发电叶片一般安装于偏远的地区,运行环境恶劣,如较大的风沙侵袭,-30℃至50℃的循环温差,以及强紫外光的老化等。目前2.5MW-50.3m的叶片,叶尖运行速度高达300公里/小时,在这样高转速下,风沙和雨滴对风电叶片的侵蚀相当于等离子切割,叶片表面容易形成空洞。研究表明,叶片表面粗糙度的增加以及缺陷的累积将导致发电效率降低5%-30%,还可能导致叶片运行失稳造成齿轮箱的故障。叶片小的缺陷如果没有及时发现并进行专业修复,将导致裂纹延伸至叶尖,造成叶片大面积的开裂,不得不进行大型修补或者返厂处理,给风场业主带来重大经济损失。

二.风电叶片常见的损伤

风电叶片虽然在设计时,赋予它足够的强度和刚度,但是在其20年的使用寿命中,也会像其他复合材料部件一样,出现各种各样的问题。风电叶片从生产厂家生产,通过长距离的运输到达风场,使用大吨位吊车进行安装。风电叶片在上述每一个步骤都可能发生损伤破坏。一旦风电叶片开始运行,将受到雨水,风沙以及大气的腐蚀,同时还要经受强紫外的老化。在风压和旋转持续疲劳载荷的作用下,隐藏在叶片内部的缺陷,如分层,气泡,叶片组件之间的粘合缺陷将会逐渐显现出来。

风机正常运行情况下,叶片会在不同年限出现相应的受损状况:

2年:表面胶衣出现磨损,脱落现象,甚至出现小的砂眼。

3年:叶片出现大量砂眼,叶片前缘尤为严重,风机运行产生阻力,事故隐患开始显示。

4年:表面胶衣脱落至极限,叶片前缘出现通透的砂眼,横向裂纹开始出现,运行阻力增加,叶片防雷指数降低。

5年:是叶片事故高发年,叶片外部补强材料磨损严重,叶片合模缝已露出,叶片在疲劳载荷下,横向裂纹加深延长,内粘合处出现裂纹,防雷指数降低等。2.1根据损伤产生原因进行分类

2.1.1生产原因

1.为了降低制造成本,设计部门减少安全余量。

2.由于成本压力,生产厂家纷纷更换为价格低廉的不满足设计要求的原材料。3.由于生产提速,树脂固化不良产生的“早产儿”叶片。

4.生产过程中,未探测出的加工缺陷,如叶片内部的分层,白斑,粘接过程中的虚粘等。

2.1.2运输原因

1.运输过程中,叶片与周边物体的碰撞刮擦。

2.由于操作不当,造成的叶片跌落撞击。

3.叶片调运过程中,叶片工装位置的损伤。

4.叶片吊装时容易造成叶片后缘损伤。

2.1.3自然原因

1.雷击是造成叶片运行过程中损伤的主要原因之一。雷击这种自然现象是不可避免的,但是避雷系统工作不正常和叶尖排水孔堵塞是造成叶片雷击破坏的主要原因。

2.叶片在高速运行过程中,雨滴,沙石和气流对叶片前缘的磨损不可避免,特别是叶尖位置。研究表明,叶片的叶尖每年以0.5cm的速度缩减。

3.主机产生的油污,一方面会附着在叶片表面,影响叶片气动性能,另一方面,可能渗入叶片内部微裂纹,造成叶片分层,开裂。

2.2叶片产生缺陷的类型

2.2.1前缘腐蚀

前缘腐蚀导致翼型的变化,造成发电效率降低,应尽早进行修补。

2.2.2前缘开裂

如果前缘腐蚀得不到及时修复,湿气将侵入前缘空洞中,一旦结冰将导致前缘出

现开裂。前缘出现开裂,必须进行停机进行修复,不然将造成蒙皮大面积的撕裂,导致叶片报废。一般来说,超过2m以上的开裂就需要对叶片进行大型的修补或者直接导致叶片报废。

2.2.3后缘损伤

由于叶片后缘厚度较薄,特别是叶尖区域,小于3mm。所以,叶片运输和安装过程中,稍不注意,将会造成叶片后缘分层或者开裂。此类缺陷一般范围较小,但需要及时进行修补,不然损伤位置会沿着叶片弦向撕开,直至梁的位置,这样叶片距离灾难性的实效也就不远了。

2.2.4表面裂纹

当叶片表面出现裂纹以后,水或者湿气将会渗入复合材料中,对复合材料产生一定的影响。特别是叶片balsa三明治夹心区域,水分会腐蚀balsa芯材,导致叶片结构失稳,叶片破坏。

2.2.5雷击损伤

叶片雷击会导致叶片的损伤,同时也会导致避雷器的丢失或者避雷系统的损坏,当雷击再度发生时,叶片很容易遭到破坏。所以叶片遭受雷击后,对叶片避雷系统的检查必不可少。

三.国内外风电叶片维护现状

3.1叶片维护类型

风电叶片的维护分成两种。一种是头痛医头,脚痛医脚的机动修补;另一种是定期维护。国外成熟风电场的统计数据表明,定期维护的费用比机动修补节省66%。

3.1.1机动修补

当叶片在运行过程中发现非常明显的缺陷后,停运机组,解决叶片的问题。这种方式虽然节省了日常的检查费用,但是问题很可能发生的盛风期,机组的停机将减少风电场的收入。另外,由于损伤较大,需要高额的修补费用才能完成修复,还有可能缺陷发现的不及时导致叶片需要返厂修补,这样造成的经济损失将不可估计。

3.1.2定期维护

在风较小的季节,对风电场的叶片定期进行检查,并形成维护台账。针对前

缘腐蚀以及叶片避雷系统进行检查,维护和修补。这样,叶片的损伤程度较为轻微,修补费用相对较低。同时,由于叶片表面的修补,提高了叶片的气动性能,使盛风期具有更高的发电效率。

3.2国内风电叶片维护现状

虽然中国风电装机容量规模增长迅速,但是由于风电入网难,发电能力受风速限制等问题的影响,风电利用率不足1/3。从第一台兆瓦级叶片下线至今,兆瓦级叶片运行时间不足5年,风电叶片的质保期为5年,兆瓦级叶片的事故多发期还没有到来,即使3,5支叶片出现问题,叶片生产厂家也负责包干。以上两个原因造成,国内风电场运行不成熟,风电业主也还没有真正感受风机停机和叶片维修给他们带来的经济上的巨大损失。国内绝大多数风电场,采用机动修补解决叶片运行过程中出现的问题。

目前,由于大部分兆瓦级叶片还在保质期内,叶片运行时间较短,叶片的质量问题还没有完全暴露出来,所以国内风场主要以叶片的售后厂家为主,但是大型的叶片厂均没有把叶片维护保养作为一个重要的业务来做,企业的宣传资料很少提及此部分业务,只有内蒙古航天亿久在网站有所提及,还展示部分案例。

专门从事叶片维护和修补的企业比较典型的企业有3S Lift,沈阳绿新风能设备维护有限公司和上海长知实业有限公司三家公司。

3S lift从事叶片检修平台的生产,获得欧盟颁发的CE安全认证和ISO9000质量管理体系的认证,在北美和欧洲拥有全球合作公司,凭借此平台,成为LM 全球战略合作伙伴,Repower长期合作伙伴,其客户还包括TPI,GE,Acciona,Dawntine,华锐,金凤,东汽,北重等。

