文档视界 最新最全的文档下载
当前位置:文档视界 › 遥感影像的分类处理

遥感影像的分类处理

遥感影像的分类处理
遥感影像的分类处理

摘要

在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。

近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。

相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。

然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。

针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

中,可以方便地提取影像对象大小、形状、纹理和空间关系等属性特征,而这些特征在基于像元的分析方法中很难获取的。现有研究表明,面向对象的分类对高分辨率遥感影像有着更好的分类效果,不仅有效地克服了“椒盐现象”,而且更加符合人类的视觉习惯。面向对象的分类思想首先要对影像进行初始分割,得到一系列彼此相邻的“影像对象”;然后对各个对象的属性特征进行提取,进而基于这些特征实现对整幅影像的识别和分类。因此,这就带来两方面的问题:首先是影像分割问题,由于高分辨率遥感影像自身的复杂性和多尺度特性,使得普通的分割方法并不能取得理想的效果;其次是特征提取问题,由于常用的特征依然是光谱、纹理等“低层视觉特征”,与影像语义信息之间存在着巨大的“语义鸿沟”,因而它们很难准确的描述遥感影像的内容,更不能利用这些特征来区分不同的对象类别。本文将以高分辨率遥感影像分类为目标,在充分了解现有面向对象的分类方法的基础上,综合考虑高分辨率遥感影像自身的复杂性和多尺度特性,将基于分水岭变换的多尺度分割和多尺度词包表示引入面向对象的分类思想中,建立适合于高分辨率遥感影像的多尺度分类方法。

由于本文的研究目标是基于面向对象分类思想对高分辨率遥感影像进行分

类,因此研究现状将从面向对象分类的几个关键环节展开论述,一是影像分割,二是尺度问题,三是遥感影像的特征提取与分类。

(1) 影像分割

影像分割是指,基于同质性或异质性准则将一幅影像划分为若干有意义的子区域的过程。最终的分割效果需要同时满足以下三个条件:第一,分割后形成的图像区域中的所有像元点必须满足一定的同质准则,并且不存在不连通的点;第二,两个相邻的区域间的某项特定属性要有明显的差异性;第三,区域的边缘应该相对规整,并保证边缘的定位精度。影像分割效果的优劣将直接影响到后期的分类和识别,对于遥感影像的分析和理解至关重要。近些年来,国内外很多研究人员在影像分割方面做了大量的探索研究。一般情况下,根据分割时选取特征的差异可将分割算法分成三类:基于阈值的分割算法、基于边缘的分割算法以及基于区域的分割算法。基于阈值的分割算法大都通过影像的灰度阈值实现对影像的分割,目前已有的方法主要包括直方图统计法,最大类间方差法、熵方法等,然而这些方法对阈值的选择有很强的依赖性,尤其是对于复杂的遥感影像,往往不能得到较好的效果;基于边缘的分割方法是利用影像中灰度变换较为剧烈的信息实现分割,边缘特征属于遥感影像的重要特征之一,可以通过一系列边缘检测算子提取,如常用的Sobel 算子、Laplace 算子和Candy算子等;基于区域的分割算法主要包括区域生长法、分水岭变换算法以及马尔科夫随机场算法等。从20 世纪60 年代末开始,影像分割的相关算法研究已经在计算机视觉领域取得较大的进展,但对遥感影像的分割算法却相对较少,直至20 世纪80 年代,针对遥感影像特征所提出的分割算法开始不断涌现。Laprade 于1988 年利用分裂合并的方法对航空影像进行分割,Ryherd 和Woodcock 在1996 年组合光谱和纹理特征进行遥感影像分割。遥感影像分割方法同样受到国内学者的关注,刘永学在2004 年提出了一种结合边缘检测以及边缘生长的方法来进行遥感影像的分割,陈忠于2006 年利用多尺度分割法与多分类器融合技术来进行高分辨率遥感图像的分类,并达到了很高的精度,陈秋晓等于2006 年利用基于局域同质性梯度实现对遥感影像的分割。虽然遥感影像的分割方法被不断地提出和改进,但Neubert 等于2006 年通过比较现有各种分割算法对高分辨率遥感影像的分割性能,认为当前的技术仍不能有效满足应用的要求。

近年来,分水岭算法作为一种经典的基于区域的分割方法,越来越受到国内外研究人员的关注。自Vincent 和Soille 于1991 年将测地理论的集合运算推广到灰度图像,进而提出分水岭算法以来,该方法被广泛应用于图像分割处理。目前,分水岭算法已经被成功应用于遥感领域,并且在对多光谱遥感影像、高光谱遥感影像和高分辨率遥感影像的分割中有着出色的表现。当然,分水岭算法有着自身的缺点,如对噪声高度敏感,容易产生过分割现象。

