文档视界 最新最全的文档下载
当前位置:文档视界 › 遥感影像分类方法实验报告

遥感影像分类方法实验报告

遥感影像分类方法实验报告
遥感影像分类方法实验报告

实验报告

目录

1 实验目的 (4)

2 实验数据 (4)

3 实验内容 (4)

4 实验步骤 (5)

4.1 对人口矢量数据(shapefile)进行投影转换 (5)

4.1.1 Census.shp文件投影坐标的检查 (5)

4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6)

4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6)

4.2.1 Census.shp在ENVI软件的加载 (6)

4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7)

4.2.3 用矢量图层对遥感影像进行裁剪 (10)

4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11)

4.3.1 两种融合方法的原理 (11)

4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11)

4.3.4 融合效果进行定性评价 (14)

4.3.5 融合效果进行定量评价(软件提供的计算方法) (15)

4.3.6 融合效果进行定量评价(Matlab编程计算) (16)

4.3.7 遥感影像融合定量分析代码 (20)

4.4 生成住房密度栅格影像 (23)

4.4.1 两表的连接 (23)

4.4.2 计算房屋密度 (24)

4.4.3 直接栅格化 (25)

4.4.4 IDW插值 (25)

4.4.5 对房屋密度图进行重分类 (26)

4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26)

4.6 监督分类(融合方法为HSV,波段为5,4,3) (27)

4.6.1 打开Google Earth影像作为监督分类的参照 (27)

4.6.2 建立兴趣区 (29)

4.6.3 训练样区的选择 (30)

4.6.4 训练样区的评价 (31)

4.6.5 执行监督分类 (33)

4.6.6 分类后处理 (35)

4.6.7 评价结果分析 (37)

4.6.8 分类结果面积统计 (38)

4.6.9 分类结果 (41)

4.7 分类结果评价与分析 (41)

4.7.1 未加入房屋密度图层的分类结果评价与分析 (41)

4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42)

4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43)

4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44)

4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)

4.7.6 分类结果总体评价 (46)

4.7.7 与其他训练样区的分类精度和Kappa系数的计算 (48)

4.8 决策树分类 (49)

4.8.1 决策树分类原理 (49)

4.8.2 数据预处理 (49)

4.8.3 指数的计算 (51)

4.8.4 执行决策树 (54)

4.8.5 不同参数设置的对比 (57)

5 实验体会 (60)

5.1 实验中存在的问题 (60)

5.2 软件平台使用 (63)

5.3 实验总结 (63)

1 实验目的

①掌握ArcGIS10和ENVI4.7对遥感图像处理的基本操作与原理

②熟悉几何精校正的方法,掌握ENVI软件对遥感影像进行几何精校正

③掌握全色波段与多光谱波段的融合方法和原理,学会对融合效果进行定性定量分析

④熟悉掌握ArcGIS的栅格化方法和IDW插值方法

⑤熟悉监督分类的方法和基本原理,掌握ENVI软件中进行监督分类

⑥了解监督分类后评价过程,对分类结果进行精度评价和分析

⑦掌握Erdas的空间建模方法以及原理

⑧了解RuleGen算法,掌握决策树分类方法

2 实验数据

①带属性数据的shapefile:Census.shp

②带有陆地面积字段的矢量图层:

③ GoogleEarth_原始拼接:GE1005211134.jpg

④研究区域的多光谱波段数据:Stack_b1-6162-7.img

⑤研究区域的全色波段数据:b8.img

⑥监督分类参照影像:Google Earth

3 实验内容

①对人口矢量数据(shapefile)进行投影转换:WGS_1984_UTM_Zone_16N

②对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准):

(1)对多光谱波段(30 m空间分辨率)进行几何精校正(小于0.25个像元);

(2)对Pan波段(15 m空间分辨率)进行几何精校正(小于0.25个像元);

③将Pan波段和多光谱波段进行融合(自选至少一种融合算法),并对融合效果进行定

性和定量评价;

④生成住房密度栅格影像:

(1)直接栅格化;

(2) IDW插值;

⑤将住房密度栅格影像作为额外的通道(或波段)与ETM+多光谱波段进行叠加;

⑥进行监督分类和分类后处理(Post-Classification,Expert Rules)

⑦利用ERDAS软件的空间建模(Spatial Modeler)进行水体信息(MNDWI指数)和植

被信息(NDVI指数)的提取;

⑧利用“自动阈值决策树分类算法”进Marion County的土地利用/覆盖分类信息提取

(使用的数据:原始各波段+MNDWI+NDVI+ISODATA等,或其他有益的波段组合)

①探讨“自动阈值决策树分类算法”中的各个参数意义及如何设置更合理

②对分类结果进行评价与分析

⑨对分类结果进行精度评价和分析;

