文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米金催化剂及其应用

纳米金催化剂及其应用

纳米金催化剂及其应用
纳米金催化剂及其应用

纳米金催化剂及其应用

一.纳米金催化剂的发展

早在1972年,Bond在一篇综述中就指出,第Ⅷ族金属,特别是钯、铂的催化活性都要远高于金的催化活性。金属催化剂主要使用第Ⅷ和ⅠB族的12个金属。用得最多的是3d金属元素Fe、Co、Ni、Cu,4d金属元素R h、Pd、Ag,以及5d金属元素Pt。因此在选用催化剂活性组分的时候,很少在第一时间考虑使用金。1985年Schwank的综述中则这样的评价金的催化剂性:尽管本身不具有反应活性,但金的存在,能够影响第Ⅷ族金属的活性和选择性。而到1999和2000年,Bond和Thompson就金的催化行为相继发表综述性的文章。这足以证明,金已经被作为一种具有优异催化性能的金属元素来使用。特别是在一些多相或者均相反应中,金的催化活性和选择性引起了人们的广泛注意。而这个有无到有、到丰富的过程,仅仅花了15年。在这15年的时间里,大量的研究工作彻底改变了改变了人们对金催化惰性本质的看法。

20世纪80年代中期,关于金催化剂的研究,相继出现了两个突破性进展。1985年发现,英国威尔士大学的Hutching教授,发现纳米金催化剂是催化乙炔氧氯化反应最好的催化剂:1987年,日本学士春田正毅博士发现,负载型纳米催化剂具有低温催化CO的功能。这些研究工作,在当时并没有引起高度重视,但是自从进入20世纪90年代,越来越多的人意识到将纳米金负载在氧化物载体上所产生的新的多相催化行为,对丰富催化剂的制备科学以及催化理论将产生重要影响。

20世纪90年代中期,有关纳米金的研究引起一些国家的注意。在日本美国英国以及意大利等发达国家,集中了相当的人力物力展开此方面的科学研究。有关纳米金方面的研究论文如雨后春笋般见诸各期期刊。关于金催化剂的研究呈现出不断深入逐步扩展的局面。目前,以纳米金作为主题的国际性催化会议,已经举办了三次,也进一步说明,学术界以及产业部门对金的催化作用给予极大的关注,并预示着金催化剂具有不断增长更广泛的应用前景。与此同时,我国在此方面的研究也逐步展开。

二.纳米金催化剂的性质

1.金的物理化学性质

在自然界中,金只以一种稳定的非放射性的同位素形式存在。在任何温度下,空气和氧气对金都不起氧化作用。在所有金属元素中,货币金属属于非稳定的一类,它们的稳定性按电离能力排列为金>铜>银。由于离子半径大,铜银金的金属晶体构型为立方面心晶格,具有熔点沸点高的特点。单组分金属得到的催化剂耐热性差,对使用温度的要求比较苛刻,因此,在工业上为了防止催化剂的失活,要求一定要有适当的助催化剂或载体。

金的熔点汽化热比银要大,较接近铜,这说明金原子之间的键强较强。精确测量表明,金原子金属半径比银稍小。金的电负荷性非常高,只比硫和碘稍稍电正性一点,其亲电子性比氧还强。事实上,金可以一-1价的稳定氧化态存在。另外,进容易于铜铝钛等形成一定组合的合金。

在所有元素中,金的收缩率最大,其半径比没有相对论影响的情况下收缩了15%。金的物理化学性质,可能与其特殊的6s价的电子的半径有关。由于6s价的电子的束缚能被加强,因此导致金很高的电负性和化学惰性。

2.金的催化特性

金的第一电离能力很大,很难失去电子,因此金与表面分子之间的互相作用力通常是很弱的。在低于200℃的温度下,在单晶金的表面,连极具反应活性的分子,如氢氧等,都不易吸附。由于分子在催化剂表面的吸附是催化反应的先决条件,因此可以认为单质金对氢化反应和氧化反应不具有很好的活性。金不具有很好的催化活性,事实上,金催化剂具有催化活性的前提是制备得到高分散的纳米级的金粒子。

3.纳米金粒子的吸附作用

传统方法制备的负载型金催化剂,活性较差,主要是因为它不像其它贵金属催化剂一样高分散。而现在制备得到的粒径在3mm-10mm的纳米催化剂,则显示了特别的优异的催化活性。

纳米粒子是指粒子尺寸为纳米数量级的超细粒子,它的尺寸大于原子簇,小于普通的粒子。纳米粒子是由有限数量的原子或分子组成的,是保持原来物质化学性质并处于亚稳态的原子团或分子团。纳米粒子的表面原子所处的的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和的性质,因而极易与其它原子相结合,所以,具有很高的化学活性,同时也容易吸附其它原子发生化学反应。这种表面原子的活性,不但引起纳米粒子表面构型的变化,同时,任何发生在表面的化学反应,都会因为纳米粒子的存在而表现不同。

随着粒径的减小,金催化剂表面的化学吸附及反应活性相比块体金出现了明显变化:①表面原子的比

例明显增加,同时表面原子的流动性增强,熔点下降;②由于原子之间的成键减少,因此电子轨道之间的相互作用也降低。因此原子之间特别是表面原子之间,是作为一个单独的个体参与某些反应;③与载体接触的原子数量较多,因此导致界面的周长较长。以上三点不同,再加上相对论的影响,应该可以解释为什么CO在金上的化学吸附,要远强于在银上的吸附。

⑴关于CO吸附

大量实验表明,CO不吸附在平滑的块体金表面,但确实吸附在纳米金粒子的表面缺陷处。关于CO 的研究方法有①动态或静态的吸附测量②红外光谱法等。

Iizuka等研究了纳米金催化剂Au/Tio2上CO的吸附情况。研究结果表明:CO在Au/Tio2上的吸附有90%是可逆的,在-20℃~50℃范围内的等温吸附曲线完全符合Langmuir方程,随着反应温度的升高吸附的量越来越少。不可逆吸附的CO约占10%,恰好与在吸附过程中金粒子表面生成的CO2的量吻合。由以上结果表明,CO2的产生与吸附在金粒子上的CO有关。

