文档视界 最新最全的文档下载
当前位置:文档视界 › 金纳米催化剂(八):其他类型

金纳米催化剂(八):其他类型

金纳米催化剂(八):其他类型
金纳米催化剂(八):其他类型

金纳米催化剂(八):其他类型

2016-08-22 13:23来源:内江洛伯尔材料科技有限公司作者:研发部

金纳米催化剂

除了聚合物基弹性网络、中空球型、核壳型和蛋壳型纳米Au催化材料,目前还有片状、柱状等各种类型纳米Au催化材料合成的报道。

基于独特的结构性能和电子迁移性质,石墨烯一经出现即在科学界掀起巨大波澜。目前,石墨烯在纳米Au催化材料定向合成中同样受到广泛关注,并取得了丰硕研究结果。例如,Lu 等利用TWEEN 20 同时作为氧化石墨烯(GO)的稳定剂和AuNPs的还原剂,通过原位还原HAuCl4获得AuNPs/TWEEN/GO片状复合材料。催化NaBH4还原4-NP的反应发现,由于GO的协同效应,复合材料呈现良好催化活性:催化同一反应,AuNPs/TWEEN/GO可在14 min 完成反应,拟一级速率常数为25.37 ×10-2s-1,而AuNPs/ TWEEN用时32 min,拟一级速率常数为9.05×10-2 s-1。.

Chen等以NaBH4为还原剂,制备了具有热响应催化行为的片状石墨烯(GO)负载的AuNPs(GO-PNIPAAm聚异丙基丙烯酰胺)-Au)。复合材料在催化NaBH4还原4-NP 的反应中表现出温度调控的催化活性:当温度高于PNIPAAm的临界溶解温度时,PNIPAAm链由亲水相转变为疏水相,造成末端AuNPs的团聚,进而导致催化活性降低。较之普通石墨烯基纳米催化剂,其具有可调控的催化行为。

Li等采用三乙烯四胺为还原剂,通过水热体系中AuNPs与石墨烯的自组装过程成功合成了高1.28cm和直径1.08 cm的圆柱形Au/石墨烯复合材料。基于石墨烯的结构性能,其在室温催化NaBH4还原4-NP的反应中呈现优异催化活性,12 min反应基本完成,拟一级速率常数为3.17 ×10-3 s-1。分别高出先前文献报道的海绵状和高聚物负载纳米Au复合材料的催化活性90倍和14倍。

此外,Zhang等采用单毛细管电纺技术与原位还原技术相结合的方法,将高度分散、尺寸较小的AuNPs成功组装到SiO2纳米管的内、外表面(AuNPs/SNTs)。该管状纳米复合物对NaBH4还原4-NP的反应表现出高催化活性:反应不到5 min即可完成,拟一级速率常数为1.06 ×10-2 s-1。

Jin等采用两步法,将分散的、尺寸可控的AuNPs固载于分层结构的层状硅酸镍(NiSiO)上,获得像花一样的纳米复合物(AuNPs/NiSiO)。该复合物对NaBH4还原4-NP的反应表现出高催化活性:2.5min反应即可完成,拟一级速率常数为1.63×10-2 s-1。且循环使用5次后,活性没有下降,表明该复合物具有良好的稳定性。

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

纳米金催化剂参与的反应

纳米金催化剂参与的反应 2016-05-04 12:46来源:内江洛伯尔材料科技有限公司作者:研发部 纳米金催化剂参与的 反应 纳米金用途广泛,但在当下的生活中,纳米金主要用于催化如下反应: (1) CO 催化氧化 降低燃料电池成本有效方法之一是利用甲醇重整产生的富氢气体。通常该混合物中含 75 %氢气、24 %二氧化碳和 1 %一氧化碳。CO 的存在会导致 Pt 催化剂中毒,因此需要除去 CO,而对 CO 选择性氧化是一种有效方法。同时,CO 低温(常温) 催化氧化过程,涉及空气净化、封闭式 CO2激光器、CO 传感器、防毒面具等多个 方面。目前使用的催化剂的缺点或者是稳定性太差,或者对毒物太敏感,或者反应过程中放出氯化氢造成二次污染。负载型 Au 催化剂,显示出较强的催化氧化 CO 活性和较弱的催化氧化 H2的活性,以及其它催化剂所无法比拟的抗硫中毒能力。(2)水煤气变换反应 鉴于聚合物电解燃料电池在汽车和居民电热传输系统的应用前景,近年来低温水煤气变换反应再度引起国内外学者的兴趣。与己经商业化的 Ni、Cu 基催化剂(其使用温度分别为 900 K或 600 K)相比,负载型金催化剂的使用温度低(473 K)。 (3)选择性加氢反应 Okumura等报道丁二烯在 Au/Al2O3 催化剂上选择性加氢生成丁烯,选择性为 100 %。同时,碳氧化物催化加氢反应生成甲醇是一个重要的化工过程。 (4)选择性氧化有机反应 Onal等报道了在催化氧化 D-葡萄糖成 D-葡萄糖酸反应中,在反应温度为323 K,p H 值为 9.5,Au/活性炭为催化剂时,D-葡萄糖酸的产率(83 %)最大。金粒径对催化活性影响很大,金粒子越小,反应速度越快,产率越高。 (5)乙炔氢氯化反应