沈阳绿新风能设备维护有限公司具有十余年的从事风机维修和维护的经验,制定了叶片维修企业标准,发明叶片维修和维护方面的专利四项,公司总经理王玉良在《风能设备》和《风能资源》做过风机叶片维护方面的专题报告,是国内风机维护私营企业代表之一。

上海长知实业有限公司从事风机叶片维修6年以上,成功维修叶片1000支以上,所有维修工程师均通过世界上最大的叶片生产厂商的专业培训。2012年8月24日通过了TUV颁发的ISO9001质量管理体系认证证书,是龙源风电公司在叶片维修领域的长期合作伙伴。

3.3国外风电叶片维护现状

欧洲的风电场运行时间最久,也是世界上最成熟的风电场。欧洲风电业主普遍认为,每两年需要对叶片进行一次检查十分必要,合适的维护从定期对叶片进行检查做起。叶片的预防性检查和外形管理是保证风力发电机在额定功率发电的必要条件。据丹麦一项研究表明:一套风机每年平均维护费用约为1.5%-2%风电设备投资。如果风机定期进行保养,每年将规律支出固定的费用,但是换来的是风机在其寿命周期内保持高效的运行。所以这是一个支出与产出的平衡问题。

损伤的修补和缺陷的处理没有统一的维修模式,也不能仅仅凭以往的经验进行。它需要充分理解叶片结构,叶片的制造工艺以及叶片气动原理。风电叶片的检查,清洁和修补必须由专业人员完成。大部分风电叶片是复合材料制作的,许多情况下,叶片的缺陷是不能够凭肉眼观测发现的,但是内部缺陷很容易在材料内部扩展,导致叶片报废。

目前,在风电叶片的维护和维修方面,技术人员引进了大量先进的技术,降低叶片的维护费用的同时,提高叶片维护和维修的效率,保证风电业主的最大收益。叶片修补的过程中,保证叶片修补效率和修补质量非常重要,但是,随着叶片的不断增大,维修作业人员的安全越来越引起人们的关注。

Bladefence作为专业的叶片检测,维护和维修公司,是北欧第一家获得GL 认证的维修公司。GL认证要求其维修质量,维修人员素质,工作方式,维修用材料以及文档系统均符合GL的标准。

WES是美国最大的叶片维护公司之一,专注叶片维护25年,进行叶片定期维护,叶片质保期检查,吊装前检查,专业叶片停机维修和叶片返厂维修等业务。拥有先进的测试设备用于叶片检测,继承MFG64年复合材料加工制造经验和25年叶片代工经验,拥有自己的研发中心和检测中心,自主的复合材料设计能力。

数码透镜摄像机热像检测仪

数显式低阻欧姆计超声波转化器

德国弗劳恩霍恩研究所(Fraunhofer institute for factory operation and Automation)开发的RIWEA-叶片清洁机器人,用一条绳子维持自己在叶片的移动,自动喷水清洁叶片表面的污垢,机器人还配备了多种高性能的传感器,包括红外辐射,高清热成像设备以及超声波检测设备等。这样仅需要64min就可以清洁并检测一片叶片,比人工清洁叶片节省3小时的时间。

美国Rope partner公司将错位散斑干涉法应用与叶片表面的检查。这种方法广泛应用于航空航天领域,它克服了超声波检测法需要与叶片进行接触,检查效率低的不足,提高了叶片无损检测的效率。其技术人员经过世界领先叶片公司针对叶片表面缺陷和结构缺陷的修补培训,对叶片的结构和载荷非常了解,所以它们知道如何处理发现的缺陷,并保证修补的可靠性。

3M公司发现挂机两年的叶片,前缘就会出现腐蚀,此缺陷会影响叶片气动性能,从而降低发电效率。3M公司针对叶片前缘腐蚀开发了一款聚氨酯胶带,3M Wind Protection Tapes,具有良好的耐老化和耐腐蚀特性,并且适用于复杂的型面,施工方便,广泛应用于叶片的维护。

Gurit公司为叶片维护开发了紫外光固化的RENUVO修补材料,其通过了GL认证。它包括紫外光固化单组份树脂和玻纤预浸料,紫外线灯及相关设备。该产品使用温度可低至5℃,通过紫外光的照射,可以在90S内固化,大大缩短了叶片维修时间。在较差的环境条件下实现快速修补是一个最大的挑战,对客户快速响应促使Renewable advice公司和BS rotor technic公司使用RENUVO叶片修补产品。

四.风电叶片维护技术

叶片维护主要包括叶片的定期检查和叶片损伤的修补两个方面的内容,叶片维护的目标是服务的可靠,安全和快捷。

4.1无损检测技术

叶片给无损检测技术提供了一系列的挑战。主要是叶片的铺层为20-60mm 渐变铺层,再加上叶片不断变化的几何外形,使无损探测很难对至关重要的粘接线进行探测。立足于事业部现有设备——超声波探测仪,对复合材料叶片无损探

伤技术进行研究。

4.2叶片修补技术

叶片修补技术的难点是叶片设计来源于不同的设计公司,所以各家叶片的结构,铺层方式,原材料使用以及所受载荷情况各不相同。国外的叶片维护厂家绝大多数接受过世界顶级叶片生产厂家的培训,如LM,V estas,Enercon 等,保证叶片修补的可靠性。考虑到目前国内大部分叶片厂家来源于德国Aerodyn公司的设计,同我事业部叶型相同或者相似,所以从Aerodyn叶片入手,研究叶片修补技术。

1.叶片修补用原材料研究——叶片快速修补技术。

虽然目前风电业主对叶片修补时间没有严格的要求,但是需要从现在开始对叶片快速修补材料进行研究,以备不时之需。主要从低温修补工艺参数,材料基础力学参数,以及修补可靠性的研究。

(1)紫外固化树脂体系和紫外固化预侵料体系,

(2)快速固化聚氨酯修补胶黏剂,

(3)3M前缘保护胶带的使用,

(4)高性能修补涂料以及防结冰涂料体系。

2.叶片修补设计。

叶片修补除了考虑原材料的选择,叶片缺陷位置的铺层结构和应力状态十分关键,为叶片修补铺层设计和验证提供依据。

(1)利用有限元分析对叶片局部缺陷进行分析,并对缺陷修补进行铺层设计,(2)选择修补原材料体系以及修补工艺,

(3)通过实验验证修补的可靠性。

五.结束语

2011年中国新增装机风电机组11409台,装机容量17630.9MW,累积安装风电机组45894台,装机容量62364.2MW,年增长39.4%。从2007年第一台兆瓦级叶片的挂机至今,兆瓦级风电叶片运行将近5年,各个风场叶片的保质期将陆续过期,所以叶片维护将具有很广阔的市场。

虽然由于风电并网还存在一些问题,业主对风电叶片的维护和修补时间没有要求,但是随着国内风电场运行的逐渐成熟,业主将越来越会关注。所以我认为

我们要从现在开始进行技术储备,将快速响应,服务优异作为我们的目标,按照国外企业为标杆,打造我们自己品牌的售后队伍。

5.1市场方面

选择2个风电场进行定期进行监控,一方面可以进行数据积累,另一方面针对出现缺陷跟业主协商进行处理,创造一定的收益。最好满足一下条件:1.运行1年,3年的风电场;

