文档视界 最新最全的文档下载
当前位置:文档视界 › 几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究
几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究

碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。

到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。

发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。

本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。

然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。

本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

研究了该材料的电化学性能,实验结果表明该材料具有高的比电容和很好的循环性能。本研究提供了一种制备石墨烯复合材料的新方法,并且所制备的复合物在能源领域中应用前景广阔。

2.比例可调的石墨稀/聚3,4-乙烯二氧噻吩复合物的制备及其在超级电容

器中的应用由于第一个研究工作中合成的石墨烯/聚3,4-乙烯二氧噻吩复合物,

其石墨烯和聚3,4-乙烯二氧噻吩的量比取决于乙烯二氧噻吩单体在石墨烯表面

的吸附量,因此限制了石墨烯和聚3,4-乙烯二氧噻吩的量比的可调性。本工作中进一步研究了石墨烯与PEDOT的相对含量对G/PEDOT复合物电性能的影响,在微波加热条件下,通过控制溶液中GO和EDOT单体的质量比,在更宽的范围内,合成了不同比例的石墨烯/聚3,4-乙烯二氧噻吩复合物。

利用场发射扫描电子显微镜,X射线能谱及其元素成像,拉曼光谱,X射线衍

射分析,循环伏安和恒电流充放电等手段对石墨烯/聚3,4-乙烯二氧噻吩复合物

的形貌、结构、组成和性能进行了研究。实验结果表明:不同比例的石墨烯/聚3,4-乙烯二氧噻吩复合物呈现出不同的比电容。

当GO和EDOT质量比为2:1时,所得到的G/PEDOT复合物的电容值最大,当充放电电流为:0.5 Ag-1时其电容值为362 Fg-1。3.以头发纤维为前驱体合成具有可调荧光特性的硫、氮共掺杂碳点及其生物应用本研究提出了一种简易地制备硫、氮共掺杂荧光碳点的新方法。

以头发为前驱体,用硫酸进行碳化切割,得到硫、氮共掺杂的荧光碳点。该方法合成过程简单,成本低,有望用于其它掺杂荧光碳点的制备。

在材料制备过程中,通过改变合成条件来调节碳点的尺寸和元素含量,从而

调节其光致发光性能。实验结果表明:随着反应温度的升高,硫的含量增加,荧光

发生红移,粒径减小。

该碳点具有荧光稳定性好、毒性低、良好的生物相容性和很好的溶解性。并将所制备的碳点用作荧光探针进行了细胞成像等生物方面的初步应用探索。

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究 碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。 到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。 发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。 本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。 然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。 本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

纳米碳材料及其应用

纳米碳材料及其应用材料科学与工程学院

单质碳的存在形式1. 金刚石(Diamond) 2. 石墨(Graphite) 3. 富勒烯(Fullarene) 4. 无定形碳(Amorphous) 5. 碳纳米管(Carbon nanotube) 6. 六方金刚石(Lonsdaleite) 8. 纤维碳(Filamentous carbon) 9. 碳气凝胶(Carbon aerogels) 10. 碳纳米泡沫(Carbon nanofoam)…… 最为坚固的一种碳结构,其中的碳原子以晶体结构的形式排列,每一个碳原子与另外四个碳原子紧密键合,最终形成了一种硬度大,活性差的固体。 金刚石的熔点超过350℃,相当于某些恒星的表面温度。 石墨中碳原子以平面层状结构键合在 一起,层与层之间键和比较脆弱,因 此层与层之间容易被滑动而分开。 7. 赵石墨(Chaoite)石墨与陨石碰撞时产生,具有 六边形图案的原子排列。

富勒烯的结构?哈罗德·克罗托(Harold W Kroto)受建筑学家理查德·巴克明斯特(Richard Buckminster Fuller, 1895年7月12日~1983年7月1日)设计的美国万 国博览馆球形圆顶薄壳建筑的启发,认为C60可 能具有类似球体的结构,因此将其命名为 buckminster fullerene(巴克明斯特·富勒烯,简 称富勒烯) ?富勒烯是一系列纯碳组成的原子簇的总称。它们是由非平面的五元环、六元环等构成的封闭 式空心球形或椭球形结构的共轭烯。现已分离 得到其中的几种,如C60和C70等。在若干可能 的富勒烯结构中C60,C240,C540的直径比为 1:2:3。 ?C60的分子结构的确为球形32面体,它是由60个碳原子以20个六元环和12个五元环连接而成的 足球状空心对称分子,所以,富勒烯也被称为 足球烯

碳纳米材料的性能及应用作业.

