文档视界 最新最全的文档下载
当前位置:文档视界 › 常见纳米材料的制备技术

常见纳米材料的制备技术

常见纳米材料的制备技术
常见纳米材料的制备技术

东华大学研究生课程论文封面

教师填写:

本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。

论文作者签名:

注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术

1 概述

纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。

2 常见的纳米材料

2.1 零维纳米材料

指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。

2.2 一维纳米材料

一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。

静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

发最终沉积到接收装置上。纳米棒一般是在固定的载体上引导无机材料自行定向生长出来的一维线性材料,在光电子器件和传感器技术领域有较广泛的应用前景。

碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2-20 nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和手性碳纳米管三种,如图1的(a),(b),(c)。

图1 碳纳米管的三种类别(a)锯齿形(b)扶手椅型(c)手性在石墨平面中,碳原子结合在一起形成六角网状结构的碳原子平面,如图2所示:和为石墨平面的单胞基矢。

图2 六角网状结构碳原子平面

选石墨平面中任一碳原子O做原点,再选另一个碳原子A,从O到A的矢量为

= n+ m

式中n、m为整数,将石墨平面卷曲成一个圆柱,在卷曲过程中使矢量末端的碳原子A与原点上的碳原子O重合,然后在石墨圆柱的两端罩上碳原子半球面,这样就形成了一个封闭的碳纳米管。这样形成的碳纳米管可用(n , m)这对整数

来描写。因为这对整数一经确定,碳纳米管的结构就完全确定。所以,把这对整数称为碳纳米管的指数。

当m = n时即手性角θ= 30°时,成为扶手型碳纳米管(Armchair);

当m = 0或n = 0时即手性角θ= 0°时,成为锯齿型碳纳米管(Zigzag);

当0°<θ< 30°时,则成为手性型碳纳米管(或螺旋型碳纳米管)[2]。

2.3 二维纳米材料

二维纳米材料指空间中有一维为纳米尺度,如静电纺制成的纳米纤维无纺布就是一个典型的例子(图3)。纳米膜类材料可以分为两类:一类是纳米材料膜,指纳米纤维、纳米粒子等纳米材料组成的膜;另一类是纳米结构膜,指膜中具有纳米尺度的空洞、缝隙等结构。值得一提的是单分子膜,是指厚度只有一分子厚的分子膜。一般单分子膜的有三种:L-B膜、分子自组装膜和热蒸发膜[3]。

图3 静电纺纳米纤维膜[4]

早在1765年的时候,富兰克林就已经发现L-B膜,他将4ml油滴到池塘里使约3英亩水面波浪平服,其实水面上已经形成了一层单分子油膜。许多有机溶剂都能在水面上铺展,因此可以将极性有机物溶于这类溶剂中,然后滴加到水面上,待溶剂挥发之后,表面上即留下一层有机物形成的膜。由于水和油互不相容,在水面上的油膜由于重力作用和能量最低原则,油分子趋于一个挨着一个字水面上平行的铺展开。

分子自组装薄膜式分子通过化学键相互作用自发吸附在固/液或气/固界面而形成的热力学稳定和能力最低的有序膜。当吸附分子存在的情况下,局部已形成的无序单层可以自我再生完善的、有序的自组装膜,其主要的特征有:原位自发形成;热力学稳定;无论基地形状如何,其表面均可形成均匀一致的覆盖层;高密度堆积和低缺陷浓度;分子有序排列;可人为设计分子结构和表面结构来获

得预期的界面物理和化学性质;有机合成和制膜有很大的灵活性。

热蒸发膜是化合物半导体器件制作中的一种重要工艺技术;它是在高真空状态下由钨丝加热钨蓝中的金属,使其熔融后蒸发到所需基片上形成金属膜。如果已知材料的密度,则可以通过QCM(石英晶体微天平)感应基片上重量的变化,以此来控制薄膜的厚度。

2.4 三维纳米材料

三维纳米材料是指零维、一维、二维材料中的一种或多种复合、组合、变形,使之在三维空间中任意一维都处于纳米尺度中。常见的三维纳米材料有纳米多层膜[5]、纳米阵列[6]、纳米多孔材料[7]、纳米纱线[8]等(图4),这些都是纳米材料中重要的组成部分,而制备高质量的三维大尺寸纳米材料是实现纳米材料大范围应用的关键。