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

002通过G-四链体、功能化金纳米粒子,可视化检测肌红蛋白的比色生物传感器

Sensors and Actuators B 212(2015)440–445 Contents lists available at ScienceDirect Sensors and Actuators B: Chemical j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s n b Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor Qing Wang,Xiaohan Yang,Xiaohai Yang ?,Fang Liu,Kemin Wang ? State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province,Hunan University,Changsha 410082,China a r t i c l e i n f o Article history: Received 19December 2014 Received in revised form 7February 2015Accepted 10February 2015 Available online 18February 2015 Keywords: Gold nanoparticles DNAzyme Aptamer Myoglobin a b s t r a c t Since myoglobin plays a major role in the diagnosis of acute myocardial infarction (AMI),monitoring of myoglobin in point-of-care is fundamental.Here,a novel colorimetric assay for myoglobin detection was developed based on hemin/G-quadruplex DNAzyme functionalized gold nanoparticles (AuNPs).In the presence of myoglobin,the anti-myoglobin antibody,which was modi?ed on the surface of polystyrene microplate,could ?rst capture the target myoglobin.Then the captured target could further bind to DNA1probe which contained the aptamer sequence through aptamers/myoglobin interaction.Next,as the DNA2probe modi?ed AuNPs were introduced,DNA2probe modi?ed AuNPs could hybridize with the captured DNA1probe.Subsequently,DNA2probe which was modi?ed on the AuNPs could fold into a G-quadruplex structure and bind to hemin,and then catalyze the oxidation of colorless ABTS 2?to green ABTS +by H 2O 2.Consequently,the relationship between the concentration of myoglobin and the absorbance was established.Due to AuNPs ampli?cation,the myoglobin concentration as low as 2.5nM could be detected,which was lower than clinical cutoff for myoglobin in healthy patients.This assay also showed high selectivity for myoglobin and was used for the detection of myoglobin in the human serum samples.This work may provide a simple but effective tool for early diagnosis of AMI in the world,especially in developing countries. ?2015Elsevier B.V.All rights reserved. 1.Introduction Since acute myocardial infarction (AMI)remains the leading cause of death in most industrialized nations,it is important to evaluate accurately the patients who show symptoms sugges-tive of AMI [1,2].Myoglobin,although not cardiac speci?c,has been widely suggested as one of the best candidate markers for an early diagnosis of AMI [3].Generally,myoglobin is present in very low concentrations (0.48–5.9nM)in serum of healthy indi-viduals.When muscle tissues are damaged,myoglobin is rapidly released into the circulation and the myoglobin concentration in serum is elevated to 4.8?M subsequently [4].Some conventional approaches have been employed to detect myoglobin,such as mass spectrometry [5],liquid chromatography [6],electrochemi-cal [7–11]and surface plasmon resonance (SPR)[12–15].Most of these methods showed high sensitivity,but these methods were time consuming and required expensive equipment,which was unable to be applied in point-of-care (POC)testing [16].Recently, ?Corresponding authors.Tel.:+8673188821566;fax:+8673188821566.E-mail addresses:yangxiaohai@https://www.docsj.com/doc/9511811258.html, (X.Yang),kmwang@https://www.docsj.com/doc/9511811258.html, (K.Wang). we reported a novel assay for sensitive and selective detection of myoglobin using a personal glucose meter [17].Besides glucose meter,colorimetric method offers great potential for POC testing,due to its intrinsic advantages such as cost-effective,rapid,simple,and even only utilizing naked eyes.Zhang et al.reported a colori-metric method for myoglobin detection based on the aggregation of iminodiacetic acid-functionalized gold nanoparticles (AuNPs)[18].Although this method was easy to perform,low cost and time-saving,the detection limit is relatively high. Here,a novel colorimetric method was developed for myoglobin detection based on hemin/G-quadruplex DNAzyme functional-ized AuNPs.G-quadruplex DNAzyme,which is usually formed by binding G-rich nucleic acid to hemin [19–21],can exhibit peroxidase-like activity and effectively catalyze the H 2O 2-mediated oxidation of 2,2 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS)[22–24].In this assay,hemin/G-quadruplex DNAzyme complex showed inherent advan-tages of simplicity,stability and relatively low cost.Moreover,since a single Au nanoparticle was loaded with hundreds of DNA2probes which contained DNAzyme section [25,26],it could enhance the sensitivity effectively.This work may provide the new tool for early diagnosis of AMI in the world,especially in developing countries. https://www.docsj.com/doc/9511811258.html,/10.1016/j.snb.2015.02.040 0925-4005/?2015Elsevier B.V.All rights reserved.