碳纳米材料的性能及应用 Z09016114 蔡排枝 摘要:纳米材料被誉为21世纪的重要材料,而作为新型纳米材料的碳纳米材料因其本身所拥有的潜在优越性,在化学、物理学及材料学领域具有广阔的应用前景。本文依据目前碳纳米材料的研究发展现状,阐述了碳纳米材料碳60、碳纳米管及石墨烯的结构性能,并对其应用特性进行了初步探讨和分析。 一.引言 碳纳米材料是指材料微观结构在0-3维内其长度不超过100nm;由碳原子组成,材料中至少有一维处于纳米尺度范围0-100nm;具有纳米结构。它有四种基本类型:a.纳米粒子原子团如C 60 (零维 b. 碳纳米纤维和碳纳米管(1维 c. 碳纳米层或膜材料石墨烯(2维 d.块体纳米材料如金刚石(3维。 由于碳纳米材料的独特结构,使其具有不同于常规材料和单个分子的性质如量子尺寸效应、表面效应、宏观量子隧道效应等,从而导致了碳纳米材料的力学性能、电磁性能、光学性能、热学性能等的改变,并使之在电子学、光学、化工陶瓷、生物、医药、日化诸多方面有重要价值,得到广泛的应用。由于石墨,金刚石并不是常用的碳纳米材料。 碳纳米材料中,目前应用最成熟的就是碳纳米管。碳纳米管是一种具有独特结构的一维量子材料,由石碳原子层卷曲而成,管直径一般为几纳米到几十纳米,管厚度仅为几纳米,长度可达数微米。由于拥有潜在的优越能,碳纳米管无论在物理、化学还是在材料科学领域都将有大发展前景。比如在材料科学领域,碳纳米管的长度是直的几千倍,被称为“超级纤维”,其性质随直径和螺旋角的同有明显变化。近年来,美国、日本、德国和中国等国家相成立了纳米材料研究机构,使碳纳米管的研究进展随之加快并在制备及应用方面取得了突破性进展。 二.碳纳米材料的性能

碳纳米管制备及其应用

碳纳米管的制备及其应用进展 10710030133 周健波 摘要:本文通过对新型化工材料碳纳米管的结构以及制备方法的介绍,并说明了制备纳米管方法有石墨电弧法、激光蒸发法、催化热解法等技术。同时也叙述了碳纳米管在力学性能、光学性能、电磁学性能等性能的研究及其应用。 关键词:碳纳米管制备结构石墨电弧法应用 1.引言 1991年日本科学家IIJI MA发现了碳纳米管(Carbon nanotube , CNT), 开辟了碳科学发展的新空间. 碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、储能器件电极材料等诸多领域得到了广泛应用。 2.碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主, 与相邻的3个碳原子相连,形成六角形网格结构,但此六角形网格结构会产生一定的弯曲, 可形成一定的sp3杂化键。 单壁碳纳米管( SW CNT )的直径在零点几纳米到几纳米之间,长度可达几十微米;多壁碳纳米管(MW CNT)的直径在几纳米到几十纳米之间长度可达几毫米,层与层之间保持固定的间距,与石墨的层间距相当,约为0 . 134 nm。碳纳米管同一层的碳管内原子间有很强的键合力和极高的同轴向性,可看作是轴向具有周期性的一维晶体,其晶体结构为密排六方, 被认为是理想的一维材料。 碳纳米管可看成是由石墨片层绕中心轴卷曲而成, 卷曲时石墨片层中保持不变的六边形网格与碳纳米管轴向之间可能会出现夹角即螺旋角.当螺旋角为零时, 碳纳米管中的网格不产生螺旋而不具有手性, 称之为锯齿型碳纳米管或扶手型碳纳米管;当碳纳米管中的网格产生螺旋现象而具有手性时,称为螺旋型碳纳米管。随着直径与螺旋角的不同, 碳纳米管可表现出金属性或半导体性。 3.碳纳米管的制备方法 3.1石墨电弧法