为了克服分水岭的过分割问题,国内外的学者提出很多改进的方法,主要在影像的预处理和后处理上做研究。Gao H 等人于2001 年借助先验知识,利用限定分割的区域数目的方法对分水岭算法的过分割现象进行改善;Karantzalos K 等人于2006 年将各向异性扩散滤波和边缘检测的方法引入分水岭算法中,并且取得了不错的效果;O’callaghan R J 等人对初始分割后的影像进行快速区域合并,有效改善了过分割问题。国内的学者也在分水岭的改进方法上做了很多工作,陈忠在2006 年提出基于分水岭变换的多尺度遥感影像分割算法,利用非线性滤波和快速区域合并算法优化分割结果;孙颖等于2006 年利用标记的分水岭算法对高分辨率遥感影像进行分割,取得较好的效果。

(2) 尺度问题

多尺度特征属于空间数据的基本属性之一,遥感中的尺度问题也是当今国内外的研究热点。国外学者开始尺度的问题的研究可以追溯至上世纪80 年代初期,近年来,国内的专家学者也开展了此领域的研究,由李小文院士主持的973 项目“地球表面时空多变要素的定量遥感理论及应用”中指出,“在像元尺度上,以研究尺度效应和尺度转换理论为核心,检验与反演目标参数有关的基本物理概念、定理、定律的适用性”被列为待解决的关键问题之一,由此可见,尺度问题在遥感影像分析中的有着不可忽视的重要作用。遥感中的尺度问题得到广泛的关注,主要体现在以下三个方面:尺度选择、尺度效应和尺度转换。其中,尺度选择是指针对特定应用选择最佳分析尺度,以保证研究目标的属性特征被最优描述;尺度效应是指研究空间尺度的变化对分类精度的影响;尺度转换指将某一尺度上的信息和知识拓展到其它尺度上,或称为跨尺度信息转换。Woodcock 和Strahler 于1987 年分析了影像中局部地物方差随分辨率降低的变化,提出平均局部方差选择最佳空间尺度。Chen 等在2004 年指出空间尺度对分类误差的影响更加明显地体现在地物的空间分布上。Wang 等在2001 年设计了变异函数的块金方差(Nugget Variance)和基台方差(Sill Variance)的比值指标,将该比值稳定时对应的空间尺度作为最佳尺度。黄慧萍在2003 年针对从单一尺度进行影像特征提取的不合理性,提出了多尺度遥感影像分析方法,并研究了面向对象影像分析中的最优尺度选择问题。明冬萍等于2008 年提出了基于可变窗口与可变分辨率的改进局部方差方法用于选择最佳空间尺度。韩鹏等于2010 年提出了一种基于信息熵的尺度选择的方法,该方法以信息熵为评价类别可分性的标准,最优尺度由最小平均熵确定。然而,我们研究的空间尺度又包含两层含义:一是影像的空间分辨率,二是对影像分析时所研究的地表空间范围。上述的两层含义在基于像元的分类思想和面向对象的分类思想中得到了很好的体现。在基于像元的影像分类中,“尺度”即指影像的空间分辨率。随着遥感影像分辨率的不断提高,影像的分类精度并没有随之提高,这是由地物目标的“多尺度”特性决定的,任何地物目标在不同的尺度上都会有着不同的特征表现。因此,基于像元的分类方法存在着“最优尺度选择”和“多尺度特征提取”等问题。在面向对象的分类方法中,“尺度”除了拥有在基于像元分类方法中的概念外,还被拓展为“面积尺度”的概念。影像对象的“面积”随分割尺度的变化而变化,并且表现出在该尺度下的特征信息,这样就可以根据研究目标的特点得到最优的分割结果,进而得到更高的分类精度,这就是“高分辨率遥感影像的多尺度分类”思想。

(3) 遥感影像的特征提取与分类

随着遥感影像空间分辨率的不断提高,面向对象的分类方法得到越来越广泛的应用。面向对象的分类方法首先要对遥感影像进行初始分割,得到一个个属性各异的同质区域,这些同质区域也被称为“对象”;进而从这些影像对象中提取多种特征,如光谱、形状、纹理、结构和空间关系等,最后引入分类算法以完成最终的影像分类。面向对象的遥感影像分类方法是通过描述遥感影像中对象的信息来替代像元层的特征,从较高层次对遥感影像进行分类,以减少传统的基于像元层次分类方法的语义信息损失,使分类结果具有更丰富的语义信息。图1-2 简单描述了基于面向对象思想的分类流程:

面向对象的分类方法的本质就是将图像中的对象作为处理的基本单元,利用分类器来分析对象的特征,进而判别它们对应的类别。Blaschke 等人于2001 年首先提出了基于对象的遥感影像分类方法,认为基于多尺度分割形成的同质区域(即影像对象)不仅很好的利用光谱特征,还引入其它不同的特征,同时该方法能进一步融入领域知识和专家经验,使得分割后的对象比像元具有更丰富的语义信息,从而提高遥感影像分析的智能化水平。Giada 等人在2003 年通过自动提取遥感图像中的同质区域来完成基于对象的分类。eCognition 软件通过整合多尺度的分割和基于对象的分类,成为首个投入商业应用的基于对象的遥感分析软件(现改名为Definiens Professional)。Mathieu 等人于2007 年在对象层面分析了新西兰地区的城市与农村的地类。然而,上述学者所做的工作都是直接从影像对象中提取低层的视觉特征,进而利用分类器实现分类。但是,遥感影像分类的本质是给各个区域添加高层的语义标签,而低层的视觉特征很难准确地描述遥感影像的高层语义内容,因此要获得更好的分类效果,只依赖这些低层视觉特征是不全面的。近几年,一些研究学者将文本分析和场景理解中的词包模型(Bag-of-Word, BOW)引入遥感领域,期望通过词包模型来提取遥感影像中局部特征的统计信息(或语义信息),并根据这些新的特征来分析遥感图像中的主题,从而达到分类的目的。词包模型原本是文本分析中最为成功的模型之一,在该模型中,文档被表述成少量单词的无序集合,这些无序集合就被称为“词包”,文档的大致内容则可以由词包中单词的分布情况表达。现在该模型已经被应用于影像分析中,并且取得了不错的效果。对影像进行“词包模型”的构建过程类似于在文本分析中的构建过程,整幅影像被初始分割成一个个对象,然后统计各个影像对象的低层视觉特征(光谱、纹理等)并进行聚类分析,形成表征该对象的特征向量组,这些特征向量组被称为视觉单词(visual word);最后统计这些视觉单词在各个影像对象中的分布直方图作为该影像的特征,用于后期的分类。遥感影像的分类过程的实质就像是文本分析中为各个文档找出其对应的文本主题的过程,其对应关系可归纳为表1-1 所示。

以色列的学者Weizman 和Goldberger 首先将词包模型的思想引入遥感领域,用来提取与低层视觉信息无关的图像表达(feature-free image representation)。Feng 等人将遗传算法引入词包模型,改进原有视觉单词构造中存在的问题。而Yang 等人则进一步考虑了词包模型中各个视觉单词的空间关系,增加其所包含的语义信息。Liénou 等人基于词包模型中提取的单词概念,引入主题模型Latent Dirichlet Allocation (LDA)进一步分析遥感影像视觉单词间的关系,通过最大似然分类器计算图像中每个图像块对应的语义概念,从而完成图像的语义标定。Yi等人利用相同的思想,通过PLSA 模型来分析视觉单词间的关系,完成影像的分类任务。随着词包模型在遥感影像的解译和理解中的广泛应用,国内也有很多研究人员开始关注词包模型在遥感影像分析中的应用,如遥感影像分类和遥感特定目标的检测等。

常见影像分割方法

多年来,影像分割一直是图像处理与模式识别领域的经典难题,一直受到国内外学者的高度关注。由于现有的分割算法种类繁多,这些算法一般被分为以下三种经典类型:基于阈值的分割,基于边缘的分割和基于区域的分割。

基于阈值的分割方法

基于阈值的分割方法又被称为“门限分割”,是一种简单并有效的分割方法。对一幅影像进行阈值分割时,通过选取一个或多个阈值作为分割门限,将影像的所有像元进行遍历,像元的灰度值与阈值进行比较,最终将只存在三种情况:大于阈值、小于阈值和等于阈值,进而以此为依据完成整幅影像的分割。基于以上描述,可以看出基于阈值的分割方法的关键在于阈值的选取,其核心工作即按照某种准则选出合适的阈值,因为只有最优的阈值才能实现对影像的最有效分割。通常,阈值的选取包括全局阈值、局部阈值和动态阈值三类。其中,全局阈值的选取只与影像像元本身的性质有关;局部阈值的选取与影像像元本身的性质和局部区域特征有关;动态阈值的选取与像元坐标、像元性质和局部特征有关。基于阈值的分割方法对于不太复杂并且灰度分布比较集中的影像有着较好的效果,而对于比较复杂的影像,尤其是遥感影像仅仅依赖此方法是远远不够的。

基于边缘检测的分割方法

边缘特征是影像最基本的特征之一,是不同区域间灰度不连续的像元点的集合,它代表着一个区域的结束,同时也是另一个区域的起始,是影像局部特征不连续或突变的结果。基于边缘检测的分割方法就是通过检测这些不连续的像元点,并把这些像元点按照约定的规则连接成轮廓,利用这些轮廓线构成分割区域,进而得到分割结果。在影像中灰度值有屋顶形变或阶跃突变的像元集合组成了边缘,如图2-1 所示:

边缘总存在于影像中相邻的不同区域间,并且可以通过求导数来检测,常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh 算子等。在实际应用中,常用小区域模板来表示各种微分算子,并且通过模板与影像卷积来实现微分运算。基于边缘检测的分割方法对噪声敏感度高,适合用于噪声较小且不太复杂的影像分割。