4 实验步骤

4.1 对人口矢量数据(shapefile)进行投影转换

4.1.1 Census.shp文件投影坐标的检查

根据实验要求,人口矢量数据(shapefile)进行投影坐标应为:WGS_1984_UTM_Zone_16N 在ArcGIS软件的图层右击Properties,在Layer Properties的Source下查看投影信息,如图1。得到Census.shp的投影坐标为:GCS_North_American_1983,与实验要求不符合,需进行投影转换。

图1

4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N

在Arcgis软件的工具箱中的Define Projection工具,设置输入数据为:Census.shp,坐标系统为GCS_WGS_1984,在工具箱中的工具,设置输入数据:Census.shp,导入遥感影像的投影坐标系,即GCS_WGS_1984(如图2)。

图2

4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准)

4.2.1 Census.shp在ENVI软件的加载

在ENVI软件中,File -> Open Vector File,选择Census.shp,设置好参数,生成evf文件(如图3)。

图3

4.2.2 对遥感影像进行几何精校正(以矢量数据为基准)

在ENVI分别打开遥感影像img和矢量文件vef,选择Map -> Registration -> Select GCPs : image to map,以矢量数据为基准,设置好投影,如图4。

图4

在ENVI中,在zoom窗口下采集控制点,这次实验采集的控制点数为13个,控制点的主要定位在道路与道路之间的交叉点,如图5,其控制点的RMS Error 为0.246390,如图6,如图7为20个控制点的采集情况。

图5

图6

图7

选择校正参数输出结果,在Ground Control Points Selection窗口选择Option -> Warp File ,如图8;数学模型为Polynomial,设定参数为2,从采样方法为最临近法,如图9。

图8 图9

如图10、11为几何校正前后,矢量图层与遥感影像吻合度的对比,可以明显看出,经过几何校正后的遥感影像与矢量图层吻合程度有明显的改善,有部分水体边界不吻合,这主要是由于水体会随时间而改变;而街区与道路吻合程度良好。

图10

图11

如图12为对多光谱波段(30 m空间分辨率)进行几何精校正后的遥感影像;如图13为对Pan波段(15 m空间分辨率)进行几何精校正后的遥感影像。

图12

图13

4.2.3 用矢量图层对遥感影像进行裁剪

在ENVI中打开Census.shp文件,将该图层转换成ROI,如图14。

图14

通过ROI进行裁剪遥感影像,选择Basic Tools ->Subset Data via ROIs ;选择转换好的ROI进行裁剪,如图15。

图15

同样,对pan波段的遥感影像进行裁剪,得到遥感影像如图16。

图16

4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价

4.3.1 两种融合方法的原理

Gram-Schmidt 可以对具有高分辨率的高光谱数据进行锐化。

①从低分辨率的波谱波段中模拟出一个全色波段。

②对该全色波段和波谱波段进行Gram-Schmidt变换,其中模拟的全色波段被作为第

一个波段。

③用Gram-Schmidt 变换后的第一个波段替换高空间分辨率的全色波段。

④应用Gram-Schmidt 反变换构成pan锐化后的波谱波段。

Gram-Schmidt Spectral Sharpening方法进行图像增强能够比较好的保留原多光谱图像的光谱信息,使遥感影像的融合保留多光谱影像的增强效果。

用PC 可以对具有高空间分辨率的光谱图像进行锐化。

①先对多光谱数据进行主成分变换。

②用高分辨率波段替换第一主成分波段,在此之前,高分辨率波段已被缩放匹配到第

一主成分波段,从而避免波谱信息失真。

③进行主成分逆变换。函数自动地用最近邻、双线性或三次卷积技术将多光谱数据重

采样到高分辨率像元尺寸。

4.3.2 进行 Gram-Schmidt Spectral Sharpening融合

在ENVI软件中,选择Transform -> Image Sharpening -> Gram-Schmidt Spectral Sharpening ,在Select Low Spatial Resolution Multi Band Input File中选择Stack_b1-6162-7_CJ.img 多光谱波段,Spatial Subset 为Full Scene,Spectral Sunset 为8个波段,如图17。

图17

在Select High Spatial Resolution Pan Input File窗口中选择b8_CJ.img 全色波段,如图18。

图18

Select Method for Low Resoution Pan选择Average of Low Resolution Multispectral File:利用多光谱波段的平均值来模拟低分辨率的全色波段。Resampling选择Nearest Neighbor,Output Result 选择保存路径,如图19。

图19

4.3.3 进行PC Spectral Sharpening融合

在ENVI软件中,选择Transform -> Image Sharpening -> PC Spectral Sharpening ,在Select Low Spatial Resolution Multi Band Input File中选择Stack_b1-6162-7_CJ.img 多光谱波段,Spatial Subset 为Full Scene,Spectral Sunset为8个波段,如图20。