图4 三维纳米材料

3 纳米材料制备技术

纳米材料的制作方法有很多,不同的纳米材料制备方法基本不同,甚至同一种材料也有多种制备方法。这里主要介绍四种类别纳米材料的制备方法:纳米球、碳纳米管、纳米薄膜、纳米纤维。

3.1 纳米球

在三维空间中,忽略纳米球在三个维度上的尺度将之视为质点,以按制备原料状态分为三大类: 气相法、液相法和固相法;按反应物状态分为干法和湿法;另外按反应的过程分为物理法和综合法。其中大部分方法都具有粒径均匀,粒度可控, 操作简单等优点; 但是有的也存在可生产材料范围较窄、反应条件较高,如高温高压等特点[9]。

3.1.1 液相法

液相法制备纳米微粒是将均相溶液通过各种途径使溶质和溶剂分离, 溶质

(A) (B) (C)

形成一定形状和大小的颗粒,得到所需粉末的前驱体, 热解后得到纳米微粒。液相法具有设备简单。原料容易获得、纯度高、均匀性好、化学组成控制准确等优点, 主要用于氧化物系超微粉的制备。液相法包括沉淀法、水解法、喷雾法、乳液法、溶胶- 凝胶法, 其中应用最广的是溶胶- 凝胶法和沉淀法。

3.1.2 气相法

气相法指直接利用气体或者通过各种手段将物质变为气体, 使之在气体状

态下发生物理或化学反应, 最后在冷却过程中凝聚长大形成纳米微粒的方法。气体蒸发法制备的纳米微粒主要具有如下特点: 表面清洁、粒度整齐、粒径分布窄、粒度容易控制、颗粒分散性好。气相法通过控制可以制备出液相法难以制得的金属、碳化物、氮化物、硼化物等非氧化物超微粉。气相法包括溅射法、气体蒸发法、化学气相反应法、化学气相凝聚法等, 其中应用较多的是化学气相反应法和气体蒸发法。

化学气相反应法也叫气相沉淀法(CVD), 是利用挥发性的金属化合物的蒸发, 通过化学反应生成所需化合物在保护气体环境下快速冷凝, 从而制备各类物质

的纳米微粒。该法制备的纳米微粒颗粒均匀、纯度高、粒度小、分散性好, 化学反应活性高, 工艺可控和连续。该法根据加热方式不同可分为热化学气相沉积法(CVD), 激光诱导沉积法, 等离子体沉积法和紫外沉积法等。

3.1.3 固相法

固相法是通过固相到固相的变化来制备粉体, 基础的固相法是金属或金属

氧化物按一定的比例充分混合, 研磨后进行煅烧, 通过发生固相反应直接制得

超微粉, 或者是再次粉碎得到超微粉。在该法的尺寸降低过程中, 物质无变化: 机械粉碎(用球磨机, 喷射磨等进行粉碎), 化学处理(溶出法等)。固相法包括热分解法, 固相反应法, 火花放电法, 溶出法, 球磨法。固相反应不使用溶剂, 具有高选择性、高产率、低能耗、工艺过程简单等特点。高能球磨法是靠压碎、击碎等作用,将金属机械地粉碎成粉末, 并在冷态下反复挤压和破碎, 使之成为弥散分布的超细粒子。其工艺简单, 成本低廉。但颗粒易受污染, 且颗粒分布不均匀。其中室温、近室温固相反应合成纳米材料的方法的突出优点是操作方便, 合成工艺简单, 粒径均匀, 且粒度可控, 污染少, 同时又可以避免或减少液相中

易出现的硬团聚现象。对于固相反应, 反应速度是影响粒径大小的主要因素, 而

反应速度是由研磨方式和反应体系所决定的。另外, 表面活性剂的加入对改变颗粒的分散性有明显作用, 其用量对粒径大小的影响存在最佳值。不同的反应配比对产物的均匀程度也有影响, 一般配比越大, 均匀性越差, 但分散性很好。

3.1.4 其他方法

SPD(severe plastic deformation)法克服了由粉体压合法带来的残余空隙、球磨法带来的杂质等不足, 并且适用于不同形状尺寸的金属、合金、金属间化合物等。SPD纳米结构材料表现了很好的低周疲劳性能,弹性模量偏低,超塑性等。SPD法包括剧烈扭转旋紧法(SPTS),等通道挤压法(ECAP ),多次锻造法(MF)和超声喷丸法(USSP)四种方法。