2.我们自己挂机的风电场,同时存在其他厂家的叶片;

3.每年进行两次的叶片检查。

数据收集:

1.叶片在不同年限惯性损伤的情况,并对损伤位置,损伤程度和损伤时间进行记录。

2.针对每年每台风电机组发电效率进行记录。

5.2文档方面

1.完善售后表格,分别针对叶片维护,叶片修复建立两套档案,并进行归档。

2.完善售后业务流程,检查-发现缺陷-业主意见-修补方案评审-实施修补-修补验收-后期跟踪-文件归档,形成闭环。

3.针对实施的叶片修补方案,利用有限元和实验相结合的方法进行验证,随后形成标准化的修补文件。

5.3人员方面

1.根据年度售后任务,培养专门的售后人员。

2.定期进行安全作业培训,培养安全意识,杜绝安全质量事故的发生。

3.对于成熟的叶片修补工艺,定期进行操作培训,提升修补标准化,保证修补质量。

5.4资质方面

1.取得相关登高作业安全认证工作

2.取得ISO9001质量认证

3.取得中国船级社关于叶片维护和修复方面的认证。

光伏发电项目申请报告

xxxxxx有限公司 600kWp分布式光伏发电(自发自用、余电上网)项目 申请报告 xxxxxx有限公司 二〇一六年十一月

目录 6 7 9 11 附图: 项目地理位置图 附件: 营业执照 租赁合同

第一章项目概况 1.1建设单位简介 xxxxxx有限公司位于xxxxxx,注册资本500万元。企业经营范围:光伏发电技术研发;光伏发电工程施工及管理;园林绿化工程、亮化工程、市政工程施工;建筑水电暖安装。本项目太阳能电站的安装地点为豪润果蔬市场建筑物屋顶。 1.2太阳能资源和气象条件 全年平均日照总时数小时,日照百分率为57%。最多为小时(1968年),最少为小时(1964年)。xxx区地处中纬度,太阳辐射能比较丰富。历年平均太阳总辐射量为千卡/平方厘米,5、6月份最多,为千卡/平方厘米,12月份最少,为千卡/平方厘米。

1.3建设条件 经过图纸勘测和设计要求,豪润果蔬市场楼屋顶可用于分布式太阳能光伏发电建设,建筑屋顶周围地形无明显的高大障碍物,光照良好。太阳能开发利用资源较好。兼备了良好的软硬件建设条件。 1)平坦稳定的地形、地貌情况,周围无高大建筑遮挡; 2)良好的气候条件富集的太阳光照资源,保证较稳定的发电量; 3)厂区现有自用电量较大,本工程所发电力可通过生产车间就地自行消纳; 4)园区内配电网络线径具有足够的承载能力,不用进行额外电力改造; 5)便利的交通、运输条件和生活条件; 6)能产生附加的经济、生态效益,有助于抵消部分电价成本; 7)良好的示范条件,为山东省分布式光伏项目起到示范作用,具有一定的社会影响力。 1.4建设类型 本项目总装机容量为600kWp,推荐采用集中发电、集中并网方案。电池组件选用 280Wp 单晶硅电池组件,采用最佳倾角为 30°固定安装在支架上。本项目逆变器分5路输入,每路由21块太阳电池组件串联后输入。逆变器输出电压为交流380V,采用交流三相

复合材料风电叶片先进制造技术研究现状

复合材料风电叶片先进制造技术研究现状 摘要:在风电行业中,材料的选择对叶片的性能有重要的影响。随着科技水平 的进步,复合材料自出现就得到了认可,并在发展中快速推广,作为风电叶片复 合材料有自身优势。复合材料风电叶片也比常规材料风电叶片有更好的性能,因 此获得了广泛的应用。本文将围绕复合材料风电叶片的制造和发展进行分析,以 供参考。 关键词:复合材料;风电叶片;制造;发展 1.前言 当前,自动化技术在逐渐向制造业慢慢渗透,推进了制造业进入了自动化的 行业。为了抓住这个千载难逢的机会,我国的各个行业都在积极探索先进的自动 化技术,促进制造行业的快速转型,促进发展。 2.自动化智能化制造技术 2.1智能温控模具技术 模具是形成叶片的关键。现有的叶片模具加热方法通常是电加热或水加热。 电加热重量轻,温度迅速升高,并且可以轻松实现灵活的控制。它具有低成本的 水加热和稳定的温度控制能力。然而,这两种常规加热方法的缺点是不能实时反 映模具工作表面的温度。在叶片成型过程中,特别是在固化阶段,模具表面温度 的准确性直接影响叶片材料的最终性能。如果叶片的固化温度过低且固化程度不足,则产品性能将无法满足设计要求。如果温度太高,树脂的反应可能会恶化, 热量可能会集中,并且模具和产品可能会报废。因此,能够智能地控制和调节温 度的模具对于确保风力涡轮机叶片制造的可靠性至关重要。 2.2自动铺放技术 如今,复合风叶片的组件生产以劳动力手工作业为主,包括蒙皮,玻纤布、 腹板和大梁,沉重、复杂并且难以准确放置。有效地保证铺层的平坦度并不容易,并且最终叶片的质量和性能不稳定。由于叶片的尺寸较大且布局复杂,因此很难 将自动布局应用于叶片生产,因此,近年来,这项技术是划时代的并且已得到广 泛应用。 (1)主梁自动铺放及成型技术 主梁是叶片的主要承重组件,通常在铺设过程中不能有褶皱,并且需要很高 的放置精度,因此需要很长时间。通常,大叶片主梁层需要大约2个小时的铺设 时间。 (2)壳体自动铺放技术 当前,铺设玻纤布的主要方法是使用手工来铺设,但是耗时长,并且在铺设 过程中需要手动调节和铺设。由于用手拉动玻璃纤维布,因此会发生玻璃纤维布 的变形及其对产品质量的影响等问题。用于风力发电叶片的自动铺设装置主要包 括机械臂,放置头,光纤交叉输出,光纤交叉切割,压缩,光学位置检测,3D激光扫描仪。在此过程中,压辊在每个输出设备顶部和底部的反向移动以及织物上 的相对压力允许织物的运输。在机械臂的驱动下,铺层沿着导轨移动,从而完成 了在模具中铺布。 2.3自动打磨技术 目前,复合风轮机叶片的打磨主要是人工打磨,劳动强度大,污染环境,粉 尘对人体有害。当前,正在开发各种自动研磨技术和设备,其基本上使用机器人臂,自动引导车辆或导轨,智能控制系统,传感器等来根据预设程序来定位和定

风力发电基础知识

风力发电基础知识 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。 风力发电的原理,是利用风力带动风车叶片旋转,再透过 增速机将旋转的速度提升,来促使发电机发电。依据目前的风 车技术,大约是每秒三公尺的微风速度(微风的程度),便可 以开始发电。风力发电正在世界上形成一股热潮,为风力发电 没有燃料问题,也不会产生辐射或空气污染。 转子空气动力学 为了解风在风电机的转子叶片上的移动方式,我们将红色带子 绑缚在模型电机的转子叶片末端。黄色带子距离轴的长度是叶 片长度的四分之一。我们任由带子在空气中自由浮动。本页的 两个图片,其中一个是风电机的侧视图,另一个使风电机的正视图。 大部分风电机具有恒定转速,转子叶片末的转速为64米/秒,在轴心部分转速为零。距轴心四分之一叶片长度处的转速为16米/秒。图中的黄色带子比红色带子,被吹得更加指向风电机的背部。这是显而易见的,因为叶片末端的转速是撞击风电机前部的风速的八倍。 为什么转子叶片呈螺旋状? 大型风电机的转子叶片通常呈螺旋状。从转子叶片看过去,并向叶片的根部移动,直至到转子中心,你会发现风从很陡的角度进入(比地面的通常风向陡得多)。如果叶片从特别陡的角度受到撞击,转子叶片将停止运转。因此,转子叶片需要被设计成螺旋状,以保证叶片后面的刀口,沿地面上的风向被推离。 风电机结构