图20

在Select High Spatial Resolution Pan Input File窗口中选择b8_CJ.img 全色波段,如图21。

图21

Resampling选择Nearest Neighbor,Output Result 选择保存路径,如图22。

图22

4.3.4 融合效果进行定性评价

如图23为原始遥感影像与经过Gram-Schmidt Spectral Shaping处理后的影像。

图23

从图23,我们可以得到,Gram-Schmidt Spectral Shaping处理后的影像总体上来说分辨率有很大的提高,清晰度高,光谱信息比较丰富,但颜色的匹配还不是很理想,整个影像的色调基本上一致,呈现出泛红的现象,地物之间的辨别基本上是通过影像上的灰度信息,而色彩提供的信息量较少,区分度不高。

如图24为原始遥感影像与经过PC Spectral Sharpening处理后的影像。

图24

从图24,我们可以得到,PC Spectral Sharpening处理后的影像清晰度高,涵盖的地物信息量大,颜色的畸变很小,和Gram-Schmidt Spectral Shaping处理的影像效果类似,颜色的匹配还不是很理想,整个影像的色调基本上一致,呈现出泛红的现象,色彩不够丰富。在水域的地方颜色与原来的为黑色变成了青色,颜色变化差异较大。

定性评价结论,从图23、24,我们可以了解到提高空间分辨率效果最好的是Gram-Schmidt Spectral Shaping ;光谱变化较小的是PC Spectral Sharpening,但在水域的区域上,Gram-Schmidt Spectral Shaping 保持这原始影像的色彩。

4.3.5 融合效果进行定量评价(软件提供的计算方法)

在实验中,波段的选取为4,3,2波段。

在主窗口中,右击选择Z Profile,对比三个影像的情况(如图25)。

图25

从图25,我们可以得到,经过融合后,在Value上都有所增加,band1从90 -> 100;说明了融合后影像的亮度信息提高了。但PC和GS两者的Value通过图上很难分辨出区别。

图26 X Profile

图27 Y Profile

在ENVI 4.7软件中,选择Basic Tools ->Stayistics ->Compute Statistics,如图

28。

图28

如表1为原始影像、PC融合后影像和GS融合后影像的部分统计参数。

表1

图29 图30

从图29、30,两张折线图上我们可以直观的了解原始影像、PC融合后影像和GS融合后影像在亮度信息上的关系。在均值上,PC融合影像和GS融合影像均有所增加,但是从幅度上来看,PC融合影像的均值增加的幅度较大,较GS融合影像更有利于目视判读。在方差上,与原始影像相比较PC融合影像的方差有所增加,而GS融合影像的方差大幅下降,不利于目视判读。因此,在亮度指标上最好的为PC融合,其次为GS融合。

4.3.6 融合效果进行定量评价(Matlab编程计算)

此次实验从融合影像的亮度信息,清晰程度,光谱保持程度,信息丰富程度等多角度进行评价分析,相比传统的单一定量评价全面,能够减少评价的随机性,使得定量评价更加科学全面。主要通过4方面进行统计分析:①亮度信息,针对融合后影像亮度信息进行评价,主要包括均值和标准差等指标。②清晰度,评价融合影像的清晰程度,主要包括平均梯度和空间频率等指标。③光谱信息,评价融合后影像的光谱变形情况,包括扭曲程度,相关系数等指标。④信息量,评价融合后信息量的保持或增加程度,主要包括信息熵,交叉熵和互信息等指标。以下公式中,影像函数为Z(X,Y) ,影像的行数和列数分别为M和N,影像的大小则为M×N。

4.3.6.1 亮度信息 均值(z)

影像均值是像素的灰度平均值,对人眼反映为平均亮度。如果均值适中,则影像效果良好,其定义为:

N

M y x z z N

j j

i

M i ?=

∑∑==1

1)

,(

标准差(σ)

标准差反映了影像灰度相对于灰度平均值的离散情况,在某种程度上,标准差也可用来评价影像反差的大小。若标准差大,则影像灰度级分布分散,影像的反差大,可以看出更多的信息,其公式为:

N

M z y x Z N

j j

i

M i ?--=∑∑==2

1

1

)

)((σ

方差(D)

方差反映了灰度相对于灰度均值的离散情况,方差越大,则灰度级分布越分散。此时,图像中所有灰度级出现的概率越趋于相等,从而包含的信息量趋于越大。方差计算公式为:

2

1

)(∑=-=n

i i

i N D DN

p D

4.3.6.2 清晰度 平均梯度(G)

平均梯度可敏感地反映影像对微小细节反差表达的能力,可用来评价影像的清晰程度,还可同时反映出影像中微小细节反差和纹理变化特征,其计算公式为:

∑-=-=??+??--=1

1

2

21

1

2

)),(()),((

)1)(1(1

N j i

j i i

j i M i y y x Z x y x Z N M G

空间频率(SF)

空间频率反映了一幅影像空间的总体活跃程度,空间频率越大,说明融合效果越好。它包括空间行频率RF 和空间列频率CF 组成,其公式为:

21

11)],(),([1-==-?=

∑∑j i

N

j j

i

M i y

x Z y x Z N M RF

21

1

1

)],(),([1j i N

j j

i

M

i y x

Z y x Z N

M CF -==-?=

∑∑

总体的空间频率值取RF 和CF 的均方根,即:

2

2CF RF SF +=

4.3.6.3 光谱信息 扭曲程度(D)

扭曲程度D 是指融合影像F 像素灰度平均值与源影像A 像素灰度平均值之差,也可以说是融合影像与源影像的差值影像的灰度平均值,它的表达式为:

∑∑==-?=

M

j i

i

i

i

M i y x A y x F N M D 1

1

)

,(),(1

它反映融合影像和源多光谱影像在光谱信息上的差异大小和光谱特性变化的平均程度。 相关系数(ρ)

融合影像与源影像的相关系数能反映两幅影像光谱特征的相似程度,其定义如下:

2

1

2

1

1

1

),(),(),(),(a y x A f y x F a

y x A f

y x F j i N

j j i M i j i N

j j

i

M i ----=

∑∑∑====ρ

其中,f 和a 分别为融合影像与源影像的均值。通过比较融合前后的影像相关系数可以看出多光谱影像的光谱信息的改变程度。

4.3.6.4 信息量 信息熵(E)

影像的信息熵值是衡量影像信息丰富程度的一个重要指标。对于一幅单独的影像,其灰度分布为},,,,{110-=L i p p p p p ,

i

p 为灰度值等于i 的像素数与影像总像素数之比。

根据Shannon 信息论的定理,一幅影像的信息熵为:

∑-==

1

2

log

L i i i p p E

融合影像的熵越大,融合影像所含的信息越丰富,融合质量越好。 交叉熵(C)

交叉熵可以用来测定两幅影像灰度分布的信息差异。设源影像和融合影像的灰度分布分别为:},,,,{110-=L i p p p p p 和},,,,,{110-=L i q q q q q ,则交叉熵定义为:

∑-==

1

log

L i i

i

i q p p C 交叉熵是评价两幅影像差别的重要指标,它直接反映了两幅影像对应像素的差异。对融合影像前的源影像和融合结果影像求交叉熵,即可得到融合影像与源影像的差异。差异越小,则该融合方法从源影像提取的信息量越多。

互信息(MI)

互信息是信息论中的一个重要概念,它可作为两个变量之间相关性的量度,或一个变量包含另一个变量的信息量的量度。F 与A, B 的互信息分别表示为FA MI 和FB MI :

∑∑

-=-==

1

02

1

0)()()

,(log ),(L i A F FA FA L k FA i p k p i k p i k p MI

∑∑-=-==

10

2

1

)

()()

,(log ),(L i B F FB FB

L k FB i p k p i k p i k p

MI

式中:A p ,B p 和F p 分别是A ,B 和C 的概率密度;),(i k p FA 和),(i k p FB 分别代表两组影像的联合概率密度。互信息的值越大,表示融合影像从源影像中获取的信息越丰富,融合效果越好。

通过定量评价分析对2种融合方法进行评价。评价内容包括亮度信息、清晰度、光谱信息和信息量等4个方面。试验证明这些评价参数能够很好地反映遥感影像融合效果。融合结果参数评价指标见表所示。

亮度信息

清晰度

均值 方差

标准差 平均梯度 空间频率 b8 73.0791 488.2951 22.0974 3.4682 9.0288 Stack 90.4897 1488.733 38.5841 7.6456 20.0627 PC 90.6771 1464.027 38.2626 6.1073 15.398 GS 90.5315 1474.099

38.3940 6.1344 15.4558 光谱信息

信息量 扭曲程度 相关系数

信息熵 交叉熵 互信息 b8 5.5133 Stack 6.8639 PC 0.1875 0.8733 6.8713 0.2368 0.0409 GS 0.0419 0.8858

6.9086

0.7794 0.0405

1)亮度信息

由表第一列亮度信息可以看出2种融合方法的均值有所降低,方差和标准差有所增加;

2)清晰度

由表第二列可以看出,3种融合方法的平均梯度和空间频率都小于原始的多光谱影像,说明融合后的结果影像减少了细节纹理信息,使影像的清晰度降低了。

3)光谱信息

依据表中的第三列可以看出GS融合扭曲程度最小,而相关系数最大,因此GS融合的光谱信息保持得最好。

4)信息量

通过信息熵可以看出GS融合所得的结果信息量最大;从交叉熵看到,GS融合和PC融合的结果交叉熵依次减小,说明融合后的结果影像与源影像对应像素差异也依次减小,即GS 融合保留原始图像信息量最多,PC融合保留最少;从互信息也可以得到同样规律。而通过定性评价分析不能得出图像携带的信息量,它仅仅是通过比较分析图像的亮度信息进行比较评价的。