Shaikhutdinov等采用程序升温脱附以及扫描隧道显微镜研究CO在有序结构的Al2O3以及Fe2O3薄膜上负载的纳米金粒子的吸附。结果表明,CO在金粒子表面的吸附比较强烈。当金粒子的粒径在3mm左右时,CO在金粒子表面的吸附与载体无关。

⑵关于O2吸附

洁净的金表面并不吸附氧,但如果采用各种方式激活O2分子,则会产生原子氧的吸附。在惰性气体中通过挥发得到的洁净的超细金粉表面上,在0℃的温度下能吸附O2和CO。可以看出O2一旦有缺陷的超细金粉表面或被其它方式所激活,则很容易产生吸附,这是金就可以成为一种新型高效的氧化催化剂。在比较粗糙的纳米金粒子上,最高占据分子轨道(HOMO)的电荷密度是收敛的,因此加强了O2在Au 粒子上的吸附。相反,在平滑的金表面HOMO是离域的,因此减弱了吸附键能。

⑶其他小分子气体的吸附

一氧化氮和氧化亚氮在块体金表面都不吸附,但程序脱温吸附和高分辨能量损失光谱的表征结果显示,二氧化氮可以在Au(111)面上可你吸附。在100K下,吸附在金上的二氧化氮和一氧化氮反应生成吸附态的N2O3,如果延长反应时间,则可以进一步生成二氧化氮的二聚体(N2O4)。纳米金催化剂可以催化NO反应的进行,也就是说在纳米级金粒子上,氧化氮的吸附是可以发生的,但关于这方面的信息很少。三.纳米金催化剂的特性

1.纳米金作为催化剂一个明显的特征就是低温活性。该催化剂在催化某些反应时,可以在室温甚至0℃以下,现实很好的催活性,比如催化CO氧化以及O3的分解,都可以在室温下进行。事实上,金催化剂对多数反应的活性都是发生在230℃以下的。而在高于230℃以上金催化剂的活性明显低于其它贵金属催化剂。由此推断,粒径在3nm~4nm的金催化剂,适宜的反应温度最高也就在323℃~423℃之间。

2.纳米金催化剂在催化某些反应时,具有很好的选择性,且通常催化性不同于其他贵金属催化剂。比如Au/Zno催化剂催化CO2氢化反应中,尽管其催化生成甲醇的活性比商用的Cu/ZnO-Al2O3催化剂活性稍低,但选择性更高。

3.纳米金催化剂具有环境友好性。纳米金催化剂可以在常温、常湿的条件下,净化环境中的一些污染气体,不需要消耗太多的热能。而在氢能产生方面,该催化剂可以提供一些新的绿色的合成方法以及处理过程。

4.与铂族金属相比,黄金的价格并不算昂贵。事实上,对于生产和应用来说,价格的稳定似乎更重要。四.纳米金催化剂的制备工艺。

氧化金是不能够稳定存在的,而纳米金粒子有很容易团聚长大,因此对于纳米金催化剂的制备,必须采取一些行之有效的方法,使得金前身化合物能够和载体产生较强的相互作用,防止纳米金粒子的长大。近年来,为了获得性能优异的纳米金催化剂,研究者们发展了各种不同的制备方法。根据制备方法中金前身化合物和载体前身化合物的性质及其相互作用力的不同,大致可以分为4大类:他们分别是类似于传统的浸渍或者改进的浸渍的方法;金与载体前身化合物的制备;金和载体具有强的相互作用的制备方法;粒径可控的胶体金和载体的混合的方法。

1.浸渍的方法

⑴浸渍法

浸渍法是一种比较简便可行的制备催化剂的方法,通常用来制备活性组分含量低,且需要一定机械强度的催化剂。该方法是工业上普遍使用的一种催化剂制备方法,因而在制备负载型金催化剂之初,科学

工作者首先采用的就是这种方法。该方法的制备制备过程是首先将载体浸渍于含金的盐溶液中,然后干燥、焙烧、还原处理,最后得到所需的金催化剂。

尽管浸渍法被广泛用于贵金属催化剂的制备过程中,但基本上被证明不适合于制备高活性的纳米金催化剂。一方面是由于相对于铂、钯等贵金属来说,金的熔点较低,同时与金属氧化物的亲和力也比较差。另一方面,该方法制得的金催化剂分散性不好,粒度大。

⑵阳离子交换法

阳离子交换法是载体表面或结构中的阳离子,被活性组分的阳离子置换,然后经过焙烧或者进一步还原,得到所需催化剂的一种方法。阳离子交换技术对于沸石载体特别有效。该方法还可以通过控制交换位上的阳离子数量,来实现对金粒径的控制。交换位上的阳离子数越少,生成的金粒子越小。

该方法制备的金催化剂,虽然金的负载量较低,但即使仅为共沉淀法制得的催化剂的1/20,也能够显示出较好的催化活性。最近的研究表明,如果提高制备温度,也可以获得高负载量的纳米金催化剂,但高温导致粒子的长大。这是由于高温下,溶液中的金溶胶不断的沉积在晶核上,从而使金的负载量比较大,但也导致金粒子的粒径比较大。

⑶阴离子浸渍法

阴离子浸渍法是金前身化合物水溶液的水解产物,以阴离子的形式同载体发生置换反应,从而负载在载体上的一种方法。阴离子交换速度很快,这个过程主要是金络合物的OH基团与载体Al2O3表面的OH 基团发生质子化的过程。因此,含金络合物与载体发生去质子反应,释放出水,在金前身化合物和载体之间形成化学键,将活性组分金通过较强的相互作用力固载在载体上。

