文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米材料综述

碳纳米材料综述

碳纳米材料综述
碳纳米材料综述

碳纳米材料综述

课程:纳米材料

日期:2015年12月

碳纳米材料综述

摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。

我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。

关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯

1.前言

从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。

碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。

2.常见的碳纳米材料

长期以来,人们只知道碳的同素异形体有三种:金刚石、石墨和无定形碳。自从1985年发现了零维碳纳米材料——富勒烯C60,1991年、1992年又相继发现了一维碳纳米材料碳纳米管和另外一种零维碳纳米材料洋葱碳。自此,碳有了第四种同素异形体,同时也开启了低维碳纳米材料研究的序幕。1999年,韩国科学家制备出了具有纳米级孔道结构的有序介孔碳纳米结构材料。2004年,英国曼彻斯特大学的科学家得到了单层、二维的碳原子晶体——石墨烯,又引起了碳材料研究的另一次热潮。这些新型碳材料的陆续发现在给科学界带来了一个又一个的惊喜的同时,其奇特的结构、良好的物理和化学稳定性、特殊的电子性质、表面性质、吸附特性、限域效应等也引起了科研工作者的广泛关注,并取得了一系列令人振奋的研究成果[3]

2.1零维碳纳米材料

碳纳米材料按其空间维度受纳米尺度的约束程度可以分为三类:零维,一维和二维碳纳米材料。零维碳纳米材料指的是三个维度均在纳米范围的碳材料,富勒烯、洋葱碳、碳包覆纳米金属颗粒以及纳米金刚石等是其中的典型代表。

2.1.1富勒烯(fullerene)

富勒烯C60是1985年英国波谱学家Kroto以及美国的Curl和Smally在研究石墨气化产物时发现的稳定的碳原子簇分子。结构研究表明,C60是一个由12个五元环和20个六元环组成的外形酷似足球的32面体,其直径大约为0.7nm。富勒烯的制备方法主要有:石墨激光气化法、石墨电弧放电法、太阳能加热石墨法、石墨高频电炉加热蒸发法、苯火焰燃烧法、有机合成法等,目前主要还是通过石墨电弧法来获得富勒烯[4]。

C60一经发现,化学家们就开始探索它们应用于催化剂的可能性。目前,富勒烯及其衍生物在催化材料领域的研究主要包括以下三方面:(1)富勒烯直接作为催化剂;(2)富勒烯及其衍生物作为均相催化剂使用;(3)富勒烯及其衍生物在多相催化剂中的应用。

由于富勒烯具有缺电子烯烃的性质,具有一定的亲电性,可以稳定自由基,使之吸附在富勒烯的表面,因此能够促进强化学键的断裂与生成。Hirschon等和Muradov研究了富勒烯在甲烷裂解制高碳烃和氢的反应中的活性和选择性。他们发现与活性炭和炭黑相比,以甲苯抽提含有12 %C60的烟灰具有更高的甲烷转化率和低碳烯烃的选择性,反应温度低于其他碳材料。

2.1.2 洋葱碳和碳包覆金属纳米颗粒

1992年Ugarte等用高强度电子束对碳棒长时间照射,发现了多层相套的巴基球,结构像洋葱,也被称为洋葱碳(onion-like carbon)。截至目前,制备洋葱碳的方法只有电子束辐照法、直流电弧法、催化热解法以及等离子体法等少数几种。

碳包覆纳米金属颗粒(carbon-encapsulated metalnanoparticles ,CEMNPs)是一种新型的零维纳米碳-金属复合材料。其结构特征是:有序排列的石墨片层紧密环绕中心金属纳米颗粒,形成类洋葱结构。由于碳壳的限域和保护作用,可以将金属粒子禁锢在很小的空间内,并使包覆其中的金属纳米粒子免受外界环境的影响而稳定存在。这种新型的零维碳-金属纳米材料具有奇特的光电磁性质,在医疗、磁记录材料、电磁屏蔽材料、锂电池电极材料和催化材料等领域具有十分广泛的应用前景。其制备方法主要有电弧放电法、化学气相沉积法、热解法和液相浸渍法等。Hu 等报道了一种磁可分的Pt催化剂的制备方法。通过非破坏性的自由基加成法将碳包覆镍颗粒表面修饰上大量的羧基,经过Pt盐的浸渍-还原后得到高