基于区域的分割方法

基于区域的分割方法的出发点是影像中空间距离较近的像元具有较大的相似

性,空间距离较远的像元具有较大的差异性。这种描述恰好符合地理学第一定律

(Tobler's First Law of Geography) : Everything is related to everything else, but near things are more related than distant things。目前比较常用的基于区域的分割方法有区域生长和区域分裂合并等方法,或者是两种方法的综合。

区域生长的基本思想是把影像中特征相似的像元按照一定的规则合并而成一个区域。具体方法如下:首先,按照某种规则选取种子点,然后遍历和种子点相邻的像元,将与种子点特征相似的像元合并为同一区域,接着以合并的像元作为新的种子点,依此类推,最终得到在该生长准则下最大的连通集合,如图2-2 所示。在对区域生长算法进行设计时,为了得到更优的分割效果,需要解决以下三个问题:(1) 选择一个或者一组能够正确代表所需区域的种子像元;(2)生长准则的确定;(3) 停止生长的条件。在生长准则的确定中,除了需要考虑像元间的相似性外,还要考虑像元间的邻近性和连通性,否则可能最终分割出毫无意义的区域;另外,区域生长是一种串行算法,当影像较大时,分割效率低下。

区域分裂合并的方法是和区域生长相反的方法,此方法按照一定的准则对整幅影像进行分裂,形成不重叠的区域,同时将分裂后的相似区域进行合并;经过反复的分裂和合并,直至满足分割要求为止。图2-3 展示了区域分裂合并算法的一种形式:任意区域R被分裂为4 个互不重叠的区域,并满足P (R I)= FALSE,依次进行,直至在该分裂准则下不能继续分裂;然后将任何满足的区域进行合并,直至在该合并准则下不能继续合并,

则分割过程结束。

其它分割方法

近年来,影像分割领域不断引入新的理论和新的工具,因此诞生了一些比较新颖的方法。如基于数学形态学的影像分割、基于小波分析的影像分割、基于神经网络的影像分割、基于遗传算法的影像分割和基于分水岭变换的影像分割等等。

1) 基于数学形态学的影像分割

基于数学形态学的分割首先将待处理影像用各种形状大小的结构元素进行扫描,以此识别出影像中梯度变化较大的边缘信息。这种方法处理速度快,但对结构元素的选择依赖性很高:若选取的结构元素过小,则对噪声的干扰响应较大;选取的结构元素过大,则有可能滤掉有意义的边缘信息。因此,结构元素选取的是否得当将直接影响到最终效果的好坏。

2) 基于小波分析的影像分割

小波变换是一种经典的多尺度分析工具,具有良好的时频局部变化特性和多分辨率分析能力。对影像进行小波变换以后,可以得到不同的频带子图以及相对应的小波系数,影像的总体和局部特征就可以通过这些小波系数来表征。小波分析常用来检测影像的高频分量,也即影像边缘信息。它也常被作为多尺度分析的工具和其它技术结合使用。

3) 基于遗传算法的影像分割

遗传算法是一种将生物自然选择和遗传机制与统计学的相关知识相结合的一种随机搜索优化方法。该算法的执行操作直接在结构对象(集合、矩阵、序列和图等)上进行操作,而不是直接作用在变量上。遗传算法由于其自身的并行机制,在对分割速度的提高上很有帮助,并且可以有效利用全局信息。为进一步提高分割质量,该算法通常与其它分割技术结合,如果能获得大量的先验知识,则可以实现对影像的最佳分割效果。

4) 基于神经网络的影像分割

神经网络是通过抽象和模拟人脑或神经网络的一些基本特性指导影像的分析,其基本思想是通过对多层感知机的训练得到决策函数,进而利用这些决策函数值指导影像的分类,以达到分割的目的。神经网络可以充分利用影像像元间的空间信息,能够较好的抵抗噪声的干扰,对于复杂影像的分割具有一定的优势。然而,此方法需要积累大量的先验知识和训练样本,才能训练出有效的神经网络;而且在网络节点和层数设计以及训练效率也需要进一步的探索和研究。

5) 基于分水岭变换的分割

分水岭分割本质上是属于基于区域的方法,该方法的基本思想是将影像类比为地学上的拓扑地貌,影像中每一个像元的灰度值类比为海拔高度,然后每一个局部极小值及其影响区域被称作集水盆地,而集水盆的边界即被称为分水岭,将各个分水岭作为影像分割的边界,实现对影像的分割。综上所述,虽然影像分割领域的方法种类繁多,但这些方法都存在着

自身的不足和缺陷。如阈值分割方法只考虑图像灰度值,不能很好的反映图像的结构信息,并且容易受到噪声干扰;边缘检测的方法可以得到边界线段,但需要后续的操作使轮廓保持连续,因而在边界不明显的地方较难确定区域;区域方法的性能对初始种子的选择有较大的依赖性,其参数确定或者选择比较困难。即使是上文提到的新颖的分割方法,也同样存在着各自的局限性,这是由高分辨率遥感影像自身的复杂性决定的。