机舱:机舱包容着风电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风电机塔进入机舱。机舱左端是风电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风电机的低速轴上。 低速轴:风电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风电机上,转子转速相当慢,大约为19至30转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。 高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风电机被维修时。 发电机:通常被称为感应电机或异步发电机。在现代风电机上,最大电力输出通常为500至1500千瓦。 偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装 置由电子控制器操作,电子控制器可以通过风向标来感觉风向。 图中显示了风电机偏航。通常,在风改变其方向时,风电机一 次只会偏转几度。 电子控制器:包含一台不断监控风电机状态的计算机,并控制 偏航装置。为防止任何故障(即齿轮箱或发电机的过热),该 控制器可以自动停止风电机的转动,并通过电话调制解调器来 呼叫风电机操作员。 液压系统:用于重置风电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风电机具有水冷发电机。 塔:风电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。 风电机发电机 风电机发电机将机械能转化为电能。风电机上的发电机与你通常看到的,电网上

海上风电设备项目申请报告

关于海上风电设备项目 申请报告 一、建设背景 加快形成以创新为引领和支撑的经济体系和发展模式,打造经济 增长新引擎,使创新成为引领全面振兴的第一动力,推进创新型建设。 (一)强化企业创新主体地位 坚持企业在创新中的主体地位和主导作用,支持科技型中小微企 业健康发展,大力培育和发展创新型企业,建设一批创新型领军企业,形成以高新技术企业为重点,科技型龙头企业、科技型中小微企业协 同发展新格局。 (二)发挥创新示范引领作用 打造创新高地,引领、示范和带动全省加快实现创新驱动发展。 (三)提升创新保障能力 以提升创新基础能力,完善创新政策支持体系为重点,加强创新 保障体系建设,切实增强科技创新能力。 (四)激发人才创新创造活力

坚持人才资源是第一资源,切实把人才资源开发放在科技创新最 优先的位置,重点在用好、吸引、培养上下功夫,加快创新型人才队 伍建设,开创人才引领创新、创新驱动发展、发展集聚人才的良好局面。 与光伏发电的火热不同,近年来我国风电建设速度不断下滑, 2017年风电新增装机容量更是创下近5年新低。但同时,我国海上风 电异军突起,装机规模连续5年快速增长,已跃居全球第三。 我国海上风电起步晚、发展快,面临着成本更低的陆上风电和光 伏发电等其他新能源的激烈竞争。在近日举行的2018海上风电峰会上,与会专家表示,在我国海上风电的下一阶段发展中,须通过技术创新 和规模化开发,尽快摆脱补贴依赖,通过市场化方式实现快速发展。 数据显示,经过11年发展,截至2017年,中国海上风电新增装 机容量116万千瓦,累计装机容量达到279万千瓦。海上风电场实现 多点开花。如果行走在江苏、福建、广东等多个省份的海岸线,都能 看见白色风机的身影。随着开发技术和产业链实力的持续进步,我国 海上风电稳妥推进。2018年中国海上风电新增装机容量116万千瓦, 累计达到363万千瓦。

复合材料风电叶片的检查保护及维修

复合材料风电叶片的检查保护及维修 发表时间:2019-09-19T17:26:28.827Z 来源:《当代电力文化》2019年第8期作者:雷山山杨成玲[导读] 风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。新疆伊犁库克苏河水电开发有限公司新疆伊宁835000摘要:复合材料风电叶片在使用的过程中直接面对风载荷的威胁,还需要长期的面对恶劣环境的干扰,风叶片的工作的发电功率与使用寿 命的长短有着很大的影响,风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。这是保障复合材料风电叶片能够顺利工作的重要前提关键词:复合材料;风电;保护;叶片;维修风力发电目前是我国目前大力发展的一种发电方式,其独特的优点无污染、可持续科学的发电.各大国家不断地研究使用,风电叶片能够利用其叶片的转动将风能通过机械转化为电能,其中风电叶片是风力发电机在将风能转化为电能过程中,直接暴露在外部环境的重要机械,叶片的状态直接会影响到机械发电的转换效率。我国目前采用的复合材料所构成的风电叶片是由特殊的树脂型材料制作,复合材料本身具有中空性、纤维材料其独特的严密性也使得它制成叶片十分优质,但是也因为其特殊性,一般的技术人员难以对其进行维修与检查。 一、复合材料风电叶片存在检查维修的隐患 1.1、复合材料风电叶片的运输隐患 风电叶片从生产的场地出发将其制作成风力发电机的其中一部分机械,一般需要将其需要运输到相应的场地,一般有两种运输的方式,将叶片组装到发电机上再将其运输与将叶片装到运输车上再将其运输两种,在安装复合材料叶片至发电机组上时,操作稍有不当,就会导致材料造成损坏,另外在运输的过程中还会发生意外的损害,例如交通事故的发生。也会对叶片造成损害1.2、复合材料风电叶片所处环境隐患 通常来讲。复合材料风电叶片与发电机械所处的位置一般不同,发电机组通常在安装完成之后会将其安装在离叶片一定距离的位置,且具有金属材料外壳进行保护,叶片因为其工作的特殊性,需要常年的裸露在外部的恶劣环境,而且通常风电机组的安装位置大多在地理位置较为偏远的地方,长年的处于风力较大,甚至伴随雷雨的状态下,复合材料的风电叶片虽然具有较强的防腐蚀性,但是由于长年的裸露在恶劣环境下,会造成风电叶片出现破损,转动缓慢等问题的出现,炎热环境与冬天的寒冷环境都会影响叶片正常运行,导致发电效率的下降。 1.3、风电机组缺乏相应的维修保护制度 在风电机组的运行下,需要相应的技术人员定期的检查复合材料风电叶片的运行状况,然而我国目前的风电机组方面,在组建之后,一般专业的技术人员通常需要到下一个风电机组去进行组建,检查,通常会出现漏查,重复检查的状况的发生,在叶片发生故障之后,缺乏相应的应对措施,例如叶片在雷雨环境下因为雷电而导致叶片的损害,破损,则需要安排相应的工作人员在保证其他风电机组在正常运行的前提下将损坏的叶片其所在的机组关闭,如果存在雷电存留的状况,还需要对其进行引电,避免工作人员在维修时发生危险1.4、缺乏先进的维修技术 我国目前的维修叶片技术还存在着很大的缺陷,例如我们常用的引电技术保护复合材料风电叶片,即通过将雷电的路线改变,引导雷电将其引入大地。常用的做法是,在复合材料叶片的尖部区域设置若干个相关的接闪器,接闪器的作用是能够将雷电通过接闪器所连接的导线将雷电引致叶片的底部接地区域,将雷电传导到大地。但是这种方法会导致复合材料风电叶片的表面出现类型雷电击中的现象出现,使得叶片的表面出现凹痕,不规则的黑点、外表皮的脱落,还会出现不同程度的叶片开裂,在雨水的浸泡下,导致其运转的故障。 二、复合材料风电叶片的检查维修方法 2.1、运输环节的保护 我国目前的复合材料风电叶片的维修检查的方法主要采用观察、使用工具敲试、将涂层打开进行深入内部的观察和维修等,无论其中哪一种检查维修方法,都需要极为专业的检查维护团体与专业的技术人员。在运输与安装环节,为了避免出现损伤的叶片的行为,则使用专业的技术人员在运输途中通过对叶片的外表进行严谨观察,一旦出现明显的叶片外观损伤与叶片涂层的表面材料出现了刮蹭、损伤,都需要通知相关的叶片制造商与专业的的复合材料风电叶片的维修人员对其进行专业的检查与维修、并对相关的叶片进行拍照,保存资料,对怎样发生事故的原因进行研究,保存,便于以后类似的事故发生之后,进行处理。 2.2、采用先进的检查维修技术 我国传统的检查维修技术,一般在复合材料风电风叶进行检查之时,对其进行拆卸,检查内部,之后对其进行组装,工程量繁琐,极为麻烦,而因为复合材料的外表涂层层数较多、每次的拆卸检查都会对叶片造成损害,在考虑到成本和时间的基础上,采用先进的无损检测设备技术,超声波探测检查技术。超声波技术它适用于对复合材料其表面下几厘米厚度的区域进行探查,对其能够准确的找到所出现的问题,代替了我国传统的敲击检测方法,能够减少叶片表面的在因为检查维修之时出现的损伤。还有一种方法称之为错位散斑干涉技术,这种技术主要应用在航空检查与海洋机械之中,它能够在恶劣的环境下对复合材料风电叶片的错位,破损,漏电等情况进行准确定位,代替了传统的人工检查,保障了专业技术人员的人身安全2.3、制定严谨的检查维修制度 在复合材料风电叶片的日常检查维修之中,设立专门的检查制度,对叶片的外边涂层,接口,螺旋仪器,地面引电装置,叶片接电器等等位置进行相关的检查制度设定,;例如对接点器的检查,需要分为三部分:第一部是对其接口处的涂层进行检查,检查复合材料风电叶片与接电器的接口处其表面涂层是否出现脱落。第二部分则是对其接口处的导电性能进行检查,使用仪器对其导电性能进行检测,一旦发生导电的故障,尽快进行处理。第三部分则是对整体外部金属的检查,观察是否出现破损,出现后立即更换,保障叶片的正常运行三、结束语 伴随着我国对电力需求的增加,风力发电在因为其高效环保的特点在发电方面所占比重越来越大,本文就目前复合材料风电叶片的维修出现的隐患进行分析,提出了具体的建议参考文献:

风力机叶片翼型的研究现状与趋势

风力机叶片翼型的研究现状与趋势 风能作为一种可再生能源,在煤、石油和天然气等非可再生能源日益耗竭以及全世界对可持续发展要求的情况下,正越来越来受到世界各国的关注。风电技术复杂,风力发电机组的叶片作为捕获风能最直接的部件,其价值占到整机价值的25%左右。叶片的直径、弦长、各截面翼型选择、纵向的扭角分布等都会影响到叶片的气动性能,进而影响风轮的功率输出。而叶片的结构、材料和工艺直接影响风机的强度、疲劳、震动、载荷及成本等。因此,设计良好的叶片,翼型应该具有较佳的空气动力学性能,良好的结构和制造工艺,这样风力发电机组才能稳定运行并具有高的功率输出[1-3]。目前,因为风力发电机组向着更高的额定功率发展,最大的叶轮直径已经达到125m,风电机组对叶片的气动性能、结构和工艺提出了更高的要求。 一、国外发展与研究状况 风机翼型的设计分析理论从根本上决定风机整体的功率特性和载荷特性。因为其重要性,翼型设计分析理论的研究一直是世界各国专家和学者的科研热情所在。风机翼型的发展来源于低速应用的翼型,如滑翔机翼型。早期的低速翼型运用在风机上有WortmannFX-77翼型和NASALS翼型。在20世纪80年代,因为美国国家可再生能源实验室(NREL)的Tangler和Somers发展了许多的NREL翼型,对促进风机翼型的发展做出了很大贡献。同时,他们也提出了翼型的反设计方法。对NREL系列翼型的相关阐述可以在NREL一系列报告中找到。后续的瑞典的Bj·rkA发展了FFA-W系列的翼型,荷兰代尔夫特理工大学的TimmerWA和vanRooij也对风机翼型的发展做出了贡献,发展了DU系列的翼型。20世纪90年代中期,丹麦Risφ风能重点实验室开始研制新的风机翼型,到目前为止已经发展出了Risφ-A1,Risφ-P和Risφ-B1三种翼型系列。 翼型研究包括两方面,翼型分析和翼型优化设计。翼型分析是研究翼型气动性能,是翼型优化设计的基础。翼型设计有两种方法,包括直接数值优化设计方法和反设计方法。直接数值优化设计方法将CFD跟最优化设计理论结合起来,以升力或者升阻比为目标函数,通过不断修正翼型的几何形状,获得目标函数所要求的气动性能最佳的翼型几何形状。反设计方法的目标函数主要是目标压力分布,首先要给定一个基础翼型,通过翼型几何和流体控制方程,不断逼近所需的目标压力分布,从而得到满足给定流场分布的翼型几何。Jacobs的翼型设计方法是最早的翼型反设计方法,用这种方法设计的NACA6系列的翼型至今都在用。德国的学者Mangler(1938)和英国学者Lighthill(1945)首先提出基于保角变换的翼型反设计方法,但是计算冗长。Mangler和Lighthill的方法而且有三个重要缺点:基于保角变化的翼型反设计方法只能指定需要的翼型表面速率分布作为翼型保角变换后圆角坐标的一个函数,而不是翼型表面弧长的一个函数;并且因为指定的速率分布有三个积分限,需要定义三个自由参数,会导致不合理的速率分布和不合理的翼型形状;理论本身是单点反向翼型设计方法(速率分布只能在单个攻角下获得),不满足多点反设计的需要。20世纪60年代后,随着计算机技术的发展,翼型反设计方法更多地强调通过计算机辅助翼型设计。美国NREL的Eppler和Somers编了一个

风电机组扩建项目申请报告

风电机组扩建项目申请报告 规划设计/投资分析/实施方案

报告说明 传统风电整机制造厂商采取的经营模式为系统集成、专业化协作,即风电机组制造商从事整机的研发、制造和销售,配套零部件从外部 采购。但随着行业的发展变化,部分具备较强研发和服务能力的企业 率先开始提供以风电机组产品为核心的系统化整体解决方案,即不仅 向客户提供定制化风电机组,还为其量身打造包括前期风资源开发、 后期风电场运行监测以及风电场技术升级改造等在内的风电场全生命 周期解决方案。根据有无风电场开发经营业务,行业内制造商又可以 分为两种盈利模式:一种是只向客户直接销售风电机组,另一种是既 销售风电机组,又开发、建设、销售风电场,或者自主投资运营风电场。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨 慎财务估算,项目总投资36858.93万元,其中:建设投资31311.32 万元,占项目总投资的84.95%;建设期利息583.11万元,占项目总投资的1.58%;流动资金4964.50万元,占项目总投资的13.47%。 根据谨慎财务测算,项目正常运营每年营业收入101000.00万元,综合总成本费用80179.47万元,净利润12823.57万元,财务内部收 益率14.45%,财务净现值3666.69万元,全部投资回收期5.03年。本