度分散的磁可分催化剂(图1)[3]。在硝基苯加氢制苯胺的反应中,该催化剂经过多次循环其活性和选择性没有发现明显变化。

图1 Pt/Ni(C)催化剂的高分辨投射电镜照片及其能量散射X射线光谱图

2.2 一维碳纳米材料

一维碳纳米材料指的是空间上两个维度均在纳米范围的新型碳材料,碳纳米纤维和碳纳米管是其中的典型代表。一维碳材料的历史很悠久,早在1860年,英国人Swan将细长的绳状纸片碳化制取碳丝,并以此作为电灯的灯丝。然而1910年Colidge发明了以寿命更长的钨丝代替碳丝的电灯,从此,碳丝的研究销声匿迹,无人问津。直到20世纪50年代,随着航天科技的飞速发展,急需新型结构材料和耐烧蚀材料,碳纤维重新出现在新材料的舞台上。而一维碳纳米材料真正引起人们广泛关注却是因为20世纪90年代碳纳米管的发现。碳纳米管在很大程度上丰富了碳材料的研究内容,引发了跨世纪的材料革命。由碳纳米纤维和碳纳米管为载体制备的催化剂可以改善多相催化反应的催化性能[5]。

2.2.1 碳纳米纤维(CNFs)

碳纳米纤维主要通过小分子催化裂解制备,如气相生长碳纤维(VGCFs)。生产VGCFs 的主要碳源是苯、甲烷等小分子有机化合物,催化剂主要采用金属铁、钴、镍等以及它们的合金或化合物。反应在还原性气氛下进行,反应温度为1000—1100℃。制备方法有基板法和流动法两类:前者是将催化剂直接负载于基板表面,后者是催化剂和原料气同时进入反应器。根据纳米碳纤维的石墨片层与纤维的轴向所成角度可以将纳米碳纤维分成三类,即管状(平行的)、鲱鱼骨状(成一定角度的)和片层状(垂直的)。碳纤维由于具有优异的力学性质、良好的导热性和导电性、卓越的热和化学稳定性以及特殊的表面性能,使其在新能源以及多相催化领域具有十分广泛的应用前景。

2.2.2 碳纳米管(CNTs)

碳纳米管是1991年日本NEC公司的电镜专家饭岛博士在氩气氛下电弧放电后的阴极碳棒上发现的管状结构的碳原子簇,直径约几纳米,长约几微米。CNTs 是继富勒烯之后碳材料领域的又一项重大发现,并随之引起了科学界的广泛关注。碳纳米管也是一种典型的富勒烯,根据构成碳纳米管石墨烯的层数不同,碳纳米管可以分成单壁碳纳米管和多壁碳纳米管。从结构上讲,碳纳米管可以看作由单层或多层石墨烯沿着一定的方向卷曲而成的无缝管,是一种具有纳米级孔道结构的一维碳纳米结构。碳纳米管的制备方法很多,主要有电弧放电法、激光烧蚀法、

等离子体法、化学气相沉积法、固相热解法和气体燃烧法以及聚合反应合成法等。到目前为止,碳纳米管主要通过催化裂解和电弧放电法来制备。经过几十年的研究,碳纳米管的研究已经进入了一个新的发展时期,碳纳米管的各种生产方式已经被开发;化学改性、功能化、填充和掺杂已经实现;碳纳米管的单独控制、分离和表征已经成为可能。

2.3 二维碳纳米材料

自富勒烯、纳米碳纤维和碳纳米管发现以来,人们对纳米碳材料的关注热点主要集中于零维和一维纳米碳材料,而二维纳米碳材料的研究较少。二维纳米碳材料是指在空间范围仅有一维处于纳米尺度范围内的碳纳米材料,例如:具有层状结构的石墨烯、碳纳米片(带)、碳纳米薄膜、碳纳米墙等。其中,石墨烯和碳纳米墙是最具有代表性的二维纳米碳材料[3]。

2.3.1 二维石墨烯(graphene)

石墨烯是指由碳原子六角形网格形成的单层二维片层,是一种典型的二维碳纳米材料。它既可以卷曲形成零维的富勒烯和一维的碳纳米管,又可以堆砌成三维的石墨。石墨烯长期以来都被认为是一种不稳定、不可能以游离状态存在的,只是在理论上存在的学术研究材料。直到2004年,英国曼彻斯特大学的Geim 领导的课题组采取微机械撕裂(micro-mechanical cleavage)方法制备出了二维单层石墨烯材料。之后随着石墨烯一系列独特的光、电、磁、热性质的陆续发现,将碳材料的研究又推向一个全新的领域,被称为是碳材料研究的又一次淘金运动。石墨烯的制备方法研究尚处于初级阶段,除了上述的微机械撕裂法外,到目前为止最有希望的是氧化石墨还原法。石墨经过氧化插层解离后,可以在碳层上形成羟基和羧基等含氧官能团,经过化学还原就可以得到分散在水中的二维石墨烯材料。