分水岭算法作为一种经典的基于区域的分割方法,由于其边缘定位准确、全局分割和并行处理等优点被应用于很多领域。虽然分水岭算法存在着对噪声敏感、过分割等缺点,但可以通过预处理或后处理进行改善。目前,该方法在对多光谱遥感影像、高光谱遥感影像和高分辨率遥感影像的分割中都有着出色的表现。因此,本文将基于分水岭算法对高分辨率遥感影像进行分割,并对其加以改进。

基于改进分水岭变换的多尺度分割方法

分水岭算法有着很多优点,比如说能够实现全局分割,封闭的边界和高的定位精度等,使得它适合用于高分辨率遥感影像的分割。然而,传统的分水岭分割也存在着缺陷:(1)分水岭的输入通常为影像梯度,而梯度受噪声的影响较大,并且当纹理细节特征明显时,会产生很多局部最小值,使得分割结果产生严重的过分割;(2)对影像中对比度较低的部分响应较弱,易造成轮廓信息的丢失。虽然很多学者针对高分辨率遥感影像改进了分水岭算法,但仍有一些问题没有解决,这是由于遥感影像本身具有多光谱和多尺度特性,数据复杂性和冗余度较高。本文针对以上未解决的问题,提出了一种改进的分水岭分割方法,用于高分辨率遥感影像的多尺度分割。本文提出的算法描述如下:首先,对高分辨率遥感影像进行各向异性扩散滤波的预处理,目的是既可以滤除细小的噪声又能较好的保留边缘信息;然后对影像进行多尺度形态学梯度提取,然后利用扩展最小变换修正多尺度梯度,进而进行基于标记的分水岭变换;最后利用影像对象的光谱和形状异质性指标进行多尺度区域合并。算法流程如图2-9 所示:

本文基于面向对象的影像分析思想,介绍了一种高分辨率遥感影像多尺度分类的方法,该方法充分考虑了高分辨率遥感影像自身的复杂性以及多光谱、多尺度特性,首先对遥感影像进行基于改进分水岭变换的多尺度分割,获取影像对象,然后对影像对象进行多尺度词包表达,最后引入PLSA 模型完成影像的分类任务。实验表明,本文方法对不同传感器遥感影像均能取得较好的分类效果。通过论文的工作,可得到以下结论:(1) 影像分割作为面向对象影像分析思想的核心技术之一,其效果的好坏将直接影响后期的分类和识别。本文详细阐述了基于改进分水岭变换的多尺度分割方法,该方法充分考虑了遥感影像的多光谱和多尺度特性,对高分辨率遥感影像分割有着较好的效果;(2) “尺度”特征作为遥感影像的固有属性,需要参与到遥感影像分析的过程中,才能进一步提高分析处理的效果。本文中强调了“尺度”的双重概念:一是指影像的空间分辨率,二是对影像分析时所研究的地表空间范围,前者对应于文中的多尺度形态学梯度和多尺度词包模型,后者对应于多尺度区域合并,也即多尺度分割;(3) 相比于传统的基于低层视觉特征的表达,词包模型通过直方图统计的方法获得目标的统计特性,有着更好的影像表达能力,并且隐含了一定的语义信息;本文引入词包模型对遥感影像的特征进行描述,利用PLSA 方法分析影像对象的所属类别,可以在非监督的情况下,取得较好的分类效果,在一定程度上提高了影像分类的自动化水平;(4) 实验表明,对于高分辨率遥感影像,面向对象的影像分类方法明显优于基于像元的影像分类方法。

结论

综上所述,高分辨率遥感影像的分类研究已经逐步由基于像元的思想为主转为面向对象的思想为主。国内外的研究人员针对面向对象的分类思想中的几个关键环节(遥感影像分割、多尺度区域合并、特征提取及分类等)进行了大量的研究,并且取得了丰硕的成果,但依然存在一些问题:

(1) 现有的分割方法大都是从经典的图像处理与模式识别领域直接引入,没有充分考虑到遥感影像自身的复杂性,如多光谱和多尺度特性,因此,通常不能得到理想的效果;

(2) 由于遥感影像中的地物目标都有着固有的尺度特性,因此,在单一尺度下进行分割往往不能兼顾高分辨率遥感影像上的多种地物类型。这里的“尺度”有两层含义,一是影像的空间分辨率,二是对影像分析时所研究的地表空间范围,从多尺度的角度进行影像分析,对于提高遥感影像的分割质量有着重要意义;

(3) 在现有遥感影像分类方法中,特征提取的方式依然是基于低层的视觉特征,这与要获得的高层语义信息之间存在着较大的“语义鸿沟”,也即提取的特征很难和地物的类别建立一一对应的关系,并且遥感影像中“同物异谱”和“同谱异物”的现象又加大了这一“鸿沟”问题。