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

最新 金纳米粒子在医学领域中的运用-精品

金纳米粒子在医学领域中的运用 金纳米粒子潜在的细胞毒性是制约其临床应用的一个重要原因,下面是小编搜集的一篇关于金纳米粒子在领域中的运用探究的,供大家阅读借鉴。 金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm 厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位. 1金纳米粒子在加载药物方面的应用 1.1金纳米粒子可作为内在药制剂 金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用. 最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质. 通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应. 1.2基于金纳米粒子的光热疗法

纳米金催化剂及其应用

纳米金催化剂及其应用 摘要:长期以来,黄金一直被视为具有永久价值的“高贵”金属,在人类社会 象征高贵和权力,决定黄金具有这种地位的科学基础是它的化学非活泼性和优良的可加工性。但1989年 Haruta等发现负载在Fe2O3 和 TiO2 等氧化物上的金纳米粒子具有很高低温 CO 催化氧化活性。金催化剂具有其它贵金属不具有的湿度增强效应,在环境污染、燃料电池、电化学生物传感器等方面都有巨大的应用前景,开辟了金作为催化剂的新领域。本文主要纳米金催化剂制备的研究现状及其部分应用。 关键词:纳米金催化剂选择性氧化加氢环境保护 纳米金催化剂的制备: 一、沉积-沉淀法 沉积-沉淀法是将载体浸渍在 HAuCl4 的碱性(pH值为8~10)溶液中,利用带负电荷的金与载体表面间的静电相互作用实现金的沉积。制备的纳米金粒子较好地分散于载体面,但要求载体具有尽可能大的表面积,对制备低负载量 Au 催化剂非常有效。为了获得最大量金沉积,提高金的负载量,整个制备过程对溶液 pH 值有较大的依赖性,溶液的 pH 值决定了金的前体在水中的水解程度,能够直接影响到金在载体上的吸附,当pH值为8~9时,[AuCl(OH)3]-是 HAuCl4 水解产物中吸附能力最强的形式、,但不同的金属氧化物载体其最佳 pH 值有所不同,目前一般将pH值控制在7~10。在沉积-沉淀法中,尿素对控制均匀沉淀非常有效,还可实现金的最大沉积,金负载量可达到12%,但该法仅适用于等电点较高(IEP>6)的 TiO2、Al2O3、CeO2 等载体纳米金的沉积。后来有科学家研究发现,若用浸渍法对表面浸渍吸附了HAuCl4 的催化剂在高温焙烧前用氨水等碱液多次洗涤,同样也可获得与沉积-沉淀法制备的活性相当的金纳米催化剂,这种方法避免了金的流失,克服了沉积-沉淀法受载体等电点限制的缺点。 二、浸渍法 浸渍法被广泛应用于工业制备贵金属催化剂,研究表明,金和载体表面间亲和力比较弱,在制备和反应过程中容易造成金纳米粒子的聚合,使得催化活性降低,通常认为不适合高度分散纳米金催化剂的制备。后来研究发现金催化剂低温催化 CO 氧化中,沉积-沉淀法比浸渍法获得更高活性是因为该法制备过程中