超声场中湿法具有工艺简单、成本低、效果好的优点。传统的湿法制备超细粉末普遍存在的问题是易形成严重的团聚结构,从而破坏了粉体的超细均匀特性。超声的空化效应很好的解决了这个问题, 该效应不仅促进晶核的形成,同时起到控制晶核同步生长的作用,为制备超细、均一纳米粉末获得了良好的基础。超声场中湿法包括超声沉淀-煅烧法,超声电解法,超声水解法,超声化学法,超声雾化法等。

自组装法是在无人为干涉条件下,组元通过共价键作用自发地缔结成热力学上稳定、结构上确定、性能上特殊的聚集体的过程。自组装过程一旦开始,将自动进行到某个预期终点,分子等结构单元将自动排列成有序的图形,即使是形成复杂的功能体系也不需要外力的作用。

3.2 碳纳米管

电弧法是制备富勒烯的常用方法,也是制备单壁碳纳米管的传统方法。早在1991年,日本NEC实验室的饭岛澄男就是用石墨电弧法制备了碳纳米管[10],其装置如图5所示。图中1为真空计,2为进料系统,3为阳极石墨电极,4接真空泵,5接惰性气体,6为冷却水系统,7为阴极石墨电极,8为冷却水系统,9为真空室。

图5 电弧法制备碳纳米管工艺装置

在真空室中充入一定量的惰性气体,用填充有铁或钴作为催化剂的较细的石墨棒作为阳极,而较粗的石墨棒作为阴极。通过石墨电弧法进行反应,在容器内壁上得到富含单壁碳纳米管的碳灰,经提纯可以得到单壁碳纳米管。如果石墨阳极上在碳中加过渡金属混合物,则沉积下来的是多壁碳纳米管。

化学相沉积法又名催化裂解法(工艺装置见图6),其原理是通过烃类(如甲烷、乙烯、丙烯等)或含碳氧化合物(如CO)在催化剂的催化下裂解而成。此法既可以合成单壁碳纳米管也可以合成多壁碳纳米管,选择合适的催化剂、碳源、反应温度是制备碳纳米管的关键。

化学相沉积法是在含碳反应物在催化剂上裂解并沉积成管,含碳的有机小分子都可以作为制备的原料,此法操作简单、工艺参数易控制、易进行大规模生产且产量较高,主要用于多壁碳纳米管的制备。目前,此法已具备工业化条件,但由于其制备的碳纳米管层数多、弯曲且含有许多杂质,需要进一步纯化;另外,碳纳米管缠绕成微米级大团,需要进行分散处理,为了更有效地合成碳纳米管,可采用等离子体加强的方法来保持碳原子的均匀分布,即增强等离子体热流体化学蒸汽分解沉积法(PE-HF-CVD法)。

图6 化学相沉积法制备碳纳米管工艺装置

3.3 纳米膜

纳米膜类材料可以分为两类:一类是纳米材料膜,指纳米纤维、纳米粒子等纳米材料组成的膜;另一类是纳米结构膜,指膜中具有纳米尺度的空洞、缝隙等结构。纳米膜的制备方法主要有一下几种:模板法、分子束外延法、真空蒸发法、化学气相沉积法等。

模板法分为两个阶段:晶核的生成和晶核的生长。将晶核种在机制载体上,晶体就会沿着一定的方向自行生长,基体与晶体之间通过共价键结合,而基体的大小和形状决定了产物的尺寸和形状,基体就是模板合称技术中的“模板”。

分子束外延法主要是一种可以在原子尺度上精确控制外延厚度、掺杂和界面平整度的超薄层薄膜制备技术。所谓外延,就是在一定的单晶体材料的衬底上,沿着衬底的某个指数晶面向外延伸生长一层单晶薄膜。在超高真空的条件下,精确控制原材料的分子束强度,把分子束射入被加热的底片上而进行外延生长。由于其蒸发源、监控系统和分析系统的高性能和真空环境的改善,能够得到极高质量的薄膜单晶体。

真空蒸发法实在真空环境下,给待蒸发物提供足够的热量以获得蒸发所必须的蒸汽压,在适当的温度下,蒸发的粒子在基片上凝结,实现真空蒸发薄膜沉积。其详细过程为:蒸发源物质由凝聚相转变为气相,在蒸发源与基片之间蒸发的粒子输运到基片上凝结、成核、长大、成膜。