遥感图像分类方法研究综述

第2期,总第64期国 土 资 源 遥 感No.2,2005 2005年6月15日RE MOTE SENSI N G F OR LAND&RES OURCES Jun.,2005  遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明 650092;2.云南省寄生虫病防治所,思茅 665000; 3.云南开远市第一中学,开远 661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751 文献标识码:A 文章编号:1001-070X(2005)02-0001-06 0 引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节———图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1 遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I S OM I X)、循环集群 法(I S ODAT A)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及“同物异谱”、 “异物同谱”现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Balstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2], 孙家对M.A.Friedl(1992)和 C.E.B r odley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2 基于统计分析的遥感图像分类方法 2.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-Nearest Neighbor)、决策树法(Decisi on Tree Classifi2 er)和贝叶斯分类法(Bayesian Classifier)。主要步骤包括:①选择特征波段;②选择训练区;③选择或构造训练分类器;④对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre ma等提出的启发式像素分类估计先验概率法。Mclachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

实验六:遥感图像监督分类与非监督分类

成都信息工程学院 遥感图像处理实验报告 实验6:遥感图像监督分类与非监督分类 专业:遥感科学与技术 班级: 092班 姓名:李翔 学号:2009043063 实验名称:遥感图像监督分类与非监督分类 实验教室: 5404教室 指导老师:刘志红 实验日期:2011年4月6日和4月13日

遥感数字图像处理实验报告 一、项目名称 遥感图像监督分类与非监督分类 二、实验目的 学会使用ERDAS IMAGINE软件对遥感图像进行非监督分类、监督分类、分类后处理、决策树分类,加深对图像分类过程和原理的理解,为图像解译打下基础。 三、实验原理 同类地物在相同的条件下应该具有相同或相似的光谱信息和空间信息特征。反之,不同类的地物之间具有这些差异。根据这些差异,将图像中的所有像素按其性质分为若干类别的过程,称为图像的分类。 根据是否需要分类人员事先提供已知类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。 分类后处理包括聚类统计、过滤分析、去除分析和分类重编码等操作。 聚类统计是通过计算分类专题图像每个分类图斑面积、记录相邻区域中最大图斑面积的分类操作。 四、数据来源 1.下载网站:https://www.docsj.com/doc/69178123.html,/admin/dataLandsatMain.jsp 2.波段数为6个。 3.分辨率为28.50,米。 4.投影为UTM, Zone48。 五、实验过程 一、非监督分类 1.在ERDAS IMAGINE依次点击如下图标,打开对话框, 2. 设定好输出数据,设置聚类选项,确定初始聚类方法和分类数。设置预处理选项,确定循环次数和阈值。如图所示:

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

遥感影像分类envi

遥感课程教学实验之二: 遥感影像分类 实验二遥感影像的分类遥感影像的监督分类 ?实验目的

理解计算机图像分类的基本原理以及监督分类的过程,学会利用遥感图像处理软ENVI 件对遥感图像进行分类的方法。 ?实验内容 1、遥感图像分类原理。 2、遥感图像监督分类。 3、最大似然法分类 ?实验条件 电脑、ENVI4.5软件。厦门市TM遥感影像。 ?实验步骤 1、启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色 影像,显示遥感影像。 2、从主图像窗口的工具Tools →Region of Interest →ROI Tools; 3、在自动打开的ROI Tools窗口中,设定ROI_Type 为“Polygon”(多边形),选定样本采 集的窗口类型,用Zoom(缩放窗口)进行采集。。

4、在选定的窗口如Zoom用鼠标左键画出样本区域,在结束处击鼠标右键二次,样本区域 被红色充填,同时ROI Tools窗口中显示采集样本的信息。采集新的样本点击“New Region”,重新上述步骤进行多个地物样本采集。。 5、从ENVI主菜单中,选 Classification > Supervised > Maximum Likelihood;或在端元 像元采集对话框 Endmember Collection中选择 Algorithm >MaximumLikelihood 进行最大似然法分类。

6、在出现Classification Input File 对话框中,选择输入影像文件,出现 Maximum Likelihood Parameters 对话框。 7、输入常规的分类参数。 设定一个基于似然度的阈值(Set Prpbability Threshold):如不使用阈值,点击“None” 按钮。要对所有的类别使用同一个阈值,点击“Single Value”按钮,在“Probability Threshold”文本框中,输入一个0 到1 之间的值。似然度小于该值的像元不被分入该类。 要为每一类别设置不同的阈值: ●在类别列表中,点击想要设置不同阈值的类别。 ●点击“Multiple Values”来选择它。 ●点击“Assign Multiple Values”按钮。 ●在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本框中输入阈值。为每 个类别重复该步骤。 最后给定输出结果的保存方式:文件或内存,当影像较大时建设保存到文件中,以免因内存不够而出错运算错误。 点击“OK”计算机开始自动分类运算。 8、在可用波段列表中显示分类图像。 ?实验总结