由于石墨材料具有极特殊的电子性质、表面性质、吸附性质、导电导热性质以及高的化学和热稳定性,使其成为一种非常具有潜力的催化剂和催化剂载体材料。另外,由于氧化石墨具有丰富的表面官能团,可以方便地进行化学修饰,得到具有不同亲疏水性质的碳材料,而分散在不同极性的溶剂中;还可以接枝具有催化功能的基团。另外,由于氧化石墨制备的石墨烯尺度范围在微米级,可以看作是一种特殊的高分子材料,可以分散在溶液中得到均匀溶液。担载了催化功能团后,可以方便地过滤分离,可望成为一种方便回收的类均相催化剂。

2.3.2 碳纳米墙(carbon nanowall)

早在1992年,Ebbesen和Ajayan等在用电弧放电法制备碳纳米管时,发现伴随着纳米管有少量石墨纳米片状物质生成。由于其产率很低,常作为制备碳纳米管的副产物,并未引起研究者的注意。2002年,Wu等利用微波等离子体增强化学气相沉积(MPECVD)法在不同基体上得到了碳纳米片相互支撑而形成的垂直于基体生长的二维纳米墙结构。除了上述的MPECVD方法,二维碳纳米墙还可以通过热丝化学气相沉积(HFCVD)和射频等离子体化学气相沉积(RFPECVD)方法来制备。这些制备方法除了提供能量的方式不同外,其气相沉积过程基本相同。碳纳米墙除了具有特殊的形貌外还具有非常大的表面积,适于作为催化剂载体使用,特别是燃料电池电催化剂载体。Quan等在热丝化学气相沉积制备的碳纳米墙上以异丙醇钛为钛源,化学气相沉积法制备出了一种二维TiO2 carbon nanowall复合材料。SEM结果表明,二氧化钛是均匀地涂覆在整个碳纳米墙的表面(图2)。拉曼光谱及X射线衍射分析表明,二氧化钛涂层是锐钛型。材料不对称电流-电

压曲线显示,二氧化钛和碳纳米墙之间形成异质结结构。表面光电压和电流测量结果表明,由于这种结构的存在,减少了光生电子和空穴的复合。紫外光照射下的光催化降解苯酚的实验表明,TiO2 carbon nanowall 比担载于碳管上的TiO2 有更高的光催化活性。

与一维的碳纳米管和纳米纤维的制备方法相比,碳纳米墙的制备一般不需要催化剂,因此也没有除去残存催化剂的麻烦,有可能是一种更合适的催化剂载体材料。另外,碳纳米墙一般是生长在一定的载体上,因此预计其在规整催化剂载体(structured catalyst supports)方面具有一定的研究价值。

图2 (a)生长于钛片上的纳米墙和(b)沉积了TiO2的碳纳米墙的扫描电镜照片

2.4碳纳米孔材料

由于表面效应、量子尺寸效应以及量子隧道效应的存在,使得金属纳米粒子的表面性质和电子结构都与体相的金属有巨大的区别,从而也导致其催化性质发生了很大的变化。将金属催化剂担载于多孔材料中,不仅可以提高金属催化剂的分散性,提高金属的利用率,而且由于孔材料的限域作用还可以提高催化剂的热稳定性和抗烧结性能。另外,孔材料特殊的表面性质、几何构型和空间限域作用对金属催化剂的分散、反应物的扩散、中间物种的形成都具有决定性的影响,继而可以影响催化剂的寿命、催化反应的活性和选择性等。近年来,随着介孔碳、碳纳米突以及碳纳米笼等一系列新型的具有纳米级孔道(洞)结构的碳材料相继发现,将碳材料的研究推向了一个新领域。这些新型碳材料由于具有密度小、强度大、高的导电和导热性、高的比表面积、丰富的表面官能团、耐高温、抗化学腐蚀等一系列优异的特性,在场发射材料、储氢材料、超级电容器材料、吸波材料以及催化剂载体等方面显示出巨大的应用潜力,引起了全世界科学家的广泛关注。