期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。 综合判断,在经济发展新常态下,我区发展机遇与挑战并存,机 遇大于挑战,发展形势总体向好有利,将通过全面的调整、转型、升级,步入发展的新阶段。知识经济、服务经济、消费经济将成为经济 增长的主要特征,中心城区的集聚、辐射和创新功能不断强化,产业 发展进入新阶段。 报告深入进行项目建设方案设计,包括:项目的建设规模与产品 方案、工程选址、工艺技术方案和主要设备方案、主要材料辅助材料、环境影响问题、项目建成投产及生产经营的组织机构与人力资源配置、项目进度计划、所需投资进行详细估算、融资分析、财务分析、国民 经济评价、社会评价、项目不确定性分析、风险分析、综合评价等。 本报告基于可信的公开资料,参考行业研究模型,旨在对项目进 行合理的逻辑分析研究。本报告仅作为投资参考或作为参考范文模板 用途。

风电叶片的改进

风电叶片的改进 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适

风电项目单位工程完工验收规定

编号:SY-AQ-08097 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 风电项目单位工程完工验收规 定 Regulations on completion acceptance of unit works of wind power project

风电项目单位工程完工验收规定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 1.总则 1.1为加强风力发电场项目建设工程单位工程完工验收管理工 怍,规范单位工程完工验收程序,确保风力发电场项目建设工程质 量,特制定本规定。 1.2本规定依据《风力发电场项目建设工程验收规程》 (DL/T5191-2004)制定。 1.3本规定适用于公司实施风力发电场项目建设工程监理的各 项目监理部。 1.4单位工程完工和单机启动调试验收由建设单位主持,建设单 位应在单位工程完工前组建单位工程完工验收领导小组。 2.验收领导小组组成及职责 2.1单位工程完工验收领导小组设组长1名、副组长2名、组员 若干名,由建设、设计、监理、质监、施工、安装、调试等有关单

位负责人及有关专业技术人员组成。 2.2验收领导小组职责 2.2.1负责指挥、协调各单位工程、各阶段、各专业的检查验收工作。 2.2.2根据各单位工程进度及时组织相关单位、相关专业人员成立相应的验收检查小组,实施单位工程完工验收。 2.2.3负责对各单位工程作出评价,对检查中发现的缺陷提出整改意见,并督促有关单位限期整改和组织有关人员进行复查。 2.2.4在工程整套启动试运前,负责组织、主持单机启动调试试运验收,确保工程整套启动试运顺利进行。 2.2.5协同项目法人单位组织、协调工程整套启动试运验收准备工作,拟定工程整套启动试运方案和安全措施。 3.工作程序 3.1单位工程可按风力发电机组、升压站、线路、建筑、交通五大类进行划分,每个单位工程由若干个分部工程组成。 3.2单位工程完工后,施工单位应向建设单位提出验收申请,单位

风电测风塔项目立项申请报告模板

风电测风塔项目立项申请报告 一、项目背景 1、深入贯彻落实党中央、国务院和省委、省政府的决策部署,牢固树 立和自觉践行创新、协调、绿色、开放、共享五大发展理念,坚持问题导向、底线思维,推进供给侧结构性改革,厚植优势、补齐短板,着力破除 制约民间投资发展的体制机制障碍,提升行政服务效能,改善投资环境, 强化要素保障,不断提升民营经济对需求变化的适应性和灵活性,推动经 济发展向高中速、高中端转型,为高水平全面建成小康社会奠定坚实基础。 2、到2020年,战略性新兴产业增加值占国内生产总值比重达到15%。2015年,我国战略性新兴产业增加值占国内生产总值比重为8%左右。未来 5到10年,是全球新一轮科技革命和产业变革从蓄势待发到群体迸发的关 键时期。 3、目前,区域内拥有各类风电测风塔企业876家,规模以上企业24家,从业人员43800人,已成为当地支柱产业之一。截至2017年底,区域 内风电测风塔产值103636.45万元,较2016年86746.84万元增长19.47%。产值前十位企业合计收入44458.74万元,较去年40078.19万元同比增长10.93%。

二、项目名称及承办单位 (一)项目名称 风电测风塔项目 (二)项目承办单位 xxx实业发展公司 三、项目建设选址及用地综述 (一)项目选址 该项目选址位于xxx高新技术产业开发区。 (二)项目用地规模 该项目总征地面积16188.09平方米(折合约24.27亩),其中:净用地面积16188.09平方米(红线范围折合约24.27亩)。项目规划总建筑面积22501.45平方米,其中:规划建设主体工程14034.45平方米,计容建筑面积22501.45平方米;预计建筑工程投资1643.27万元。 四、项目产品方案 项目主要产品为风电测风塔,根据市场情况,预计年产值7959.00万元。 坚持把项目产品需求市场作为创业工作的出发点和落脚点,根据市场的变化合理调整产品结构,真正做到市场需要什么产品就生产什么产品,市场的热点在哪里,创新工作的着眼点就放在哪里;针对市场需求变化合

大型风电叶片结构设计方法研究

大型风电叶片结构设计方法研究 摘要:随着绿色能源的推广与利用,对风电叶片结构设计也提出了更高的要求。作为风电机组的主要部件,叶片的设计方法一直是风电机组研发的关键。本文主要对大型风电叶片结构设计方法进行探析。 关键词:风电叶片;结构设计;方法 前言 近年来,我国的风电设备在技术水平与创新方面已有了突破性的成就,但与国外发达国家相比,仍存在很大差距,尤其在大型风电叶片结构设计方面。因此,如何完善设计方法将是未来提高风电机组核心技术的必然途径。 1.风电叶片设计的基本概述 1.1 风电叶片设计 风电叶片设计的过程实际是对叶片参数的选取与确定的过程,其中的参数对叶片的性能起决定性的作用。一般对风电叶片进行设计主要目标在于:第一,通过较好的空气动力外形获得风能。第二,结构的强度与刚度能够承受各种荷载。第三,其结构动力学特性较好,防止出现共振与颤振。第四,叶片重量的降低使制造成本减少。设计的过程主要分为对气动与结构的设计。其中气动设计过程中,主要对叶片几何外形做出最佳的选择,实现年发电量最大的目标,而结构设计主要对叶片材料的选择、叶片结构形式以及设计参数进行分析,使叶片的强度、刚度及稳定性等目标得以实现。 1.2 叶片外形设计的主要方法 风电叶片设计的主要任务是确定气动外形。叶片外形作为结构设计的基础,对结构设计也有一定的限制。一般对气动外形的设计的方法主要包括基于动量叶素理论的简化设计方法、Glauert方法、以及维尔森方法。基于动量叶素理论的简化设计方法通常用于对风轮轴线截面与叶片产生的气动力,并以此确定叶片参数与翼弦的关系。而Glauert方法主要对风轮后涡流流动进行考虑,初步的设计、分析与修正气动性能,存在一定的局限性,但在设计过程中属于较好的指导方法。维尔森方法则是对Glauert方法的改进,是当前叶片启动外形设计常用方法之一[1]。 1.3 结构设计 结构设计的基本要求在于动力学特性、设计寿命、极限强度设计条件以及刚度设计条件与叶尖变形。在叶片材料方面,通常选择铝合金、玻璃钢、碳纤维增强复合材料等。叶片的内部夹芯结构一般以轻木与PVC为主,而且主体结构中