化学气相沉积法是利用气态的先驱反应物,通过院系、分子间发生热分解、还原或其他化学反应的途径生成固态薄膜的技术。按照激发源的不同又可分为高

温气相裂解法、激光辅助化学气相沉积法、等离子体辅助化学气相沉积法等。3.4 纳米纤维

纳米纤维的制备方法有许多种:静电纺丝法、熔喷法、模板合成法、相分离法、拉伸法等。只有静电纺是唯一一种能够连续制备纳米纤维的方法,操作简单且适纺的原料广泛,只是其产业化生产应用仍需进一步发展。熔喷法虽然能够产业化生产,但是其纤维实际上是1μm左右,没有真正意义上达到纳米纤维的要求。

3.4.1 静电纺丝法

静电纺丝是一种特殊的纤维制造工艺,导电聚合物溶液或熔体在强电场中进行喷射纺丝。在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥尖端溶剂挥发纤维体被拉伸变细得到纤维细丝,这种方式可以生产出纳米级直径的聚合物细丝(见图7)。

静电纺丝技术在构筑一维纳米结构材料领域已发挥了非常重要的作用,应用静电纺丝技术已经成功的制备出了结构多样的纳米纤维材料。通过不同的制备方法,如改变喷头结构、控制实验条件等,可以获得实心、空心、核-壳结构的超细纤维或是蜘蛛网状结构的二维纤维膜;通过设计不同的收集装置,可以获得单根纤维、纤维束、高度取向纤维或无规取向纤维膜等。

静电纺丝的影响因素主要有:1.聚合物的分子量,分子量分布和分子结构(分支,线性等);2.溶液性质(浓度,粘度,电导率,表面张力,液体流量等);3.电动势大小;4.毛细管和收集屏幕之间的距离;5.环境参数(温度,湿度和室内空气流速);6.收集装置的运动规律;7.喷丝口针头形状等。要想稳定地进行纺丝,这些参数都必须稳定地控制在一定的水平上,但是要想获得变异系数较小、直径确定的纳米纤维,现在的技术还有待提高。

图7 静电纺工艺装置[11]

3.4.2 熔喷法

熔喷法是一种由熔体直接纺丝成网的工艺,熔喷法非织造布是采用熔喷法工艺制造的非织造布。熔喷的过程一般是将聚合物原料由输送装置经过计量、混合后,进入螺杆挤压机加工熔融成为熔体。在滤除杂质后,进入纺丝泵(计量泵)。经过计量加压后,即成为压力稳定、流量稳定、分布均匀的熔体,这些高温熔体进入纺丝箱后,由其内部的熔体通道均匀分配至喷丝组件。另一方面,由牵伸风机产生的压力气流进入空气加热器后,便成为高温的牵伸气流,由管道送入纺丝箱内的牵伸气流通道,然后从喷丝板两侧的通道对着从熔喷头喷出的熔体喷射,熔体在这种高温、高速气流的作用下被牵伸成微米级的超细纤维。牵伸气流及纤维喷射到在接收装置上后,纤维依靠余热凝聚成熔喷布。

对于熔喷法非织布的影响因素主要有一下几点:1.聚合物的MFI 大小:MFI 越大,熔体越容易被牵伸为较细的纤维,产品的阻隔性能越好;2.熔体温度(Tm)和流量(Fm):温度越高,熔体的流动性越好,但机械性能会下降;流量越小,产品的阻隔性能越好,过滤效率越高;3.牵伸气流温度(Ta)和流量(Fa):温度越高,熔体越容易被牵伸为较细的纤维;流量越大,纤维越细,阻隔性能越好;

4.成网气流:成网气流的均匀度影响产品的均匀度,流量的大小影响产品的密度和过滤效率;

5.接收距离(DCD):DCD 的大小影响产品的基本特性,DCD 较小时,产品的密度较高,成网幅宽较大,并丝量少,静水压增加,阻隔性提高;DCD 较大时,产品蓬松,幅宽缩窄,静水压及过滤效率下降。但即使所有的参数都调得较理想,要想稳定的获得直径小于1μm的纳米纤维仍存在很大的难度。