该方法的关键在于调整氯金酸溶液的浓度和PH值。PH值不仅影响金溶液的物种及组成,而且影响金在载体上的负载率以及催化活性。金前身化合物的浓度对制备得到的纳米金催化剂的活性影响很大。在不同的浓度、温度和PH值下,可以得到含不同种类络合物的金溶液,以此溶液为浸渍液,将载体加入,通过吸附-浸渍法制备负载型的纳米催化剂。

2.金与载体前身化合物混合的制备方法

⑴共沉淀法

共沉淀法是制备纳米金的最简单也是最有效的一种方法。将氯金酸溶液和载体氧化物的金属盐溶液,在强烈搅拌下,一起加入到碱溶液中,继续搅拌数分钟,老化一定时间,得到的沉淀经过过滤、洗涤,直到检测滤液中没有Cl存在为止。将所得到的的氢氧化物或碳酸盐放在烘箱中干燥,经过焙烧得到所需的粉末状的活性纳米金催化剂。使用该方法制得的金催化剂,可以得到均匀分散的纳米级的金粒子共沉淀法虽然操作简单,但相对来说,比较难以控制。在制备过程中,有许多因素需要考察,比如混合的程度、沉淀温度、沉淀时溶液的PH值、老化时间以及过滤、洗涤等等,都可以对实验结果产生很明显的影响。共沉淀法的最大缺点是所需金的负载量大,通常认为金负载量在质量分数10%左右才能达到比较理想的催化活性。

⑵有机金配合物固载法

有机金配合物固载法是一种负载纳米金催化剂的制备方法。有人将这种方法看作一种改进的浸渍法。该催化剂在-70℃~0℃的低温下,显示了相当高的催化CO氧化的活性。被用作有机金配合物固载法的金前身化合物,必须能在温和的温度下分解;而作为氧化物前身化合物的伴随沉淀物,必须是有能够同金配合物相互作用的表面羟基基团。在一定的焙烧温度下,金配合物和伴随沉淀物同时转变,分别生成高分散的金粒和负载它的相应的氧化物。

3.金和载体具有强的相互作用的制备方法

⑴沉积沉淀法

沉积沉淀法首先是将氧化物载体置于氯金酸溶液中制成悬浮液,在充分搅拌的条件下,加入沉淀剂,控制一定的温度和PH值,使氯金酸前身化合物以氢氧化金的形式在载体氧化物的表面沉积。含有氢氧化金沉淀的样品,经洗涤、过滤、焙烧,即可得到所需的催化剂。对于制备高活性的那是纳米金催化剂,该方法是广泛使用比较有效的方法之一。其关键是控制合适的PH值,从而可以得到活性组分均匀分散的、粒度较小的、高活性的纳米金催化剂。

⑵化学气相沉积法

化学气相沉积法又称为气相嫁接法,该方法是在惰性气体的携带下,使挥发性的金组分,与高表面的载体成分解触,经焙烧后,在载体表面形成分散性好、粒径分布狭窄的纳米金粒子。

该方法制备的金催化剂平均粒径很小,通常低于2nm,这是其他方法无法比拟的。该方法的另一个显著的优点是,载体的选择不受限制,不论是碱性金属氧化物,还是酸性金属氧化物,都可以被用作载体。四.纳米金催化剂所遇到的挑战与机遇

作为一种新型的催化材料,纳米金催化剂还处于襁褓期,离真正的应用和工业化生产还有一段距离。目前,唯一作为产品使用的就是除臭剂。从1992年开始,负载在蜂窝陶瓷上的Au/Fe2O催化剂就在日本已经被用于厕所除臭。同时这种除臭剂的纳米金催化剂,还可以用于空气的净化、生活垃圾的处理以及挥发性有机污染物的处理等方面。另外在CO2激光器上也可能比较较早的实现工业化应用。如果再激光放电管内壁涂覆一层金催化剂,则可以明显改变封闭直流CO2激光器的性能。

至于在化工过程上应用纳米金催化剂,恐怕需要一个漫长的过程。从目前的情况来看,在液相选择性方面,可能最早实现商业化。因此很有希望在不久的将来替代汞催化剂。在污染控制方面,就是利用纳米金催化剂催化CO低温氧化性能,将其应用到面具以及空气净化器上。关于此方面的基础理论研究最多,因此可以说在此方面积累了比较丰富的经验。

目前,关于纳米金催化剂的研究,已经具有了相当的深度和广度。但是,关于纳米金催化剂商品化仍然存在巨大的挑战。这主要涉及三个问题:规模化生产的可能性,制备过程的可重现性,存放和反应过程的稳定性。首先,纳米金催化剂的规模化生产难以突破;其次,高活性的纳米金催化剂可能重现性比较差,这是由于金催化剂的制备受很多参数的影响;最后,纳米金催化剂的稳定性差,这可能是妨碍纳米金催化剂推广使用的一个最主要原因。

关于负载型纳米金催化剂的研究还处于初级阶段,很自然,关于其规模化生产的阐述还不能令人满意。尽管如此,可以肯定的是,在不久的将来,纳米金催化剂工业应用必将有突破性进展,新型的纳米金催化剂及其在新的催化反应中的应用将不断涌现,创造新的经济价值,并推动催化理论沿着一个新的高度和深度发展。