4.3.7 遥感影像融合定量分析代码

Dfusion=imread('C:\Users\Administrator\Desktop\RS1\GS.tif');

Dlow=imread('C:\Users\Administrator\Desktop\RS1\Stack_b1-6162-7_CJ.tif');

Dhigh=imread('C:\Users\Administrator\Desktop\RS1\b8_CJ.tif');

[rh,ch]=size(Dhigh);

Dlowh=imresize(Dlow,[rh,ch],'bicubic');

mean=mean2(Dlow); %均值

meanf=mean2(Dfusion);

DIF=abs(meanf-mean); %扭曲程度Std=std2(Dfusion); %标准差

Std2=std2(Dlowh);

Ds=Std^2; %方差

Dl=Std2^2;

D3=abs(Ds-Dl); %求差方差p=imhist(Dfusion(:),8)/numel(Dfusion(:));

r=entropy(Dfusion(:)); %信息熵

c=corr2(Dfusion(:),Dlowh(:)); %相关系数h1=diff(Dfusion);%求影像差分,反映图像清晰度

h=mean2(h1);

g1=diff(Dlow);

g=mean2(g1);

G=h-g;%求融合后影像与原影像差分差值

遥感图像分类方法研究综述

第2期,总第64期国 土 资 源 遥 感No.2,2005 2005年6月15日RE MOTE SENSI N G F OR LAND&RES OURCES Jun.,2005  遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明 650092;2.云南省寄生虫病防治所,思茅 665000; 3.云南开远市第一中学,开远 661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751 文献标识码:A 文章编号:1001-070X(2005)02-0001-06 0 引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节———图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1 遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I S OM I X)、循环集群 法(I S ODAT A)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及“同物异谱”、 “异物同谱”现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Balstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2], 孙家对M.A.Friedl(1992)和 C.E.B r odley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2 基于统计分析的遥感图像分类方法 2.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-Nearest Neighbor)、决策树法(Decisi on Tree Classifi2 er)和贝叶斯分类法(Bayesian Classifier)。主要步骤包括:①选择特征波段;②选择训练区;③选择或构造训练分类器;④对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre ma等提出的启发式像素分类估计先验概率法。Mclachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

遥感实验报告

1.利用Mapgis进行图像校正 1.1实验目的 了解MAPGIS土地利用数据建库对数据的基本要求。掌握图像校正---DRG生产的具体操作步骤。 1.2实验基本要求 将两幅1/万影像数据k50g092035、k50g092036,进行图象校正。 1.3实验内容 DRG生产的操作步骤如下: 1.打开mapgis主菜单,选择图像处理\图象分析模块。 2.文件转换:打开文件\数据输入,将两幅tif图像转换成msi(mapgis图象格式)文件类型。 选择“转换数据类型”为“TIF文件”,点“添加目录”选择影象所在目录,点“转换”。 3. 选择文件\打开影象,打开转换好的msi文件k50g092035.msi,再选择镶嵌融合\DRG生产\图幅生成控制点,点“输入图幅信息”。 4.输入图幅号信息,输入图幅号 k50 g092035,系统会利用此图幅号自动生成图幅的理论坐标。 图1.1 图幅生成控制点 5.定位内图廓点,建立理论坐标和图象坐标的对应关系。 利用放大、缩小、移动等基本操作在图像上确定四个内图廓点的位置。以定位左上角的内图廓点为例:利用放大,缩小,移动等操作找到左上角的内图廓点的精确位置后,点击上图对话框中的左上角按钮,然后再点击图像上左上角的内图廓点即完成该点的设置。完成参数设置和内图廓点信息的输入后,点击生成GCP,将自动计算出控制点的理论坐标,并根据理论坐标反算出控制点的图像坐标。 6.顺序修改控制点。 选取镶嵌融合\DRG生产\顺序修改控制点,则弹出控制点修改窗口,如下图所示:

图1.2 控制点修改窗口 7.逐格网校正 选取镶嵌融合\DRG生产\逐格网校正,弹出文件保存对话框,输入结果影像文件名为“K50 G 092035”,点“保存”。出于精度考虑,可以将“输出分辨率” 设置为“300”DPI。 8.DRG生产完毕。为了以后线文件要与内图框闭合成区,接着生成单线内图框。 生成单线内图框的方法如下: 1)选择镶嵌融合\ 打开参照文件\自动生成图框 2)输入图幅号,选择北京54坐标系.采用大地坐标系 3)选择单线内框.椭球参数选择北京54图框文件名保存为2035.WL,保存路径如下图如示,点“确定”即可完成。 图1.3 1:1万图框 用同样的方法校正另一幅影像k50g092036,将校正后的文件保存为k50 g 092036,同时生成对应的内图框文件2036.wl,保存在实习数据\单线内图框\。