图8 熔喷非织布制备工艺

3.4.3 模板合成

模板大致可以分为两类:软模板和硬模板。硬模板有多孔氧化铝、介孔沸石、蛋白、MCM-41、纳米管、多孔Si模板、金属模板以及经过特殊处理的多孔高分子薄膜等。硬模板法有较高的稳定性,反应物与模板的相容性影响着纳米结构的形貌,但是硬模板法所制得的纳米纤维结构比较单一,形貌变化也比较少。软模板则常常是由表面活性剂分子聚集而成的胶团、反胶团、囊泡等,提供了一个处于动态平衡的空腔,物质可以透过腔壁扩散进出。硬模板法和软模板法二者的共性是都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部,而后者提供的则是处于动态平衡的空腔,物质可以透过腔壁扩散进出。

3.4.4 相分离法

相分离法主要是利用双组份或多组分复合纺丝法制备超细纤维主要以海岛型和裂片型复合纤维。其原理是将两种聚合物经特殊设计的分配板和喷丝板纺丝,制备海岛型或裂片型的复合纤维。将海岛型复合纤维中的“海”组份利用溶剂溶解去除或者将裂片型复合纤维进一步裂解后,即得到超细纤维。双组份复合纺丝法的关键技术是喷丝板的设计,选择不同规格的喷丝板,能够制备得到不同形态和尺寸的超细纤维。

海岛型纺丝法要求设备精度比较高,要求海与岛组分要在同一个轴向上,而且海的组分的聚合物溶出也影响纤维成型的品质。但海岛纺丝机成本较高、较复

杂,匹配的海、岛纤维也不易找寻,目前为止还无法大批量生产。

3.4.5 高速离心法

高速离心纺的原理是在圆盘边缘安装有喷丝头小孔,工作时高速旋转圆盘,利用离心力得到微细的纤维,其结构示意图如下图9所示。高速离心纺机械结构简单,主要由电机、喷头、喷嘴和收集板等做成。喷头装在电机轴上,里面装有聚合物溶液,在喷头的弯曲部位安装一个直径微小的喷嘴。工作时,电机通电旋转喷头,使喷嘴高速旋转,聚合物溶液在喷嘴处形成纳米纤维,并收集到收集板上,形成有序的纳米纤维。聚合物溶液在喷嘴处形成纳米纤维主要经历以下三个阶段:1) 聚合物溶液有一定的粘度,旋转时到达喷嘴处形成泰勒锥;2) 聚合物溶液同时受到表面张力和离心力作用,当离心力大于表面张力时,聚合物拉伸形成细小的微纳米级纤维;3) 纤维在离心力的作用下在喷嘴和收集板之间旋转,在这个过程中聚合物溶液中的溶剂挥发,得到纤维旋转到收集板上。收集的纳米纤维如图3所示。在制备过程中没有高压电场,聚合物溶液浓度在15%~35%之间,比静电纺纱浓度高,产量高[12]。

图9 高速离心纺结构示意图

4 展望

纳米材料是21世纪最为热门的研究领域,但是我们对仍然缺乏一种宏观、详尽的认识,如何准确表征纳米材料的各种精细结构,如何制备多功能化的复合纳米材料,能否利用某种判据来预测微区尺寸减少到多大时材料表现出特殊的性能,以及如何工业化生产纳米材料以满足在特定领域的需求,仍是今后很长一段时间科学家们不断为之努力奋斗的目标。

参考文献

[1]覃小红.纳米技术与纳米纺织品[M].上海:东华大学,2011:1-7.

[2]Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K: Physical properties of multiwalled carbon nanotubes. International Journal of Inorganic Materials 1999, 1:77-82.

[3]Yabing Qi. Investigation of organic films by atomic force microscopy: Structural, nanotribological and electrical properties[J]. Surface Science Reports,2011,66: 379-93.

[4] Wang X, Ding B, Yu J, Wang M, Pan F: A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 2010, 21.

[5] Bettahalli NMS, Groen N, Steg H, Unadkat H, de Boer J, van Blitterswijk CA, Wessling M, Stamatialis D: Development of multilayer constructs for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 2014, 8:106-19.

[6] Kim Y, Claus RK, Limanto F, Fearing RS, Maboudian R: Friction Characteristics of Polymeric Nanofiber Arrays against Substrates with Tailored Geometry. Langmuir 2013, 29:8395-401. [7] Fan J, He J: Fractal Derivative Model for Air Permeability in Hierarchic Porous Media. Abstract and Applied Analysis 2012.

[8] Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P: Electrospinning of continuons carbon nanotube-filled nanofiber yarns. Advanced Materials 2003, 15:1161-+.

[9]唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版),2005,28(1):5-9.

[10] Ajayan PM, Iijima S: Smallest Carbon Nanotube. Nature 1992, 358:23-.