注:本文参考由王东辉、程代云等编著的《纳米金催化剂及其应用》。

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

纳米金催化剂参与的反应

纳米金催化剂参与的反应 2016-05-04 12:46来源:内江洛伯尔材料科技有限公司作者:研发部 纳米金催化剂参与的 反应 纳米金用途广泛,但在当下的生活中,纳米金主要用于催化如下反应: (1) CO 催化氧化 降低燃料电池成本有效方法之一是利用甲醇重整产生的富氢气体。通常该混合物中含 75 %氢气、24 %二氧化碳和 1 %一氧化碳。CO 的存在会导致 Pt 催化剂中毒,因此需要除去 CO,而对 CO 选择性氧化是一种有效方法。同时,CO 低温(常温) 催化氧化过程,涉及空气净化、封闭式 CO2激光器、CO 传感器、防毒面具等多个 方面。目前使用的催化剂的缺点或者是稳定性太差,或者对毒物太敏感,或者反应过程中放出氯化氢造成二次污染。负载型 Au 催化剂,显示出较强的催化氧化 CO 活性和较弱的催化氧化 H2的活性,以及其它催化剂所无法比拟的抗硫中毒能力。(2)水煤气变换反应 鉴于聚合物电解燃料电池在汽车和居民电热传输系统的应用前景,近年来低温水煤气变换反应再度引起国内外学者的兴趣。与己经商业化的 Ni、Cu 基催化剂(其使用温度分别为 900 K或 600 K)相比,负载型金催化剂的使用温度低(473 K)。 (3)选择性加氢反应 Okumura等报道丁二烯在 Au/Al2O3 催化剂上选择性加氢生成丁烯,选择性为 100 %。同时,碳氧化物催化加氢反应生成甲醇是一个重要的化工过程。 (4)选择性氧化有机反应 Onal等报道了在催化氧化 D-葡萄糖成 D-葡萄糖酸反应中,在反应温度为323 K,p H 值为 9.5,Au/活性炭为催化剂时,D-葡萄糖酸的产率(83 %)最大。金粒径对催化活性影响很大,金粒子越小,反应速度越快,产率越高。 (5)乙炔氢氯化反应

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

氧化物载体负载纳米钯金属催化剂的制备方法

氧化物载体负载纳米钯金属催化剂的制备方法 2016-11-02 13:52来源:内江洛伯尔材料科技有限公司作者:研发部 纳米钯金属催化剂的制备方法 纳米贵金属催化剂正逐渐成为高效催化剂的典型代表和催化剂研宄的热点。然而由于纳米颗粒极大的比表面积,使其非常的不稳定,极易发生团聚失活。同时在催化反应中,由于各种复杂的反应状况,催化剂颗粒也会发生团聚失活并伴有不同程度的流失。这些问题严重限制了纳米催化剂的制备和应用,因此制备稳定的(反应过程中)纳米催化剂显得尤为重要。纳米颗粒负载在固体载体上是最常用的,也是最有效的制备稳定的催化剂。近来,人们的研宄主要集中与纳米颗粒固载在金属氧化物上。主要的金属有氧化硅,氧化铝,氧化钛,氧化锆等。纳米钯金属催化剂在催化氢化、氧化、C-X耦合反应等领域具有重要的应用前景。 Copelin在欧洲专利中EP0009802中公开了一种Pd/Si02催化剂 及蒽醌法制备双氧水的方法,在该过程中钯催化剂比较稳定,可能由于钯催化剂一般都是以钯氧化物的形式存在,有效防止了催化剂的失活。Semagina等将Pd纳米颗粒置于聚环氧乙烷和聚乙烯基吡啶的嵌段共聚胶束的核心中,然后将该共聚物负载在Al 2O3上。该催化剂对丁炔二醇的选择性还原有极高的活性,可以回收使用多次,可见催化剂被很好的保护在胶束中(N.Semagina,et al Appl.

Catal.A:Gen. 2005, 280, 141-147)。Das 等在 MCM-41 中固载了单一分散的 Pd 纳米颗粒,颗粒在常温下还原得到,但是却表现出优异的稳定性。催化剂在500°C烧结后,纳米颗粒由2. 8nm仅增加到3. 4nm。该催化剂用于Suzuki反应,ICP测试分析表明滤液中只有6ppb 的Pd (D. D. Das, et al, J. Catal.,2007, 246, 60-65. 33)。这些纳米钯催化剂的制备方法可以获得高活性的纳米金属催化剂,但大多过程复杂,不利于大规模生产。 纳米钯金属催化剂的技术方案:将功能助剂与载体进行接枝,助剂会与金属钯发生配位作用,从而有利于过渡金属颗粒的生成、分散与稳定。在功能助剂的帮 助下,加入的金属钯化合物可以很快被载体从金属钯化合物溶液中捕获,集中到载体表面。随后加入还原剂硼氢化钠、水合肼,或在高温下通入氢气均可以还原得到纳米金属钯颗粒。最后利用包埋剂将金属钯颗粒进行分隔包覆,这样有利于催化剂在反应过程中的稳定,防止金属钯颗粒在反应过程中聚集和流失。本方法的技术特征在于的载体功能化接枝,以及纳米金属催化剂的分隔包覆,其技术效果表现为功能助剂的接枝作用有利于纳米钯金属颗粒的形成和分散,包埋剂能够使钯纳米颗粒催化剂的使用过程当中,增强催化剂的稳定性,有利于催化剂的回收,以便于重复使用。此催化剂制备方法简单方便,且原料便宜易得,适合进行工业化生产。