风电叶片在线检测技术研究进展

南?京?工?业?职?业?技?术?学?院?学?报Journal?of?Nanjing?Institute?of?Industry?Technology 第18卷第2期2018年6月Vol.18,No.2Jun.,2018 风电叶片在线检测技术研究进展 吴国中,李?镇?,宋增禄 (南京工业职业技术学院?电气工程学院,江苏?南京?210023)? 摘?要:就风电设备运行过程中风机叶片的在线检测技术进行了讨论。叶片在线检测主要有两大类,分别是以应变、声发射等传感器检测为核心的侵入式检测和以图像检测为代表的非侵入检测,探讨了这两种检测模式中风电叶片损伤检测的实验手段以及损伤特征提取和识别的算法。关键词:风电;叶片;在线检测 中图分类号:TP273 文献标识码:A 文章编号:1671-4644(2018)02-0004-05 风电技术在展现出其独特优势的同时也存在一些问题。由于风力发电场通常位于较偏远的陆地、海岸或者海上,环境恶劣且无人值守,其运行状态的监测面临较大挑战。目前已有的在线监测、控制、调度技术为风电场的正常平稳运行提供了一定的保障,但是由于风电系统的复杂性、可靠性以及环境等各方面因素的影响,现有在线监控系统在风机状态信息检测的实时性、完备性、准确性等方面仍显不足,其中一个突出问题表现在风电叶片状态检测方面。 风电叶片是风力发电机的关键部件,叶片状态的检测以及寿命预测对提高风机工作效率、保障风机正常工作具有重要意义。本文将集中讨论风机叶片部分在线检测技术的研究进展。 1?侵入式检测技术 叶片在线检测主要分为两类,一类是侵入式的检测,即传感器网络需要内嵌在叶片中;另一类是非侵入式的检测,即采用光学或图像等方式实现非接触式的检测。 1.1?基于应变的检测 应变片在风电叶片在线检测中有较多应用。风电叶片在实际运行过程中会承受不同方向的载荷,导致叶片产生应变,应变的累积可能会导致叶片的宏观形变和开裂,因此在叶片的脆弱部位以及容易产生应力集中的部位,可以设置应变传感器以检测叶片的应变,从而可以直接反应叶片状态。 Jargensen?等人在2004年曾采用上百片应变传感器检测长达25米的叶片轴向应变。应变检测是一项比较成熟的技术[1] ,可以用于叶片的离线和在线测试,但是也有一些局限性。应变传感器容易失效,容易受到环境的影响甚至引起雷击,并且有的情况下不能准确反映叶片失效状况。 FBG传感器是针对传统应变传感器的不足,在风电叶片检测中引入的光纤传感器,以检测叶片的应变。较常用的是布拉格光纤光栅,其原理是利用纤芯内空间相位周期性分布的光栅形成一个窄带滤波器或反射镜,滤波器或反射镜中心频率会随外部应变而产生漂移,将频率漂移转换为应变可以准确、稳定、可靠地检测叶片的应变和疲劳状态。2007年郭等人最早利用FBG传感器网络检测叶片状态数据并应用无线技术上传[2] ,这种技术逐步发展并在一些大型风机上得到应用。FBG传感器稳定性对于叶片状态的长期检测是很有优势的,其不足在于成本高而且设备体积大,一定程度上限制了其在叶片在线检测中的应用。 1.2?基于声发射的检测 基于声发射检测叶片失效的研究已经比较广泛。声发射是材料中局域源快速释放能量产生瞬态弹性波的现象,叶片在外部载荷作用下产生形变,使结构内部形成应力,由于叶片应力集中而产生各种失效,如纤维断裂、微裂纹等,从而导致局域快速释放能量。用于声发射检测的传感器由压电传感器、放大器和数模转换器以及信号处理单 收稿日期:2018-04-23 基金项目:?江苏风力发电工程技术中心2016年度开放基金(编号:ZK16-03-05);江苏省品牌专业资助项目(编号:PPZY2015B189)作者简介:吴国中(1974-),男,南京工业职业技术学院副教授,工学硕士,研究方向:自动化控制及检测技术。

风电叶片维护研究进展

风电叶片维护研究进展 一.风电叶片维护的必要性 我国风电快速发展始于2006年,当时国内风机以600kw,700kw机型为主,2007年3月,我国首台1.5MW直驱永磁发电机组在新疆投运,拉开了兆瓦级风力发电发展的序幕。随着风电市场的逐渐成熟,大型风力发电机组相继出现,叶片长度也由原来的30-40m增加至60-70m。叶片长度的不断增长,同时带来叶片重量的增加,但是叶片设计使用寿命为20年,如何在叶片20年的生命周期内保持其高效运行至关重要。 风力发电叶片一般安装于偏远的地区,运行环境恶劣,如较大的风沙侵袭,-30℃至50℃的循环温差,以及强紫外光的老化等。目前2.5MW-50.3m的叶片,叶尖运行速度高达300公里/小时,在这样高转速下,风沙和雨滴对风电叶片的侵蚀相当于等离子切割,叶片表面容易形成空洞。研究表明,叶片表面粗糙度的增加以及缺陷的累积将导致发电效率降低5%-30%,还可能导致叶片运行失稳造成齿轮箱的故障。叶片小的缺陷如果没有及时发现并进行专业修复,将导致裂纹延伸至叶尖,造成叶片大面积的开裂,不得不进行大型修补或者返厂处理,给风场业主带来重大经济损失。 二.风电叶片常见的损伤 风电叶片虽然在设计时,赋予它足够的强度和刚度,但是在其20年的使用寿命中,也会像其他复合材料部件一样,出现各种各样的问题。风电叶片从生产厂家生产,通过长距离的运输到达风场,使用大吨位吊车进行安装。风电叶片在上述每一个步骤都可能发生损伤破坏。一旦风电叶片开始运行,将受到雨水,风沙以及大气的腐蚀,同时还要经受强紫外的老化。在风压和旋转持续疲劳载荷的作用下,隐藏在叶片内部的缺陷,如分层,气泡,叶片组件之间的粘合缺陷将会逐渐显现出来。 风机正常运行情况下,叶片会在不同年限出现相应的受损状况: 2年:表面胶衣出现磨损,脱落现象,甚至出现小的砂眼。 3年:叶片出现大量砂眼,叶片前缘尤为严重,风机运行产生阻力,事故隐患开始显示。