[11]R. Dersch, T.Liu; A. Schaper, J.H.Wendorff. Electrospun Nanofibers, Internal Structure and Intrinsic Orientation. Polym. Sci.Pol. Chem 41, 2003: 543-.

[12]张智明,梅顺齐,徐巧.高速离心纺制备纳米纤维原理研究[J].制造业自动化,2013,3(05):82-83.

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料学总结

《纳米材料》 一、名称解释 纳米材料:指在三维空间中至少有一维处于纳米尺度范围(1-100)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。久保理论:关于金属粒子电子性质的理论,是针对金属超微颗粒面附近电子能级状态分布而提出的。 量子尺寸效应: 自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。 团簇:由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。 二、简答 列举几个材料或化学类的期刊;列举说明几种表征手段;列举几个研究纳米材料的研究小组 三、纳米材料不同于其它材料的物理化学性质; 四、列举几种材料的制备方法 五、抑制团聚的措施 六、光催化原理 光催化剂纳米粒子在一定波长的光线照射下受激发生成电子-空穴对(当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子()和空穴()),空穴分解催化剂表面吸附的水产生氢氧自由基,电子使其周围的氧还原成活性离子氧,从而具备极强的氧化-还原作用,能将绝大多数的有机物氧化至最终产物二氧化碳和水,甚至对一些无机物也能彻底分解。 第二章纳米微粒的基础 1. 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象。 2. 小尺寸效应:当超细微粒的尺寸与光波波长,德布罗意波长以及超导态的相干长度或者透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小。 3. 表面效应:纳米微粒尺寸小,表面能大,表面原子配位不足,活性强。 4. 宏观量子隧道效应:微观粒子具有贯穿势垒的能力。 第三章纳米微粒结构与物理性质

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米科技与纳米材料课程总结

西南科技大学 纳米科技与纳米材料课程 总 结 报 告 报告人:理学院光信息1102班杨星 时间:2012.4.9

早在1959年,美国著名的物理学家,诺贝尔奖金获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界。 纳米科技是研究尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。 纳米材料和技术是纳米科技领域最富有活力、研究内涵十分丰富的学科分支。“纳米”是一个尺度的度量,最早把这个术语用到技术上的是日本在1974年底,但是以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1~100nm范围。 可以说纳米技术是前沿科学,有很大的探索空间和发展领域,比如:医疗药物、环境能源、宇航交通等等。而今纳米时代正走向我们,从古文明到工业革命,从蒸汽机到微电子技术的应用,纳米时代的到来将不会很远。

这门课程我最深刻的内容是:第二讲扫描隧道显微镜及其应用 引言: 在物理学、化学、材料学和生物研究中,物质真实表面状态的研究具有重要意义。常用的手段有: 1.光学显微镜:由于可见光波长所限,光学显微镜的分别率非常 有限(一般1000nm,分辨率高的可到250nm,理论极限为200nm)。 2.扫描电镜:虽然给表面观察及分析提供了有力的工具,但由于 高能电子束对样品有一定穿透深度,所得的信息也不能反映 “真实”表面状态,分辨率3nm。 3.透射电镜:虽有很高的分辨率,但它所获得的图像实际上是很 薄样品的内部信息,用于表面微观观察及分析几乎是不可能的。 分辨率0.1nm。 4.针对这一问题,宾尼与罗雷尔于1982年发明了扫描隧道显微镜。 在不到5年的时间内,分辨率就达到了原子水平。分辨率0.01nm。 扫描隧道显微镜的基本原理: 1982年,国际商业机器公司(IBM)苏黎世研究所的 Gerd Binnig 和 Heindch Rohrer及其同事们成功地研制出世界上第一台新型的表面分析仪器,即扫描隧道显微镜(Scanning Tunneling Microscope,STM)。它使人类第一次能够直接观察到物质表面上的单个原子及其排列状态,并能够研究其相关的物理和化学特性。因此,它对表面物理和化学、材料科学、生命科学以及微电子技术等研究领域有着十分重大的意义和广阔的应用前景。STM的发明被国际科学界公认为20世