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

碳纳米管限域的金属纳米粒子的催化行为

附件2 论文中英文摘要格式 作者姓名:陈为 论文题目:碳纳米管限域的金属纳米粒子的催化行为 作者简介:陈为,男,1977年7 月出生,2003年9 月师从于中国科学院大连化学物理研究所包信和研究员,于2008年3 月获博士学位。 中文摘要 随着石油价格的高涨及其资源的日益枯竭,迫使人们寻找新的清洁、可持续的能源替代产品。以煤和天然气为资源经合成气催化转化成液体燃料是一种非常有应用前景的过程,对于保障我国能源安全及解决环境污染问题等都具有重大的经济和现实意义,发展高效催化合成气转化的催化剂显得越来越紧迫和重要。碳纳米管自1991年被lijima发现以来,因其独特的 结构和性能引起了人们极为广泛的关注,尤其是碳纳米管的纳米级管道为纳米粒子提供了准一维的限域环境。本论文研究了碳管的限域环境对Fe/Fe2O3粒子的氧化还原性能的调变作用,以及这种限域效应对F-T合成反应性能的影响,取得了如下结果: 1. 发展了高效的碳纳米管填充方法—湿法毛细诱导填充法尽管各种填充方法日趋成熟,然而现有的很多碳纳米管填充的复合体系并不适合于催化应用,如原位填充的金属及其化合物完全被密封在碳纳米管管腔中;熔融填充的金属纳米线或纳米棒严实地充满整个碳纳米管内腔,大部分金属并不能与外界接触;Green 等开创的湿化学填充法,尽管能得到颗粒状填充的过渡金属,但是这个方法对金属盐的消耗量较大,不适用于填充贵金属,并且无法准确定量。这些填充方法的填充效率高低不一,并且其填充复合物的产量还不能够达到一般催化剂量的要求。因此,发展一种适用于催化应用的普适性强的、高效的填充碳纳米管的方法,是实现碳纳米管的“管中催化”亟需解决的首要问题。 相对于其它填充碳纳米管方法,湿化学填充法简单,可得到颗粒状填充的过渡金属粒子。我们针对湿化学填充碳纳米管的方法存在填充效率不高、不易准确定量的缺点,结合碳管本身的结构特点进行了改进,发展了湿法毛细诱导填充法。主要步骤是:首先将碳纳米管端口打开,同时进行表面亲水性处理,使得碳管能够被溶液完全浸润;然后,利用强超声振荡下的空化作用,使碳管内的残余物能够扩散出来,从而含金属离子的溶液能够在毛细力作用下进入碳管管腔;最后,控制溶液的蒸发速率,金属离子在浓度差的驱动下,尽可能进入到碳管管腔中,之后加热使金属前驱物发生分解,得到

钯纳米催化剂的制备及催化性能研究

摘要 本文以聚苯乙烯-丙烯腈(P(S-AN))为载体,合成了负载型加氢催化剂,再利用电纺丝技术对高分子负载PdCl2催化剂进行纳米化,制备负载型纳米催化剂,并对所制备的催化剂进行了TEM、SEM、XPS、IR等表征。实验还研究了不同外界条件下制备的催化剂对1-辛烯催化加氢的效果,测试表明: 关键词:纳米催化剂,负载催化剂,静电纺丝,氢化

Abstract A series of hydrogenation catalysts supported by polystyrene-acrylonitrile, polyvinylpyrrolidone and Al2O3 were synthesized, then the supported nano-catalyst was prepared by means of the nano-treatment of polymer-supported PdCl2catalyst using elestrospinning. The catalysts were characterized by IR , UV , SEM , XPS and TG.. In the paper, the dependence of the diameter of nanofiber with voltage , receiving range , solvent concentration was also investigated respectively. The catalystic hydrogenation results of 1-hexene showed that the hydrogenation rate of P(S-AN)/PdCl2 nano-catalyst based on electrospinning was 4.7 times of the Al2O3/PdCl2catalyst(PdCl2mass percentage is 9.4%). Keywords:nano-catalyst, polymer supported catalyst, electrospinning, hydrogenation,

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

纳米金催化剂及其应用

纳米金催化剂及其应用 摘要:长期以来,黄金一直被视为具有永久价值的“高贵”金属,在人类社会 象征高贵和权力,决定黄金具有这种地位的科学基础是它的化学非活泼性和优良的可加工性。但1989年 Haruta等发现负载在Fe2O3 和 TiO2 等氧化物上的金纳米粒子具有很高低温 CO 催化氧化活性。金催化剂具有其它贵金属不具有的湿度增强效应,在环境污染、燃料电池、电化学生物传感器等方面都有巨大的应用前景,开辟了金作为催化剂的新领域。本文主要纳米金催化剂制备的研究现状及其部分应用。 关键词:纳米金催化剂选择性氧化加氢环境保护 纳米金催化剂的制备: 一、沉积-沉淀法 沉积-沉淀法是将载体浸渍在 HAuCl4 的碱性(pH值为8~10)溶液中,利用带负电荷的金与载体表面间的静电相互作用实现金的沉积。制备的纳米金粒子较好地分散于载体面,但要求载体具有尽可能大的表面积,对制备低负载量 Au 催化剂非常有效。为了获得最大量金沉积,提高金的负载量,整个制备过程对溶液 pH 值有较大的依赖性,溶液的 pH 值决定了金的前体在水中的水解程度,能够直接影响到金在载体上的吸附,当pH值为8~9时,[AuCl(OH)3]-是 HAuCl4 水解产物中吸附能力最强的形式、,但不同的金属氧化物载体其最佳 pH 值有所不同,目前一般将pH值控制在7~10。在沉积-沉淀法中,尿素对控制均匀沉淀非常有效,还可实现金的最大沉积,金负载量可达到12%,但该法仅适用于等电点较高(IEP>6)的 TiO2、Al2O3、CeO2 等载体纳米金的沉积。后来有科学家研究发现,若用浸渍法对表面浸渍吸附了HAuCl4 的催化剂在高温焙烧前用氨水等碱液多次洗涤,同样也可获得与沉积-沉淀法制备的活性相当的金纳米催化剂,这种方法避免了金的流失,克服了沉积-沉淀法受载体等电点限制的缺点。 二、浸渍法 浸渍法被广泛应用于工业制备贵金属催化剂,研究表明,金和载体表面间亲和力比较弱,在制备和反应过程中容易造成金纳米粒子的聚合,使得催化活性降低,通常认为不适合高度分散纳米金催化剂的制备。后来研究发现金催化剂低温催化 CO 氧化中,沉积-沉淀法比浸渍法获得更高活性是因为该法制备过程中