碳纳米管限域的金属纳米粒子的催化行为

附件2 论文中英文摘要格式 作者姓名:陈为 论文题目:碳纳米管限域的金属纳米粒子的催化行为 作者简介:陈为,男,1977年7 月出生,2003年9 月师从于中国科学院大连化学物理研究所包信和研究员,于2008年3 月获博士学位。 中文摘要 随着石油价格的高涨及其资源的日益枯竭,迫使人们寻找新的清洁、可持续的能源替代产品。以煤和天然气为资源经合成气催化转化成液体燃料是一种非常有应用前景的过程,对于保障我国能源安全及解决环境污染问题等都具有重大的经济和现实意义,发展高效催化合成气转化的催化剂显得越来越紧迫和重要。碳纳米管自1991年被lijima发现以来,因其独特的 结构和性能引起了人们极为广泛的关注,尤其是碳纳米管的纳米级管道为纳米粒子提供了准一维的限域环境。本论文研究了碳管的限域环境对Fe/Fe2O3粒子的氧化还原性能的调变作用,以及这种限域效应对F-T合成反应性能的影响,取得了如下结果: 1. 发展了高效的碳纳米管填充方法—湿法毛细诱导填充法尽管各种填充方法日趋成熟,然而现有的很多碳纳米管填充的复合体系并不适合于催化应用,如原位填充的金属及其化合物完全被密封在碳纳米管管腔中;熔融填充的金属纳米线或纳米棒严实地充满整个碳纳米管内腔,大部分金属并不能与外界接触;Green 等开创的湿化学填充法,尽管能得到颗粒状填充的过渡金属,但是这个方法对金属盐的消耗量较大,不适用于填充贵金属,并且无法准确定量。这些填充方法的填充效率高低不一,并且其填充复合物的产量还不能够达到一般催化剂量的要求。因此,发展一种适用于催化应用的普适性强的、高效的填充碳纳米管的方法,是实现碳纳米管的“管中催化”亟需解决的首要问题。 相对于其它填充碳纳米管方法,湿化学填充法简单,可得到颗粒状填充的过渡金属粒子。我们针对湿化学填充碳纳米管的方法存在填充效率不高、不易准确定量的缺点,结合碳管本身的结构特点进行了改进,发展了湿法毛细诱导填充法。主要步骤是:首先将碳纳米管端口打开,同时进行表面亲水性处理,使得碳管能够被溶液完全浸润;然后,利用强超声振荡下的空化作用,使碳管内的残余物能够扩散出来,从而含金属离子的溶液能够在毛细力作用下进入碳管管腔;最后,控制溶液的蒸发速率,金属离子在浓度差的驱动下,尽可能进入到碳管管腔中,之后加热使金属前驱物发生分解,得到

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

纳米金催化剂及其应用

纳米金催化剂及其应用 一.纳米金催化剂的发展 早在1972年,Bond在一篇综述中就指出,第Ⅷ族金属,特别是钯、铂的催化活性都要远高于金的催化活性。金属催化剂主要使用第Ⅷ和ⅠB族的12个金属。用得最多的是3d金属元素Fe、Co、Ni、Cu,4d金属元素R h、Pd、Ag,以及5d金属元素Pt。因此在选用催化剂活性组分的时候,很少在第一时间考虑使用金。1985年Schwank的综述中则这样的评价金的催化剂性:尽管本身不具有反应活性,但金的存在,能够影响第Ⅷ族金属的活性和选择性。而到1999和2000年,Bond和Thompson就金的催化行为相继发表综述性的文章。这足以证明,金已经被作为一种具有优异催化性能的金属元素来使用。特别是在一些多相或者均相反应中,金的催化活性和选择性引起了人们的广泛注意。而这个有无到有、到丰富的过程,仅仅花了15年。在这15年的时间里,大量的研究工作彻底改变了改变了人们对金催化惰性本质的看法。 20世纪80年代中期,关于金催化剂的研究,相继出现了两个突破性进展。1985年发现,英国威尔士大学的Hutching教授,发现纳米金催化剂是催化乙炔氧氯化反应最好的催化剂:1987年,日本学士春田正毅博士发现,负载型纳米催化剂具有低温催化CO的功能。这些研究工作,在当时并没有引起高度重视,但是自从进入20世纪90年代,越来越多的人意识到将纳米金负载在氧化物载体上所产生的新的多相催化行为,对丰富催化剂的制备科学以及催化理论将产生重要影响。 20世纪90年代中期,有关纳米金的研究引起一些国家的注意。在日本美国英国以及意大利等发达国家,集中了相当的人力物力展开此方面的科学研究。有关纳米金方面的研究论文如雨后春笋般见诸各期期刊。关于金催化剂的研究呈现出不断深入逐步扩展的局面。目前,以纳米金作为主题的国际性催化会议,已经举办了三次,也进一步说明,学术界以及产业部门对金的催化作用给予极大的关注,并预示着金催化剂具有不断增长更广泛的应用前景。与此同时,我国在此方面的研究也逐步展开。 二.纳米金催化剂的性质 1.金的物理化学性质 在自然界中,金只以一种稳定的非放射性的同位素形式存在。在任何温度下,空气和氧气对金都不起氧化作用。在所有金属元素中,货币金属属于非稳定的一类,它们的稳定性按电离能力排列为金>铜>银。由于离子半径大,铜银金的金属晶体构型为立方面心晶格,具有熔点沸点高的特点。单组分金属得到的催化剂耐热性差,对使用温度的要求比较苛刻,因此,在工业上为了防止催化剂的失活,要求一定要有适当的助催化剂或载体。 金的熔点汽化热比银要大,较接近铜,这说明金原子之间的键强较强。精确测量表明,金原子金属半径比银稍小。金的电负荷性非常高,只比硫和碘稍稍电正性一点,其亲电子性比氧还强。事实上,金可以一-1价的稳定氧化态存在。另外,进容易于铜铝钛等形成一定组合的合金。 在所有元素中,金的收缩率最大,其半径比没有相对论影响的情况下收缩了15%。金的物理化学性质,可能与其特殊的6s价的电子的半径有关。由于6s价的电子的束缚能被加强,因此导致金很高的电负性和化学惰性。 2.金的催化特性 金的第一电离能力很大,很难失去电子,因此金与表面分子之间的互相作用力通常是很弱的。在低于200℃的温度下,在单晶金的表面,连极具反应活性的分子,如氢氧等,都不易吸附。由于分子在催化剂表面的吸附是催化反应的先决条件,因此可以认为单质金对氢化反应和氧化反应不具有很好的活性。金不具有很好的催化活性,事实上,金催化剂具有催化活性的前提是制备得到高分散的纳米级的金粒子。 3.纳米金粒子的吸附作用 传统方法制备的负载型金催化剂,活性较差,主要是因为它不像其它贵金属催化剂一样高分散。而现在制备得到的粒径在3mm-10mm的纳米催化剂,则显示了特别的优异的催化活性。 纳米粒子是指粒子尺寸为纳米数量级的超细粒子,它的尺寸大于原子簇,小于普通的粒子。纳米粒子是由有限数量的原子或分子组成的,是保持原来物质化学性质并处于亚稳态的原子团或分子团。纳米粒子的表面原子所处的的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和的性质,因而极易与其它原子相结合,所以,具有很高的化学活性,同时也容易吸附其它原子发生化学反应。这种表面原子的活性,不但引起纳米粒子表面构型的变化,同时,任何发生在表面的化学反应,都会因为纳米粒子的存在而表现不同。 随着粒径的减小,金催化剂表面的化学吸附及反应活性相比块体金出现了明显变化:①表面原子的比