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

石墨烯纳米材料及其应用

墨烯纳米材料及其应

二?一七年十二月

摘要 ................. 错误!未定义书签 1引言................ 错误!未定义书签 2石墨烯纳米材料介绍......... 错误!未定义书签 3石墨烯纳米材料吸附污染物...... 错误!未定义书签金属离子吸附........... 错误!未定义书签 有机化合物的吸附......... 错误!未定义书签 4石墨烯在膜及脱盐技术上的应用..… 错误!未定义书签石墨烯基膜............ 错误!未定义书签 采用石墨烯材料进行膜改进..... 错误!未定义书签 石墨烯基膜在脱盐技术的应用??… 错误!未定义书签5展望................ 错误!未定义书签

石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、 较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度, 被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。 2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构()。在石墨烯平面内,碳原子以六兀环形式周期性排列,每个碳原子通过C键与临近的二个碳原子相连,S Px和Py三个杂化轨道形成强的共价键合,组成sp2杂化结构,具有120° 的键角。石墨烯可由石墨单层剥离而产生,最初是通过微机械剥离,使用胶带依次将石墨粘黏成石墨烯来实现。Geim和Novoselov

块状纳米材料的制备方法总结

块状纳米材料的制备方法总结 块体纳米材料是晶粒尺寸小于100 NM 的多晶体, 其晶粒细小, 晶界原子所占的体积比很大, 具有巨大的颗粒界面, 原子的扩散系数很大等独特的结构特征, 其表现出一系列奇异的力学及理化性能。 1、惰性气体凝聚原位加压成型法 其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成型系统组成1 这种制备方法是在低压的氩、氦等惰性气体中加热金属, 使其蒸发后形成超微粒( < 1 000 NM) 或纳米微粒[ 1] 1 由惰性气体蒸发制备的纳米金属或合金微粒, 在真空中由四氟乙烯刮刀从冷阱上刮下, 经低压压实装置轻度压实后,再在高压下原位加压, 压制成块状试样1 实验装置如图1所示。其优点是: 纳米颗粒具有清洁的表面,很少团聚成粗团聚体, 块体纯度高, 相对密度高, 适用范围广[ 2 ] ,但工艺设备复杂, 生产率低, 特别是制备的纳米材料中存在大量孔隙, 致密度仅为75% ~90%。 2、高能机械研磨法(MA) 利用粉末粒子与高能球之间相互碰撞、挤压, 反复熔结、断裂、再熔结使晶粒不断细化,直至达到纳米尺寸1 纳米粉通过热挤压、热等静压等技术加压后, 制得块状纳米材料。该法成本低、产量大、工艺简单, 在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力, 可以制备纯金属纳米块体材料、不互溶体系纳米合金、纳米金属间化合物及纳米尺度的金属- 陶瓷粉复合材料等1 但其研磨过程中易产生杂质、污染、氧化, 很难得到洁净的纳米晶体界面。 3、大塑性变形方法(SPD) 由于大塑性变形具有将粗晶金属的晶粒细化到纳米量级的巨大潜力, 已引起人们的极大关注。块纳米金属和合金最快捷的生产方法之一便是大塑性变形加工。高能球磨是在机械力的作用下, 粉末颗粒被反复地破碎、焊合, 将粗大晶粒细化到微米或纳米量级的一种有效手段。但是与高能球磨和非晶晶化法制备纳米材料的不同之处在于, 大塑性变形是通过剧烈的塑性变形, 使粗大晶粒破碎、细化, 从而直接获得块体纳米材料。近年来出现了一些大塑性变形方法, 如等径角挤压(Equal channel angular pressing, ECAP)、高压扭转(High pressure and torsion, HPT)、叠轧合技术(Accumulative roll bonding, ARB)、反复折皱一压直法(Repetitive corrugation and straightening.RCS)等。在发展多种塑性变形方法的基础上, 已成功地制备了晶粒尺寸为20~200nm 的纯Fe、Fe-1.2C 钢、Fe- C-Mn- Si—V 低合金钢、A1- Li—Zr、Mg—Mn- Ce 等合金的块体纳米晶材料。 4、非晶晶化法 该法通过控制非晶态固体的晶化过程, 可以使晶化的产物为纳米尺寸的晶粒。该法主要包括两部分: 获得非晶态固体和将非晶固体晶化。非晶态固体可通过熔体激冷、高速直流溅射、固态反应法等技术制备, 最常用的是单辊或双辊旋淬法。但以上方法只能获得非晶粉末、丝及条带等低维材料, 因而还需采用热压、高压烧结方法合成块状样品。非晶态合金的制备技术经过几十年的发展已非常成熟, 可以成功地制备出块状非晶态合金。由于非晶态合金在热力学上是不稳定的, 在受热或辐射等条件下会出现晶化现象, 即非晶态向晶态转变。晶化通常采用等温退火方法, 近年来还发展了分级退火、激波诱导等方法。此法在纳米软磁材料的制备方面应用最为广泛。目前利用该法已制备出Ni、Fe、Co、Pt 基等多种合金系列的纳