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

磁性纳米材料的制备及应用前景

磁性纳米材料的制备及应用前景 摘要:磁性纳米材料因其具有独特的性质,在现代社会中有着广泛的应用,并越来越受到人们的关注。本文主要介绍了磁性纳米材料的制备及应用前景,概述了纳米磁性材料的制备方法,如机械球磨法,水热法,微乳,液法,超声波法等,总结了纳米磁性材料在实际中的应用,并对其研究前景进行了展望。 Abstract: magnetic nanomaterials due to their unique properties, in the modern society has a wide range of applications, and people pay more and more attention. This paper mainly introduces the magnetic nanometer material preparation and application prospect of nano magnetic materials, summarized the preparation methods, such as mechanical ball milling method, hydrothermal method, microemulsion, liquid method, ultrasonic method, summarizes the nanometer magnetic materials in practical application, and the research prospect.

前言 纳米材料因其尺寸小而具有普通块状材料所不具有的特殊性质,如表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,从而与普通块状材料相比具有较优异的物理、化学性能。磁性纳米材料由于其在高密度信息存储,分离,催化,靶向药物输送和医学检测等方面有着广泛的应用,已经受到了广泛关注。磁性复合纳米材料是以磁性纳米材料为中心核,通过键合、偶联、吸附等相互作用在其表面修饰一种或几种物质而形成的无机或有机复合材料。由于社会的发展和科学的进步,磁性纳米材料的研究和应用领域有了很大的扩展。磁性材料在信息存储、传感器和磁流体等传统学科领域有着重要的应用。随着纳米材料科学与技术的发展,纳米磁性材料的应用开发日益引起人们的关注,特别是在提高 信息存储密度、微纳米器件和生物医学领域的应用潜力巨大。目前普遍采用化学法制备铁氧体磁性纳米颗粒,具体有溶胶~凝胶法、化学共沉淀法等,而由于生物合成的磁性纳米颗粒表现出更优良的性质。 1.磁性纳米材料的特点 量子尺寸效应:材料的能级间距是和原子数N 成反比的,因此,当颗粒尺度小到一定的程度,颗粒内含有的原子数N 有限,纳米金属费米能级附近的电子能级由准连续变为离散,纳米半导体微粒则存在不连续的最高被占据分子轨道和最低未被占据的分子轨道,能隙变宽。当这能隙间距大于材料物性的热能,磁能,静电能,光子能等等时,就导致纳米粒子特性与宏观材料物性有显著不同。例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。 小尺寸效应:当粒子尺度小到可以与光波波长,磁交换长度,磁畴壁宽度,传导电子德布罗意波长,超导态相干长度等物理特征长度相当或更小时,原有晶体周期性边界条件破坏,物性也就表现出新的效应,如从磁有序变成磁无序,磁矫顽力变化,金属熔点下降等。 宏观量子隧道效应:微观粒子具有穿越势垒的能力,称为量子隧道效应。而在马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它限定了磁存储信息的时间极限和微电子器件的尺寸极限。 2. 磁性复合纳米材料的制备方法 2.1水热合成法 水热合成法是液相中制备纳米粒子的一种新方法。一般是在100~300摄氏度温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗透析反应和物理过程的控制,得到改进的无机物,再过滤,洗涤,干燥,从而得到高纯,超细的各类微粒子。研究发现以FeC13为铁源,AOT为表面活性剂,N2H4·H20(50%)为还原剂水热合成 Fe3O4纳米颗粒时,反应温度和时间,表面活性剂和还原剂浓度对最终产物的尺寸形貌、分散性和磁性有明显影响。还有通过调节水热反