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

纳米钯催化剂的催化应用

纳米钯催化剂的催化应用 摘要:介绍了纳米钯催化剂以及钯金属在工业生产中起着不可或缺的作用,详细说明了纳米钯催化剂对Heck 反应的影响以及纳米钯催化剂的电催化氧化还有纳米钯催化的Suzuki 偶联反应,简要说明了纳米钯催化芳卤羰化反应等。展望了纳米钯催化剂在工业生产中存在的一些问题并提出相关建议。 关键词:钯,催化剂,纳米,催化应用 1:前言 催化是现代社会生产生活的基础之一,大到化石能源的开发利用,小到食品工业的加氢重整,催化已经影响了人类生活的方方面面。催化的重要性毋庸赘言,因此科学工作者对催化过程的研究以及对催化本质的探求从未停歇。早在19世纪,催化反应的吸附理论和中间体等概念就已提出。 20世纪中叶,真空技术的发展拉开了现代表面化学的序幕,科学家成功地给出了在真空条件下化学反应如何在催化剂表面发生的细节。近半个世纪以来,纳米科技的高速发展对异相催化的研究产生了诸多积极影响,“纳米催化”或“纳米催化剂”等新名词得到了科学界的广泛关注。 应当指出,纳米催化并非有别于传统催化的新兴领域,因为大多数传统工业催化剂的尺寸本身就是纳米级的,正如人们所说,“催化天生是纳米的”。但不可否认,正是在纳米材料合成技术日臻成熟以及表征手段不断丰富的基础上,科学家才逐渐认识到催化剂活性、选择性、稳定性与催化剂的尺寸、形貌、组成、元素空间分布等因素的关系,为我们从分子水平上认识催化剂的构效关系提供了可能,同时也为催化剂的设计奠定了基础。因此,纳米催化作为一门古老又年轻的学科,具有重要的科学研究价值和工业应用前景。 VIII族元素钯位于元素周期表第四周期,价层电子构型为4d105s0。钯纳米催化剂广泛用于石油化工、汽车尾气处理、燃料电池等领域。钯在地壳中含量稀少,因此价格昂贵,我国的钯、铂金属资源更加稀缺,主要分布在云南、甘肃两省。如何提高贵金属钯、铂催化剂的活性、选择性以及稳定性对于我国稀有资源的高效利用和国民经济的发展具有重要的意义。 纳米尺度的钯主要用于汽车尾气处理,消耗量约占全球开采总量的一半。汽车尾气所含的污染物包括一氧化碳、氮氧化合物、碳氢化合物等,这些气体可引发酸雨、破坏臭氧层以及造成烟雾。尾气排出前会通过触媒转换器,经由Pt-Rh-Pd 组成的三元催化剂,转化为对环境低害的二氧化碳、氮气、水蒸气,转化率高达90%。钯纳米催化剂在石油炼制工业中也有重要应用。在原油精制过程中钯催化剂用于石油的加氢裂化过程。 纳米材料和纳米技术在石油和化学工业中有广泛的应用前景,特别是在催化领域具有巨大的潜力,而在我国目前对纳米技术的研究开发还仅仅开始纳米材料用作催化剂或催化剂载体,既具有高活性,高选择性,又有简单的制备工艺,不污染环境,可大量节省贵金属用量,降低生产成本,提高生产效益,可获取显著的收益。建议政府和企业家们给以财力、物力的支持和合作,尽快克服制约因素,使其实现产业化和市场化,使传统的化学工业重新焕发青春。 2:研究现状 2.1纳米钯催化剂对Heck 反应的影响

纳米金催化剂及其应用

纳米金催化剂及其应用 一.纳米金催化剂的发展 早在1972年,Bond在一篇综述中就指出,第Ⅷ族金属,特别是钯、铂的催化活性都要远高于金的催化活性。金属催化剂主要使用第Ⅷ和ⅠB族的12个金属。用得最多的是3d金属元素Fe、Co、Ni、Cu,4d金属元素R h、Pd、Ag,以及5d金属元素Pt。因此在选用催化剂活性组分的时候,很少在第一时间考虑使用金。1985年Schwank的综述中则这样的评价金的催化剂性:尽管本身不具有反应活性,但金的存在,能够影响第Ⅷ族金属的活性和选择性。而到1999和2000年,Bond和Thompson就金的催化行为相继发表综述性的文章。这足以证明,金已经被作为一种具有优异催化性能的金属元素来使用。特别是在一些多相或者均相反应中,金的催化活性和选择性引起了人们的广泛注意。而这个有无到有、到丰富的过程,仅仅花了15年。在这15年的时间里,大量的研究工作彻底改变了改变了人们对金催化惰性本质的看法。 20世纪80年代中期,关于金催化剂的研究,相继出现了两个突破性进展。1985年发现,英国威尔士大学的Hutching教授,发现纳米金催化剂是催化乙炔氧氯化反应最好的催化剂:1987年,日本学士春田正毅博士发现,负载型纳米催化剂具有低温催化CO的功能。这些研究工作,在当时并没有引起高度重视,但是自从进入20世纪90年代,越来越多的人意识到将纳米金负载在氧化物载体上所产生的新的多相催化行为,对丰富催化剂的制备科学以及催化理论将产生重要影响。 20世纪90年代中期,有关纳米金的研究引起一些国家的注意。在日本美国英国以及意大利等发达国家,集中了相当的人力物力展开此方面的科学研究。有关纳米金方面的研究论文如雨后春笋般见诸各期期刊。关于金催化剂的研究呈现出不断深入逐步扩展的局面。目前,以纳米金作为主题的国际性催化会议,已经举办了三次,也进一步说明,学术界以及产业部门对金的催化作用给予极大的关注,并预示着金催化剂具有不断增长更广泛的应用前景。与此同时,我国在此方面的研究也逐步展开。 二.纳米金催化剂的性质 1.金的物理化学性质 在自然界中,金只以一种稳定的非放射性的同位素形式存在。在任何温度下,空气和氧气对金都不起氧化作用。在所有金属元素中,货币金属属于非稳定的一类,它们的稳定性按电离能力排列为金>铜>银。由于离子半径大,铜银金的金属晶体构型为立方面心晶格,具有熔点沸点高的特点。单组分金属得到的催化剂耐热性差,对使用温度的要求比较苛刻,因此,在工业上为了防止催化剂的失活,要求一定要有适当的助催化剂或载体。 金的熔点汽化热比银要大,较接近铜,这说明金原子之间的键强较强。精确测量表明,金原子金属半径比银稍小。金的电负荷性非常高,只比硫和碘稍稍电正性一点,其亲电子性比氧还强。事实上,金可以一-1价的稳定氧化态存在。另外,进容易于铜铝钛等形成一定组合的合金。 在所有元素中,金的收缩率最大,其半径比没有相对论影响的情况下收缩了15%。金的物理化学性质,可能与其特殊的6s价的电子的半径有关。由于6s价的电子的束缚能被加强,因此导致金很高的电负性和化学惰性。 2.金的催化特性 金的第一电离能力很大,很难失去电子,因此金与表面分子之间的互相作用力通常是很弱的。在低于200℃的温度下,在单晶金的表面,连极具反应活性的分子,如氢氧等,都不易吸附。由于分子在催化剂表面的吸附是催化反应的先决条件,因此可以认为单质金对氢化反应和氧化反应不具有很好的活性。金不具有很好的催化活性,事实上,金催化剂具有催化活性的前提是制备得到高分散的纳米级的金粒子。 3.纳米金粒子的吸附作用 传统方法制备的负载型金催化剂,活性较差,主要是因为它不像其它贵金属催化剂一样高分散。而现在制备得到的粒径在3mm-10mm的纳米催化剂,则显示了特别的优异的催化活性。 纳米粒子是指粒子尺寸为纳米数量级的超细粒子,它的尺寸大于原子簇,小于普通的粒子。纳米粒子是由有限数量的原子或分子组成的,是保持原来物质化学性质并处于亚稳态的原子团或分子团。纳米粒子的表面原子所处的的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和的性质,因而极易与其它原子相结合,所以,具有很高的化学活性,同时也容易吸附其它原子发生化学反应。这种表面原子的活性,不但引起纳米粒子表面构型的变化,同时,任何发生在表面的化学反应,都会因为纳米粒子的存在而表现不同。 随着粒径的减小,金催化剂表面的化学吸附及反应活性相比块体金出现了明显变化:①表面原子的比