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

遥感图像处理 分类 实验报告

Lab6 non-parametric classification and post classification 12021005龚鑫烨Objection:the major object of the current lab section are to implement non-parametric classification based on BP networks and support vector machines algorithms,with a full mastery of post-classification operation. Data: the subset of spot 5 imagery covering NJ. Steps: 1、identify a training dataset and an independent set of validation data for built-up, forest,cropland,grassland and water. 2、Implementing above-mentioned non-parametric algorithms to classify your image. 3、Validating your classification. 4、Refining your classification by implementing the majority filtering and modeling process if possible. 实验步骤: 1、将数据加载到envi中

(完整版)ERDAS遥感图像处理实验报告

西北农林科技大学 ERDAS实验报告 专业班级:地信111 姓名:杨登贤 学号:2011011506 2013/12/20 ERDAS实验报告

一.设置一张三维图。 (3) 1.底图与三维图 (3) 2.参数设置 (5) (1)三维显示参数 (5) (2)三维视窗信息参数 (6) (3)太阳光源参数 (6) (4)显示详细程度 (6) (5)观测位置参数 (7) 二.(几何纠正几何畸变图像处理):几何纠正结果图。 (7) (2)选择合适的坐标变换函数(即几何校正数学模型) (8) (3)数据控制点采集表 (9) (4)多项式模型参数 (9) (5)图像重采样参数 (10) (6)结果图 (10) 三.(数据输入\ 输出):镶嵌图(根据不同条件做出不同的几张)。 (11) 1.图像色彩校正设置 (12) 四.(图像增强处理):傅里叶高通/低通滤波图或效果图空间增强效果图。 (13) 1.空间增强卷积处理 (13) (1)原图像 (13) (2)卷积增强设置参数 (13) (3)卷积增强处理图像 (14) 2.傅里叶变换 (14) (1)快速傅里叶变换设置参数 (14) (2)低通滤波 (15) (3)高通滤波 (16) 五.光谱增强。 (18) 1.主成分变换 (18) (1)参数设置 (18) (2)处理图像 (19) 2.缨帽变换 (19) (1)参数设置 (19) (2)处理图像 (20) 3.指数计算 (20) (1)参数设置 (20) (2)处理图像 (21) 4.真彩色变换 (21) (1)参数设置 (21) (2)处理图像 (22) 六.(非监督分类):非监督分类结果图分类后处理结果图去除分析结果图。 (23) 1.参数设置 (23) 2.非监督分类结果图 (24) 3.分类后处理结果图 (25)

实验六:遥感图像监督分类与非监督分类

成都信息工程学院 遥感图像处理实验报告 实验6:遥感图像监督分类与非监督分类 专业:遥感科学与技术 班级: 092班 姓名:李翔 学号:2009043063 实验名称:遥感图像监督分类与非监督分类 实验教室: 5404教室 指导老师:刘志红 实验日期:2011年4月6日和4月13日

遥感数字图像处理实验报告 一、项目名称 遥感图像监督分类与非监督分类 二、实验目的 学会使用ERDAS IMAGINE软件对遥感图像进行非监督分类、监督分类、分类后处理、决策树分类,加深对图像分类过程和原理的理解,为图像解译打下基础。 三、实验原理 同类地物在相同的条件下应该具有相同或相似的光谱信息和空间信息特征。反之,不同类的地物之间具有这些差异。根据这些差异,将图像中的所有像素按其性质分为若干类别的过程,称为图像的分类。 根据是否需要分类人员事先提供已知类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。 分类后处理包括聚类统计、过滤分析、去除分析和分类重编码等操作。 聚类统计是通过计算分类专题图像每个分类图斑面积、记录相邻区域中最大图斑面积的分类操作。 四、数据来源 1.下载网站:https://www.docsj.com/doc/7f17553961.html,/admin/dataLandsatMain.jsp 2.波段数为6个。 3.分辨率为28.50,米。 4.投影为UTM, Zone48。 五、实验过程 一、非监督分类 1.在ERDAS IMAGINE依次点击如下图标,打开对话框, 2. 设定好输出数据,设置聚类选项,确定初始聚类方法和分类数。设置预处理选项,确定循环次数和阈值。如图所示:

遥感实验报告

遥感原理与应用 实验报告 姓名:学号:学院:专业: 年月日 实验一: erdas视窗的认识实验 一、实验目的 初步了解目前主流的遥感图象处理软件erdas的主要功能模块,在此基础上,掌握几个视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。 二、实验步骤 打开imagine 视窗 启动数据预处理模块 启动图像解译模块 启动图像分类模块 imagine视窗 1.数据预处理(data dataprep) 2.图像解译(image interpreter) 主成份变换 色彩变换 3.图像分类(image classification) 非监督分类 4. 空间建模(spatial modeler) 模型制作工具 三、实验小结 通过本次试验初步了解遥感图象处理软件erdas的主要功能模块,在此基础上,基本掌握了几个视窗操作模块的功能和用途。为后续的实验奠定了基础。 实验二遥感图像的几何校正 掌握遥感图像的纠正过程 二、实验原理 校正遥感图像成像过程中所造成的各种几何畸变称为几何校正。几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 几何校正包括几何粗校正和几何精校正。地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了几何粗校正。利用地面控制点进行的几何校正称为几何精校正。一般地面站提供的遥感图像数据都经过几何粗校正,因此这里主要进行一种通用的精校正方法的实验。该方法包括两个步骤:第一步是构建一个模拟几何畸变的数学模型,以建立原始畸变图像空间与标准图像空间的某种对应关系,实现不同图像空间中像元位置的变换;第二步是利用这种对应关系把原始畸变图像空间中全部像素变换到标准图像空间中的对应位置上,完成标准图像空间中每一像元亮度值的计算。 三、实验内容 根据实验的数据,对两张图片进行几何纠正 四、实验流程

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感影像分类envi

遥感课程教学实验之二: 遥感影像分类 实验二遥感影像的分类遥感影像的监督分类 ?实验目的

理解计算机图像分类的基本原理以及监督分类的过程,学会利用遥感图像处理软ENVI 件对遥感图像进行分类的方法。 ?实验内容 1、遥感图像分类原理。 2、遥感图像监督分类。 3、最大似然法分类 ?实验条件 电脑、ENVI4.5软件。厦门市TM遥感影像。 ?实验步骤 1、启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色 影像,显示遥感影像。 2、从主图像窗口的工具Tools →Region of Interest →ROI Tools; 3、在自动打开的ROI Tools窗口中,设定ROI_Type 为“Polygon”(多边形),选定样本采 集的窗口类型,用Zoom(缩放窗口)进行采集。。

4、在选定的窗口如Zoom用鼠标左键画出样本区域,在结束处击鼠标右键二次,样本区域 被红色充填,同时ROI Tools窗口中显示采集样本的信息。采集新的样本点击“New Region”,重新上述步骤进行多个地物样本采集。。 5、从ENVI主菜单中,选 Classification > Supervised > Maximum Likelihood;或在端元 像元采集对话框 Endmember Collection中选择 Algorithm >MaximumLikelihood 进行最大似然法分类。

6、在出现Classification Input File 对话框中,选择输入影像文件,出现 Maximum Likelihood Parameters 对话框。 7、输入常规的分类参数。 设定一个基于似然度的阈值(Set Prpbability Threshold):如不使用阈值,点击“None” 按钮。要对所有的类别使用同一个阈值,点击“Single Value”按钮,在“Probability Threshold”文本框中,输入一个0 到1 之间的值。似然度小于该值的像元不被分入该类。 要为每一类别设置不同的阈值: ●在类别列表中,点击想要设置不同阈值的类别。 ●点击“Multiple Values”来选择它。 ●点击“Assign Multiple Values”按钮。 ●在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本框中输入阈值。为每 个类别重复该步骤。 最后给定输出结果的保存方式:文件或内存,当影像较大时建设保存到文件中,以免因内存不够而出错运算错误。 点击“OK”计算机开始自动分类运算。 8、在可用波段列表中显示分类图像。 ?实验总结

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感实验报告七

合肥工业大学资源与环境工程学院 《遥感图像处理与分析》 实验报告(七) 姓名 学号 专业 班级 任课教师

实验七:图像分类 一、实验目的 理解计算机图像分类的基本原理 掌握数字图像非监督分类以及监督分类的具体方法和过程 理解两种分类方法的区别 二、实验材料 Landsat遥感影像1幅 ERDAS IMAGINE9.2遥感图像处理软件 计算机 三、实验内容及步骤 (一)非监督分类 (1)启动非监督分类模块:在ERDAS面板工具中选择DA TAPrep-Unsupervisd Classification命令,打开非监督分类对话框或是在ERDAS面板工具中选择 Classifier-Classification-Unsupervised Classification打开非监督分类对话框(2)选择图像处理文件和输出文件,设置被分类的图像和分类结果,并选择生成分类模块文件产生一个模版文件。 (3)这里Number of Classes定为14,Maximum Iterations定为7如下图所示 (4)点击OK按钮,执行非监督分类,打开原图与结果图:

分类评价: (1) 打开原始图像和分类后的图像:点击ERDAS-Viewer 面板,先后打开原始图像和分 类后的图像,在打开分类结果图像时,在Raster Option 选项卡中取消选中的Clear Display 复选框,保证两幅图叠加显示 (2) 设置各类别的颜色:单击Raster-Tool ,打开Raster 工具面板,选择Raster-Attributes , 打开Raster Attribute Editor 对话框 (3) 调整字段显示顺序,在Raster Attribute Editor 窗口,选择Edit 菜单-Column Properties 命令,打开Column Propertis 对话框,在Columns 列表中选择字段,通过Up 、Down 、Top 、Bottom 按钮调整其在属性表的显示顺序 (4) 同上,在Raster Attribute Editor 对话框中单击某一类别的Color 字段,在弹出的As Is 中选择合适的颜色 (5) 确定类别精度并标注类别:在Raster Attribute Editor 对话框中点击Opacity 字段名, 进入编辑状态,依据需要输入0(透明)或1(不透明)。通过在Utility 菜单下设置分类结果在原始图像背景上闪烁(Flick )、卷帘显示(Swipe )、或混合显示(Blend ),

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

《遥感原理与应用》实验报告——影像分类

实验名称:影像分类 一、实验内容 1.对同一副遥感影像分别用监督和非监督两种方法进行分类,并对分类结果进行比较; 2.对同一种方法下的不同判别准则(如最小距离准则和最大似然分类)得到的分类结果进行 比较。 二、实验所用的仪器设备,包括所用到的数据 电脑一台,Window7操作系统,遥感影像处理软件(ENVI4.3)软件,一幅多波段卫星遥感影像,如图1所示。 三、实验原理 (一)监督分类 1.监督分类的原理 监督分类(supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立; 反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:平行算法、最小距离法、最大似然法等。 2.最小距离分类:是指求出未知类别向量到要识别各类别代表向量中心点的距离,将未知类 别向量归属于距离最小一类的一种图像分类方法。 3.最大似然分类:假定每个波段每一类统计呈均匀分布,并计算给定像元属于一特定类别的 可能性。除非选择一个可能性阈值,所有像元都将参与分类,每一个像元被归到可能性最大的那一类里。 (二)非监督分类 1.非监督分类的原理 非监督分类也称聚类分析。是指人们事先对分类过程不施加任何的先验知识,而仅凭数据,即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。 2.ISODATA分类 ISODATA非监督分类计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元迭代聚集。每次迭代重新计算了均值,且用这一新的均值对像元进行再分类。重复分类是分割、融合和删除是基于输入的阈值参数的。除非限定了标准差和距离的阈值(这时,如果一些像元不满足选择的标准,他们就无法参与分类),所有像元都被归到与其最临近的一类里。这一过程持续到每一类的像元数变化少于选择的像元变化阈值或已经到了迭代的最多次数。

遥感图像实验报告

遥感图像实验报告 一.实验目的 1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。 2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法, 土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。 3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。 二.实验内容 1、遥感图像的分类 2、土地利用变化分析,植被变化分析 3、遥感空间建模技术 三.实验部分 1.遥感图像的分类 (1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统; (2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理; (3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器; (5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:

图1.1 1992年土地利用图 图1.2 2001年土地利用图

(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。 图1.3 1992年精度图 图1.4 2002年精度图 2.土地利用变化 2.1 两年土地利用相重合区域 (1)在两年的遥感影像中选择相同的区域。 Subset(x:568121~684371,y:3427359~3288369),过程如下:

图2.1 截图过程图 图2.2.2 截图过程图

(2)土地利用专题地图如下: 图2.2.3 1992年专题地图 图2.2.4 2001年土地利用图

遥感图像地学分类实验指导

遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

综合遥感实验报告

本科学生实验报告 姓名周文娜学号094130090 专业_地理科学_班级 B 实验课程名称遥感导论 实验名称遥感图像分类---监督分类,非监 督分类 指导教师及职称胡文英 开课学期2011 _至__2011 学年_下学期云南师范大学旅游与地理科学学院编印

一、实验准备 实验名称:遥感图像分类---监督分类,非监督分类 实验时间:2011年6月10日 实验类型:□验证实验□综合实验□设计实验 1、实验目的和要求: (1)理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的。 (2)进一步理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的,同时深刻理解监督分类与非监督分类的区别。 2、实验相关设备: 计算机一台,及ERDAS软件 3、实验理论依据或知识背景: (1)监督分类的概念: 首先需要从研究区域选取有代表性的训练场地作为样本。根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。 监督分类包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 (2)非监督分类的概念: 非监督分类的前提是假定遥感影像上的同类物体在同样条件下具有相同的光谱信息特征。非监督分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特征提取,再统计特征的差别来达到分类的目的,最后对巳分出的各个类别的实际属性进行确认。 监督分类和非监督分类的根本区别点在于是否利用训练场地来获取先验的类别知识,监督分类根据训练场提供的样本选择特征参数,建立判别函数,对待分类点进行分类。因此,训练场地选择是监督分类的关键。由于训练场地要求有代表性, 训练样本的选择要考虑到地物光谱特征,样本数目要能满足分类的要求,有时这些还不易做到, 这是监督分类不足之处。

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

相关文档
相关文档 最新文档