碳纳米管复合材料的制备_表征和电化学性能

第11卷 第2期2005年5月 电化学 ELECTROCHE M ISTRY V o.l 11 N o .2M ay 2005 文章编号:1006-3471(2005)02-0152-05 收稿日期:2004-11-02,*通讯联系人T el :(86-592)2185905,E -m a il :qfdong @x m u .edu .cn 973项目(2002CB211800),国家自然科学基金(20373058),福建省科技项目(2003H 044)资助 碳纳米管复合材料的制备、表征和电化学性能 董全峰* ,郑明森,黄镇财,金明钢,詹亚丁,林祖赓 (厦门大学化学系,厦大宝龙电池研究所,固体表面物理化学国家重点实验室,福建厦门361005) 摘要: 作为锂离子电池负极材料,碳纳米管和金属锡或其氧化物都曾引起过人们浓厚的兴趣,但由于其自 身的缺陷,这些材料均未能得到进一步的发展.本文以不同方法合成了碳纳米管和金属锡或其氧化物的复合材料,对其结构、形貌进行表征,并考察它的电化学性能. 关键词: 碳纳米管; 复合材料;制备;电化学性能中图分类号: O 646;T M 911 文献标识码: A 碳纳米管(CNT )是一种新型的碳材料[1,2] .碳纳米管在结构上与其它的碳材料有很大的不同,它不仅具有典型石墨层状结构(管壁),同时又具有无序碳的结构(内外表面的碳层及所附着的无序碳微粒),还具有与MC MB 类似的内腔结构,而且表面及边缘又存在结构缺陷,管与管之间为纳米间隙,管中还存在部分的H 原子掺杂.在制备上,碳纳米管可以通过控制一定的反应条件来调控它的几何结构参数,如管的管壁,外径、内径大小,及管的长度.基于其特殊的结构和高的导电率,吸引了众多研究者开展了大量研究工作,希望它能成为新一代锂离子电池“理想”的负极材料[3,4] . 由于碳纳米管的高比表面及其结构缺陷,锂不仅能嵌入管中的石墨层,还能嵌入它的孔隙及边缘缺陷中,使得它尽管具有高的嵌锂容量,但由于比表面积较大而表现出很大的不可逆容量.又因为在碳纳米管的结构中含有氢原子以及管壁层间和管 腔之内有间隙碳原子的存在[5] ,故其嵌锂容量出现较大的滞后现象.这些都限制了C NT 作为电极活性材料在实际中的应用,所见者只是被用作电极添加剂的报道.本文综合了碳纳米管和锡基材料的优点,规避其本身固有的缺陷,在碳纳米管的表面沉积/包覆锡或氧化锡形成CNT 复合材料,这样不仅可减少碳纳米管的比表面积,同时直接采用金属锡取代锡基氧化物,不存在氧化物的还原过程,从 而大大降低初次充电不可逆容量损失;通过控制反应条件在表面沉积过程中包覆纳米级的锡,使表面沉积/包覆锡的碳纳米管能在保持高容量的同时,也具有良好的循环寿命.此外,还提高了它的体积能量密度. 1 实 验 1.1 碳纳米管的制备 应用Sol -ge l 法制备N i -M g -O 催化剂,方法见文献[6],所用试剂N i (NO 3)2 6H 2O 、M g (NO 3)2 6H 2O 和柠檬酸均为分析纯(上海化学试剂有限公司).将制备好的催化剂称取一定量置于陶瓷舟内,放在反应器的恒温区内,于氢气氛下缓慢升温至700℃,还原一段时间后,降温到600℃稳定10m in ,然后以20m L /m i n 的流量导入C H 4气体,经反应一定时间后自然冷却至室温(冷却过程中继续通气体).用分析纯硝酸(上海化学试剂有限公司,AR 65%)处理反应后的样品,洗涤、烘干后即得到碳纳米管.反应装置是在一个水平放置的管式电炉内放一内径为5c m 的石英管(长140c m ),其恒温区为20c m ,电炉为SK -2-4-12型管式电阻炉(上海实验电炉厂),额定功率4k W ,额定温度1200℃,控温装置为A1-708P A 型程序控温仪(厦门宇光电子技术研究所),流量计为D08-4C /Z M 质量流量控制仪(北京建中机器厂).

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

相关文档