铂钯双金属纳米催化剂的催化活性

第25卷第1期 中南民族大学学报(自然科学版) Vol.25No.1 2006年3月 Jour nal of South-Central U nivers ity for Nationalities(Nat.Sci.Edition) Mar.2006 a铂钯双金属纳米催化剂的催化活性 王 然 何宝林* [马来]刘光荣 盘荣俊 (中南民族大学化学与材料科学学院催化材料科学湖北省重点实验室,武汉430074) 摘 要 由聚合物稳定的铂纳米催化剂对环己烯催化加氢反应具有较高的催化活性,在铂纳米催化剂中引入第二金属元素钯,即在纳米铂颗粒上包裹一层钯,形成具有球壳结构Pt-Pd双金属催化剂,随引入钯的量不同,其催化能力的大小发生了变化,而且调节反应溶液的pH值,催化能力也发生变化. 关键词 钯铂催化剂;环己烯;催化氢化;pH值 中图分类号 TB383 文献标识码 A 文章编号 1672-4321(2006)01-0001-04 Investigation of Catalytic Activity of Pt/Pd Nanobimetallic Catalyst Wang Ran H e Ba olin [Malaysia]Liew Kongrong Pa n Rongjun Abstr act P olymer stabilized platinum nano-size cat alyst has relatively high hydr ogenation activit y.Intr oduction of a second metal,palladium,to for m a cor e shell str ucture with P d as the shell and Pt as the cor e,enhances the catalytic activit y substantially.The enhancement var ies with t he amount of Pd introduced.Changes in pH was also found t o have significant effects on t he cata lytic activity. Keywor ds P d/Pt bim et al cata lyst;cyclohexene;catalytichydr ogenation;pH Wa ng Ran Master′s Candidate,Key laborat or y for Cat alysis and Mater ial Science of Hubei Pr ovince,College of Chemistr y and M aterial Science,SCUF N,Wuhan430074,China 在室温常压条件下铂族贵金属纳米催化剂对各种小分子底物的催化氢化具有很高的催化能力和选择性[1~4],所以铂族贵金属在催化领域引起了科学界浓厚的研究兴趣.近年来,聚合物稳定的2种或2种以上金属元素组成均相多金属催化剂的研究引起了很多关注,可能是双金属催化剂具有一些比单金属催化剂优异的性能,例如,提高反应速率、选择性以及新的反应类型[5,6],还可以为研究不同合金的形成提供模型,而且其本身有特殊的组成结构[7].在本文中,主要探索了在有PVP稳定的单金属催化剂Pt 纳米颗粒表面引入第二元素Pd形成Pt-Pd双金属纳米催化剂后,催化性能的变化、催化活性与pH值的关系. 1 实验部分 1.1 催化剂的制备 1.1.1 单金属铂纳米催化剂的制备 本文催化剂采用化学醇还原来制备,甲醇为还原剂,聚乙烯吡咯烷酮PVP(K30)为稳定剂[8].过程如下:在250mL的圆底烧瓶里,将0.555g(即5 mmol单体)PV P和0.065g0.125mmol H2PtCl6?H2O溶于由65mL甲醇、75mL H2O组成的混合溶剂中,在磁力搅拌下回流180min得到清澈色泽棕黑的Pt纳米胶体,在反应过程中滴加10mL0.1 mol/L氢氧化钠甲醇溶液. 1.1.2 Pt/Pd双金属纳米催化剂的制备 双金属纳米催化剂的制备方法与单金属制备方法类似,本文以Pt纳米颗粒为晶种再还原Pd,以PVP-Pt0.5sPd0.5为例(0.5表示晶种纳米Pt用量为1.1.1中Pt的用量的0.5倍,即用量为0.625mmol, n Pt/n Pd=1/1),制备过程为:将75mL PVP-Pt纳米胶体、0.287g PVP(即2.5mmol单体)和6.5mL 9.6mmol/L H2PdCl4?n H2O溶于由32.5mL甲醇31.0mL水组成的溶剂中,在磁力搅拌下回流180 a收稿日期 2005-10-31 *通讯联系人hebl@https://www.docsj.com/doc/5d8951381.html, 作者简介 王 然(1980-),女,硕士研究生,研究方向:贵金属纳米催化剂的制备和催化性能,E-mail:wengdyzhongnan @https://www.docsj.com/doc/5d8951381.html, 基金项目 国家民委重点基金资助项目(MZY02019)