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

14.1 DNA功能化的金纳米粒子及其应用

DNA功能化的金纳米粒子 1 DNA功能化的金纳米粒子及其应用 用DNA分子修饰无机纳米粒子为其在传感,药物和基因传输,光学和能源领域的应用带来了新的机遇。同时利用DNA对纳米颗粒间相互作用的控制,基于DNA的平台也能为构建复杂纳米粒子组装结构提供灵活性和多样性。DNA金纳米粒子复合物(DNA-AuNPs)是一种纳米生物复合物,由内层的纳米粒子和外层的DNA组成,起到了连接生物体系和纳米材料的作用。上世纪九十年代中期,Mirkin研究组和Alivisatos研究组在他们的开创性工作中,首次报道了DNA功能化的金纳米粒子体系。Mirkin等人合成了13 nm的金纳米粒子(在溶液中呈现均一的红色,紫外吸收峰波长为520 nm),然后将末端为巯基修饰的DNA通过S-Au化学键相互作用固定到金纳米粒子表面得到DNA.金纳米粒子复合物(图1.9),后来他们将这种复合物重新命名为球形核酸(spherical nucleic acid,SNA)。由于这种DNA修饰的金纳米粒子复合物既具有金纳米粒子的光学和物理化学特性,又具有DNA分子的可编程特性和生物特性,自从Mirkin等人的开创性工作发表以来,DNA功能化的金纳米粒子发展应用迅速,已经被广泛应用于生物传感,离子检测,核酸比色检测,金纳米粒子结晶组装,生物成像等领域。 图1.9 Spherical nucleic acid(SNA) conjugates. 1.1 DNA功能化的金纳米粒子在核酸检测中的应用 基因突变的检测可以为诊断提供重要的目树,使人们对用于包括癌症在内的许多疾病早期诊断的核酸检测越来越感兴趣。荧光和放射性检测读出方法(如PCR,PT-PCR,分子印迹法,以及高密度微阵列法等)是传统的核酸检测方法。金纳米粒子比色法已经被证明是核酸目标链检测方面的一种极具竞争力的检测技术。在金纳米粒子比色法中,待检测目标物直接

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

相关文档