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

实验四遥感图像的监督分类和非监督分类

实验四遥感图像的非监督分类与监督分类 一、实验目的 1.非监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进行分类,在没有用户定义的条件下练习使用,在ENVI环境下的非监督分类技术有两种:迭代自组织 数据分析技术(ISodata)和K均值算法(K-Means); 2.分类过程中应注意:1)怎样确定一个最优的波段组合,从而达到最佳的分类精度,基于OIF和相关系数,协方差矩阵以及经验的使用来完成对最适合的组合的选取,分类 效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束 后,被分类后的图像是一个新的图像,被分类类码秘填充,从而可以获得数据提取信息, 统计不同类码数量,转化为实际面积,在得到后的图像上,可对不同目标的形态指标进 行分析。 3.对训练区中的像元进行分类; 4.用训练数据集估计查看监督分类后的统计参数; 5.用不同方法进行监督分类,如最小距离法、马氏距离法和最大似然法。 二、实验设备与材料 1、软件 ENVI 4.7软件 2、所需材料 TM数据 三、实验步骤 1.选择最优的波段组合 ENVI主工具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查; OIF计算,选择分类波段: 1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。用标准差相加的结果10.713644比上相关系数之和2.890354等于3.70668922。可以选择其他不同波段的数据进行同上运算,比值结果最大的为最优波段,此次选择结果为3,4,6波段。 2.K-Means法进行非监督分类 1)Classification →Unsupervised →K-Means,点击hbtmref.img →点击Spectral subset →选3,4,6三个波段→OK,回到上级菜单→OK,在Number of classes 中输15即分为15类,Change Iterations中输6,即最大迭化量为6次, Maximum Stdev From Mean中为空,选择保存位置→OK;在原界面中选定 保存结果后New display →Load Band,双击查看Cursor Location/V alue,发 现Data已由原来的坐标形式转换为类码;在K-Means窗口工具栏中点击 Tools →Spatial Pixel Editor →可将类码转换成相应的地物类型,要求进行 大量的野外调查,确定同一类码所代表的地物是什么

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

遥感图像的监督分类与处理_赵文彪

杭州师范大学《遥感原理与应用》实验报告 题目:遥感图像的监督分类与处理实验姓名:赵文彪 学号: 2014212425 班级:地信141 学院:理学院

1实验目的 运用envi软件对自己家乡的遥感影像经行分类和分类后操作。 2概述 分类方法:监督分类和非监督分类 监督分类——从遥感数据中找到能够代表已知地面覆盖类型的均质样本区域(训练样区),然后用这些已知区域的光谱特征(包括均值、标准差、协方差矩阵和相关矩阵等)来训练分类算法,完成影像剩余部分的地面覆盖制图(将训练样区外的每个像元划分到具有最大相似性的类别中)。 非监督分类——依据一些统计判别准则将具有相似光谱特征的像元组分分为特定的光谱类;然后,再对这些光谱类进行标识并合并成信息类。 光谱特征空间 同名地物点在丌同波段图像中亮度的观测量将构成一个多维的随机向量X,称为光谱特征向量。而这些向量在直角坐标系中分布的情况为光谱特征空间。 同类地物在光谱特征空间中不可能是一个点,而是形成一个相对聚集的点群。丌同地物的点群在特征空间内一般具有不同的分布。 特征点集群的分布情况: 理想情况:至少在一个子空间中可以相互区分 典型情况:任一子空间都有相互重叠,总的特征空间可以区分 一般情况:任一子空间都存在重叠现象 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。在分类乊前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决凼数迚行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决凼数去对其他待分数据迚行分类。使每个像元和训练样本做比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 3实验步骤 3.1遥感影像图的剪切 用envi打开下载的遥感影像图,剪切出一个地貌信息丰富的区域(因为一景遥感影像太大,分类时间较长,故而采用剪切的方法,剪切一个地貌丰富的遥感影像图。既便于分类也使得分类种数不至于减小的太多) 以下为剪切出来的遥感影像

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感图像的分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。

遥感实习遥感图像监督分类

实验五:监督分类与非监督分类 一、实验目的 采用监督分类对多光谱遥感图像进行分类,并对分类后的数据进行处理,处理方法包括:聚合(clump)处理、筛选(sieve)处理、并类(combine)处理,以及精度评估。监督法分类需要用户选择作为分类基础的训练样区。分析下面处理的分类结果,或者采用每个分类法默认的分类参数,生成自己的类,然后对分类结果进行比较。我们将使用各种监督分类法,并对它们进行比较,确定单个具体像素是否有资格作为某类的一部分。 二、实验数据与原理 美国科罗拉多州(Colorado)Canon市的Landsat TM 影像数据,其中包括can_tmr.img、can_tmr.hdr、can_km.img、can_km.hdr、can_iso.img、can_iso.hdr、classes.roi、can_pcls.img、can_pcls.hdr 、can_bin.img、can_bin.hdr 、can_sam.img、can_sam.hdr 、can_rul.img 、can_rul.hdr、can_sv.img、can_sv.hdr、can_clmp.img、can_clmp.hdr。 ENVI 提供了多种不同的监督分类法,其中包括了平行六面体(Parallelepiped)、最小距离法(Minimum Distance)、马氏距离法(Mahalanobis Distance)、最大似然法(Maximum Likelihood)、波谱角法(Spectral Angle Mapper)、二值编码法(Binary Encoding)以及神经网络法(Neural Net)。 三、实验过程: 1、打开TM图像,File →Open Image File,选择ljs-can_tmr.img文件,在可用波段列表中,选择RGB Color 单选按钮,然后使用鼠标左键,顺次点击波段4、波段3 和波段2。点击Load RGB 按钮,把该影像加载到一个新的显示窗口中。 2、查看光标值:

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

遥感影像分类方法实验报告

实验报告

目录 1 实验目的 (4) 2 实验数据 (4) 3 实验内容 (4) 4 实验步骤 (5) 4.1 对人口矢量数据(shapefile)进行投影转换 (5) 4.1.1 Census.shp文件投影坐标的检查 (5) 4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6) 4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6) 4.2.1 Census.shp在ENVI软件的加载 (6) 4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7) 4.2.3 用矢量图层对遥感影像进行裁剪 (10) 4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11) 4.3.1 两种融合方法的原理 (11) 4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11) 4.3.4 融合效果进行定性评价 (14) 4.3.5 融合效果进行定量评价(软件提供的计算方法) (15) 4.3.6 融合效果进行定量评价(Matlab编程计算) (16) 4.3.7 遥感影像融合定量分析代码 (20) 4.4 生成住房密度栅格影像 (23) 4.4.1 两表的连接 (23) 4.4.2 计算房屋密度 (24) 4.4.3 直接栅格化 (25) 4.4.4 IDW插值 (25) 4.4.5 对房屋密度图进行重分类 (26) 4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26) 4.6 监督分类(融合方法为HSV,波段为5,4,3) (27) 4.6.1 打开Google Earth影像作为监督分类的参照 (27) 4.6.2 建立兴趣区 (29) 4.6.3 训练样区的选择 (30) 4.6.4 训练样区的评价 (31) 4.6.5 执行监督分类 (33) 4.6.6 分类后处理 (35) 4.6.7 评价结果分析 (37) 4.6.8 分类结果面积统计 (38) 4.6.9 分类结果 (41) 4.7 分类结果评价与分析 (41) 4.7.1 未加入房屋密度图层的分类结果评价与分析 (41) 4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42) 4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43) 4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44) 4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)

遥感监督分类

实验遥感图像监督分类 实验目的: 通过实习操作,掌握遥感图像监督分类的基本方法和步骤,深刻理解遥感图像监督分类的意义。 实验内容: 监督分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的象元建立模板,然后基于该模板使计算机自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复建立一个比较准确的模板,并在此基础上最终进行分类。 实验步骤: 第一步:定义分类模板 ERDAS IMAGINE 的监督分类是基于分类模板来进行的,而分类模板的生成、管理、评价和编辑等功能是由分类模板编辑器来负责的。 在分类模板编辑器中生成分类模板的基础是原图像和(或)其特征空间图像。因此,显示这两种图像的窗口也是进行监督分类的重要组件 1、显示需要分类的图像 在窗口中显示图像germtm.img。 具体步骤是单击ERDAS面板中的Viewer图标,打开一个窗口View#1,然后执行File/Open/Raster Layer,打开Select Layer to Add对话框,在对话框中找到germtm.img,在Select Layer to Add对话框点击Raster Options选项卡,设置Red 值为4,Green值为5,Blue值为3,选中Fit to Frame(图5-1)。

图5-1 设置图像显示参数 点击OK,打开图像(图5-2)。 图5-2 打开图像 2、打开分类模板编辑器 两种方式可以打开分类面板编辑器:(1)在ERDAS图标面板中单击Main/Image Classfication/Classfication/Signature Editor命令,打开Signature Editor 窗口(图5-3);(2)在ERDAS图标面板工具条,单击Classifier图标/Classfication/Signature Editor命令,打开Signature Editor窗口(图5-3)。

遥感图像分类方法研究综述_李石华

第2期,总第64期国土资源遥感N o.2,2005 2005年6月15日RE MOTE SENSI N G FOR LAND&RESOURCES Jun.,2005 遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明650092;2.云南省寄生虫病防治所,思茅665000; 3.云南开远市第一中学,开远661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751文献标识码:A文章编号:1001-070X(2005)02-0001-06 0引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节)))图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I SO M I X)、循环集群 法(ISODATA)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及/同物异谱0、 /异物同谱0现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Ba lstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2],孙家 对M.A.Fried l(1992)和 C.E.Brodley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2基于统计分析的遥感图像分类方法 2.1监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-N earest Ne i g hbor)、决策树法(Decisi o n Tree C lassif-i er)和贝叶斯分类法(Bayesian C lassifier)。主要步骤包括:1选择特征波段;o选择训练区;?选择或构造训练分类器;?对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre m a等提出的启发式像素分类估计先验概率法。M clachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

相关文档
相关文档 最新文档