生活中的催化剂

生活中的催化剂——纳米催化剂 学院:数学与计算科学 专业:信息与计算科学 姓名:刘威 学号:1307020114 班级:临班436 指导老师:陈丽娟 【摘要】催化化学在国民经济中具有十分重要的意义。催化剂的改进或性能上的突破,会使催化剂的转化率、选择性得到大大提高。从而大幅度提高设备生产能力和产品质量,带来巨大的经济效益。催化剂的作用是降低该活化能,使之在相对不苛刻的环境下发生化学反应。催化剂改变反应速率,是由于改变了反应途径,降低了反应的活化能。近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂的出现及与其相关研究的蓬勃发展。纳米材料催化剂具有独特的晶体结构及表面特性。纳米催化剂具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,纳米催化剂还表现出优良的电催化、磁催化等性能。 当今社会,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 一、纳米材料催化剂的特点。 纳米催化剂具有表面积大、稳定性好、活性高等优点。有研究表明,当微粒粒径由10 nm减小到1 nm 时,表面原子数将从20% 增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大,使表面原子稳定性降低,极易结合其它原子来降低表面张力。此外,NCs的表面效应取决于其特殊的16种表面位置,这些位置对外来吸附质的作用不同,从而产生不同的吸附态, 显示出不同的催化活性。 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时,晶态材料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度

大肠杆菌合成金纳米粒子复合催化剂性能研究

大肠杆菌合成金纳米粒子复合催化剂性能研究 2016-08-01 13:16来源:内江洛伯尔材料科技有限公司作者:研发部 Au@TiO2催化剂的TEM照片自上世纪八十年代Hutchings和Haruta等发现金催化剂具有高催化活性以来, 金催化剂的研究受到密切关注, 目前已取得很大进展. 但金催化剂很少用于工业应用. 原因之一是由于金粒子的聚集长大及表面碳酸盐物种的积累而导致金催化剂易于失活. 如何有效阻止金粒子的聚集, 提高金催化剂的稳定性已成为目前亟待解决的问题. 近年来, 金属纳米粒子与DNA、蛋白质、壳聚糖等生物大分子的相互作用及其自组装研究引起人们的密切关注. Baron等评述了以DNA、蛋白质等生物分子为模板合成Au、Ag纳米粒子和纳米线的研究进展. 这种材料既可以通过生物分子的识别和催化功能来改善金属纳米粒子的电学、光学和催化性能, 也可以通过改性金属纳米粒子来改善生物分子的某些性能. Horovitz等发现柠檬酸钠还原的金纳米粒子与大麦糊粉层细胞提取的蛋白质之间存在静电作用. 杨芳等研究了藻蓝蛋白对Au3+离子的原位还原和纳米Au0形成的动态过程, 发现藻蓝蛋白的紫

外特征吸收峰强度随Au3+离子浓度的增加和放置时间的延长而降低, 其荧光发射峰和荧光激发峰也呈现衰减趋势, 提出藻蓝蛋白中的半胱氨酸、胱氨酸和色氨酸可将Au3+还原为Au0. 金明善等研究了金纳米粒子和R-藻红蛋白的相互作用, 发现R-藻红蛋白对金纳米粒子有良好的稳定作用. Huang等发现壳聚糖能保护金纳米粒子. 刘克增等制备了金@壳聚糖复合材料, 发现该材料对葡萄糖空气氧化制葡萄糖酸具有良好的催化性能.另一方面, 微生物与金属纳米粒子的研究也日益增多. Gericke等详细评述了各种微生物在制备金纳米粒子方面的研究进展, 认为可以通过调变微生物的生长参数(如培养时间、pH 值、温度等)达到对金纳米粒子形貌和尺寸的控制. 某些菌体如枯草芽孢杆菌、酵母菌、真菌等能够聚集并还原金离子, 已用于金纳米粒子和纳米线的合成. 研究表明, 细胞中的羟基和氨基可作为Au3+的结合位, 而醛基可作为电子供体将Au3+还原成Au0. Kuo等利用大肠杆菌对金离子的还原作用制备了金@大肠杆菌复合材料, 发现这种材料具有很强的生物相容性,可望应用于光热治疗癌细胞方面. 傅锦坤等用细菌将Au/α-Fe2O3上的Au3+还原成Au0, 焙烧后获得的催化剂与浸渍法制备的催化剂相比有较高的CO氧化反应活性.可以看出,目前的研究主要集中于微生物对金属离子的吸附与还原作用以及金属纳米粒子的制备, 而将其用于催化领域的报道较少. 鞭毛是细菌表面的运动器官, 由单一的鞭毛蛋白组装形成螺线管状结构, 鞭毛的长短和数量可以通过改变细菌的培养条件来调控. 最近, Kumara等首次实现了Au、Ag、Cu 等金属纳米颗粒在细菌鞭毛表面的组装. 利用细菌鞭毛为模板制备二氧化钛等无机氧化物纳米管也已获成功. 但尚未见利用此法制备金催化剂的研究. 大肠杆菌为革兰氏阴性短杆菌, 为杆状结构, 具有抵抗力强、易培养等优点. Nomura等以大肠杆菌为生物模板合成了氧化硅的空心纳米管. 烟台大学化学生物理工学院索掌怀等人利用大肠杆菌(DH5α)对金属离子较强的吸附与还原能力制备了Au@DH5α, 再利用大肠杆菌的水分来水解钛酸四丁酯, 得到Au@DH5α -Ti(OH)4样品, 焙烧去除大肠杆菌后得到氧化钛包裹的纳米金粒子催化剂Au@TiO2. 以N2吸附,

相关文档