风电工程专用标准清单

2.风电工程专用标准 2.1 风电场工程可行性研究报告设计概算编制办法及计算标准 FD001—2007 2.2 风电场工程等级划分及安全标准(试行) FD002—2007 2.3 风电机组地基基础设计规定(试行) FD003—2007 2.4 风电场工程概算定额 FD004—2007 2.5 风力发电厂设计技术规范 DL/T 5383—2007 2.6 风力发电工程施工组织设计规范 DL/T 5384—2007 2.7 风力发电场项目建设工程验收规程 DL /T 5191—2004 2.8 风力发电机组验收规范 GB/T 20319—2006 2.9风力发电场运行规程 DL/T 666-2012 2.10风力发电场安全规程 DL 796-2012 2.11风力发电场检修规程 DL/T 797-2012 2.12风力发电场项目可行性研究报告编制规程 DL/T 5067-1996 2.13风力发电机组设计要求GB/T18451.1 2.15风电场风能资源测量方法 GB/T 18709-2002 2.16风电场风能资源评估方法 GB/T 18710-2002 2.17风力发电机组装配和安装规范 GB/T 19568-2004 2.18风电场场址工程地质勘察技术规定发改能源[2003]1403号 2.19风电特许权项目前期工作管理办法发改能源[2003]1403号 2.20风电场工程前期工作管理暂行办法发改办能源[2005]899号 2.21风电场工程建设用地和环境保护管理暂行办法发改能源[2005]1511号 2.22风电工程安全设施竣工验收办法水电规办[2008]001号 2.23风力发电机组第1部分:通用技术条件 GB/T 19960.1-2005 2.24风力发电机组第2部分:通用试验方法 GB/T 19960.2-2005 2.25风力发电机组电能质量测量和评估方法 GB/T 20320-2014 2.26风力发电机组异步发电机第1部分:技术条件 GB/T 19071.1-2003 2.27风力发电机组异步发电机第2部分:试验方法 GB/T 19071.2-2003 2.28风力发电机组塔架 GB/T 19072-2010 2.29风力发电机组功率特性试验 GB/T 18451.2-2012 2.30风力发电机组电工术语 GB/T 2900.53-2001 2.31风力发电机组控制器技术条件 GB/T 19069-2003 2.32风力发电机组控制器试验方法 GB/T 19070-2003 2.33风力发电机组齿轮箱 GB/T 19073-2008 2.34风力发电机组风轮叶片 JB/T 10194-2000

风电设备项目立项申请报告 (1)

风电设备项目立项申请报告 一、项目名称及建设性质 (一)项目名称 风电设备项目 (二)项目建设性质 该项目属于新建项目,依托xx产业示范基地良好的产业基础和创新氛围,充分发挥区位优势,全力打造以风电设备为核心的综合性产业基地,年产值可达20000.00万元。 二、项目建设单位 xxx投资公司 三、规划咨询机构 泓域企业管理机构 四、项目提出的理由 国内陆上风电在大规模开发中具有成本优势,大概率最先实现平价上网。目前各类新能源形式中,陆上风电的度电投资成本最接近传统能源。从2019年开始,除了分散式风电项目保留固定电价补贴模式之外,其余的项目都采取竞争性配置模式,引导风电逐步实现平价上网。与光伏的灵活

性优势不同,风电的核心优势在于规模化开发的成本优势。基于此,“三北”风资源优势地区建设情况,是陆上风电规模持续增长的重要支撑。 综合判断,我省发展仍处于可以大有作为的重要战略机遇期,同时也面临诸多矛盾相互叠加的严峻挑战。必须准确把握战略机遇期内涵的深刻变化,从过分依靠外需增长推动经济发展向外需内需并重、更加重视内需增长转变,大力推进煤炭清洁高效利用,多种方式化解过剩产能。必须继续保持“三个高压态势”,继续从严治吏、保持选人用人风清气正,积极主动适应新常态、把握新常态、引领新常态,切实增强机遇意识、忧患意识、责任意识,进一步振奋精神、保持定力、坚定信心,更加有效应对风险和挑战,着力在转方式、调结构、促改革、惠民生、补短板、建小康上取得突破性进展,不断开拓发展新境界。 五、项目选址及用地综述 (一)项目选址方案 项目选址位于xx产业示范基地,地理位置优越,交通便利,规划电力、给排水、通讯等公用设施条件完备,建设条件良好。 山西,简称晋,中华人民共和国省级行政区,省会太原,位于中国华北,东与河北为邻,西与陕西相望,南与河南接壤,北与内蒙古毗连,介于北纬34°34′—40°44′,东经110°14′—114°33′之间,总面积15.67万平方千米。山西省地势呈东北斜向西南的平行四边形,是典型的为

《风电项目资料归档要求》

甘肃宏科工程监理咨询有限公司 风电项目资料归档要求 风电项目资料归档要求 一、总说明 通过我公司对风电场建设的监理经验结合以往对送变电项目的资料管理经验及质监站对资料的要求,在公司领导的指导下,新能源工作小组的组织相关人员编制了本要求,作为经验在我公司监理的风电场建设项目中建议推广使用。 本要求参考了电力行业规程对资料的要求、各大风电场建设单位对资料的要求、国家电网对资料的要求、各大风机厂商的一些检查验收标准,并在此基础上进行了总结,归纳和整理。 本要求编写时间仓促,掌握的资料带有一定的局限性,尚需不断完善。希望在风电场建设过程中,业主单位、施工单位及公司员工能够提出宝贵意见,特别是公司员工应注意收集这方面的资料及意见,并及时汇报新能源工作组,工作组将对本要求进行定期更新和及时的说明。二、归档要求 所有归档资料均应满足GB/T50326-20GG 《建设工程项目管理规范》、GB/T50328-20GG 《建设工程文件归档整理规范》及DL/T5191 一20GG《风力发电场项目建设工程验收规程》的要求。 1、监理及施工报审用表 用表监理单位、施工单位用表我们建议使用《标准化工作手册风电场建设工程分册》的监理分册(附件一)和施工分册(附件二)。在使用过程中,应根据升压站建设规模进行合理选择,可对部分表格进行取舍。 2、施工单位验评表式

风电场建设项目划分参考《风力发电场项目建设工程验收规程》。单位工程可按风力发电机组、升压站、线路、建筑、交通五大类进行划分,每个单位工程是由若干个分部工程组成的,它具有独立的、完整的功能。 2.1 土建验评部分 土建施工验评用表推荐使用《110kV —1000kV 变电(换流)站土建工程施工质量验收及评定规程》(Q/GDW183 —20GG )。 2.2 安装验评部分 2.2.1 升压站(开关站)电气安装仍使用20GG 年版《电气安装验评表式》。 2.2.2 风电机组安装工程竣工资料内容 2.2.2.1 单位工程的划分 风电机组安装单位工程是风电场单位工程的重要组成部分,风力发电机组安装是电力建设中的新内容也是风电建设的核心装置,目前尚未有相关规范、标准可执行或者借鉴。按照DL/T5191 一20GG《风力发电场项目建设工程验收规程》的规定,每一台风电机组为一个单位工程,包括风力发电机组基础分部工程、风力发电机组安装分部工程、风力发电机组监控系统分部工程、塔架安装分部工程、电缆安装分部工程、箱式变电站安装分部工程、风雷接地装置分部工程、风力发电机组验收、调试、试运行分部工程共八个分部工程。考虑到单台风机的验收、调试及试运行时间比较分散,为有利于单台风机的并网发电更早为业主创造效益,认为其作为风机单位工程的一个分部更加合适。风机调试及试运行从目前风电场建设情况来看,应由风机厂家提供验收报告、调试报告和试运行报告。风力发电机组单位工程项目划分表及单位、分部、分项工程验评表见附件三(不包括风力发电机组基础分部工程部分)。 鉴于目前风机部分设备的多样性,验评表中内容应视具体风机类型进行增加。为增强验评表的通用性,验评标准较多采用了“ 按设计规定”的表

相关文档