低维纳米材料总结

低维纳米材料的制备与性能研究 创新实践课 徐成彦 材料科学与工程学院 微系统与微结构制造教育部重点实验室 课时安排 共32学时,授课及讨论20学时,实践教学12学时2-9周 授课:周四、周六,A513 实践课:微纳米中心(科学园B1栋314) 联系方式 办公室:材料楼502房间 电话:86412133 E-mail: cy_xu@https://www.docsj.com/doc/1110057650.html, Homepage: https://www.docsj.com/doc/1110057650.html,/pages/cyxu 一.纳米材料导论 1.纳米:长度计量单位,1nm=10-9 m。 2.纳米结构:通常是指尺寸在100nm以下的微小结构。 3.纳米技术:在纳米尺度上对物质和材料进行研究处理的技术称为纳米技术。纳米技术本质上是一种用单个原子、分子制造物质的科学技术。 4.团簇:Clusters denotes small, multiatom particles. As a rule of thumb, any particle of somewhere between 3 and 3x107 atoms is considered a cluster. (a few ? ~ a few hundreds ?) 5.量子点:A quantum dot is a portion of matter (e.g., semiconductor) whose excitons are confined in all three spatial dimensions. Consequently, such materials have electronic properties intermediate between those of bulk semiconductors and those of discrete molecules. (typically, 5 ~ 50 nm)

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

纳米学习材料含技术复习总结计划思考题.docx

一、填空:(每空 1 分,总共30 分) 1.纳米尺度是指 1~100nm 。 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质运动和变化的科学。 3.纳米技术是在纳米尺度范围内对原子、分子等进行操纵和加工的技术。 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称 为低维材料。 5. 一维纳米材料中电子在2个方向受到约束,仅能在1个方向自由运动,即 电子在2个方向的能量已量子化。一维纳米材料是在纳米碳管发现后才得到广 泛关注的,又称为量子线。 6.1997 年以前关于 Au、 Cu、 Pd 纳米晶样品的弹性模量值明显偏低,其主要原因是 材料的密度偏低。 7.纳米材料热力学上的不稳定性表现在纳米晶粒容易长大和相变两个方 面。 8.纳米材料具有高比例的内界面,包括晶界、相界、畴界等。 9.根据原料的不同,溶胶 -凝胶法可分为:水溶液溶胶 -凝胶法和醇盐溶胶 -凝胶法10.隧穿过程发生的条件为|Q| > e/ 2 。 11.磁性液体由三部分组成:磁性颗粒、表面活性剂和基液。 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向 短波方向移动,即蓝移。 13.光致发光指在一定波长光照射下被激发到高能级激发态的电子重新跃入 低能级被空穴捕获而发光的微观过程。仅在激发过程中发射的光为荧光。 在激发停止后还继续发射一定时间的光为磷光。 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:扶手椅型、锯齿型、螺 旋型 15.STM 成像的两种模式是恒电流模式和恒高度模式。 二、简答题:(每题 5 分,总共45 分) 1、简述纳米材料科技的研究方法有哪些? 答:主要有两种技术: Top down(由上而下)的方法和Bottom up(由下而上)的方法(2 分);Top down 由上而下的方法是一种采用物理和化学方法对宏观物质的超细化的纳米科技的研究方法。 Bottom up 由下而上的方法,以原子、分子、团簇等为基元组装具有特定功能的器件、材料。纳米 科技的最终目的是以原子、分子为起点,去制造具有特殊功能的产品。 2、纳米材料的分类? 答:纳米材料通常按照维度进行分类。 超细粒子,团簇→ 0 维材料 纳米线或管→ 1维纳米材料 纳米膜→ 2维纳米材料 纳米块体→ 3维纳米材料 3、纳米颗粒与微细颗粒及原子团簇的区别? 答: 1)尺度上:分别为10-9~10-7m, 10-7~10-5m, <10-9m

纳米材料的制备方法

纳米材料的制备方法 一、前言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。 应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。 二、纳米材料的制备方法 (一)、机械法 机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

相关文档