传统制备介孔碳的方法有:催化活化法、化学(物理)活化法、气凝胶碳化法和混合聚合物碳化法等。然而这些方法制备的介孔碳材料的孔径分布较宽;近10年,才制备出真正具有均匀的纳米级孔径和规整结构的介孔碳材料。1999年,韩国的Ryoo等首先利用有序的介孔硅材料(MCM-48)为模板,采取nanocasting 技术,使用糖类、聚糠醇和酚醛树脂等为碳化前驱体,经过填充-碳化-除模板等步骤,制备出了具有与介孔硅模板结构反相的有序介孔碳材料。随后,采用nanocasting技术,以其他结构的介孔材料或单分散的硅球组装形成的光子晶体为模板,相继制备出大量具有不同结构的介孔碳材料。最近,Dai等,Nishiyama 等和赵东元等采用软化学的方法,通过碳化成碳聚合物与成孔聚合物形成有序的超分子自组装结构,成功制备出了有序介孔碳材料,这种方法成功地解决了介孔碳材料制备过程复杂、成本高等缺点,为介孔碳的实际应用铺就了一条平坦之路。由于介孔碳材料具有规整的孔道结构、大的比表面积、独特的表面性质、良好的机械和热稳定性以及良好的导电导热性质,因此问世不久便引起了催化工作者的广泛兴趣。

3 结论及展望

碳材料具有丰富多彩的形态和结构,每种形态和结构的碳材料都具有自身独特的性质。近年来,新型碳材料特别是碳纳米材料和纳米孔材料的相继发现不仅极大丰富了碳材料家族,而且这些新型碳纳米材料凭借其奇特的结构、良好的物理和化学稳定性、特殊电子性质、表面性质、吸附特性、限域效应以及对金属催化剂的分散性能等特点使其在多种研究领域都具有十分诱人的应用前景。碳纳米材料和纳米孔材料作为催化剂或催化剂载体在选择加氢、氧化脱氢、加氢脱卤(脱硫、脱氮)、F-T 合成、烃(醇)的裂解、C —C偶联反应以及燃料电池等诸多反应中都具有很好的催化性能。其中燃料电池的电催化剂研究无疑对推动新型碳纳米材料的研究起到了重要的作用,也是迄今碳纳米材料在多相催化研究领域最成功的实例之一[3]。

综上所述,碳纳米材料一直是纳米科学技术研究中的热点,并已取得了重要的研究进展,由于其具有独特的结构及优异的物理化学性能,使其在锂离子电池材料、光电材料、催化剂载体、化学及生物传感器、储氢材料及超级电容器材料等方面都备受关注。碳纳米材料的研究和应用领域的关键之一是实现材料的大规模、高质量制备。对于石墨烯而言,机械剥离法因受产量的限制而很难实现大量制备,而通过氧化方法制备分散性较好的碳纳米材料会使得其电子结构及晶体的完整性受到破坏,使其物理化学性质受到影响,并限制了其在电化学及器件方面的应用。

参考文献

[1]严东生,冯端.我国纳米材料研究进展[ J] .中国科学院院刊,1997,(5):364 -366.

[2]承倩怡,周鼎,韩宝航.碳纳米材料的超分子表面修饰及应用[J].高等学校化学

学报,2011,32(9):2062-2063.

[3]王春雷,马丁,包信和.碳纳米材料及其在多相催化中的应用[J].化学进展,2009,

21(9):1705-1719

[4] 沈曾民.新型碳材料.北京:化学工业出版社,2003,225-231

[5] 贺福.碳纤维及其应用技术.北京:化学工业出版,2004.1-8

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532 班级:高材 1313

潜在的碳纳米管场效应晶体管的模拟电路 介绍 在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪 里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。 这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFET) 已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[, 因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用 于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。 CNFETS础知识 场效应管的结构和MOSFE样的CNFETs 在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到 栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。 另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFE样的CNFE■之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳

碳纳米管

碳纳米管简介 潘春旭 =================================== 武汉大学 物理科学与技术学院 地址:430072湖北省 武汉市 武昌区 珞珈山 电话:027-8768-2093(H);8721-4880(O) 传真:027-8765-4569 E-Mail: cxpan@https://www.docsj.com/doc/3f12269246.html,;cxpan@https://www.docsj.com/doc/3f12269246.html, 个人网页:https://www.docsj.com/doc/3f12269246.html,/cxpan =================================== 1. 什么是碳纳米管? 1991年日本NEC公司的饭岛纯雄(Sumio Iijima)首次利用电子显微镜观察到中空的碳纤维,直径一般在几纳米到几十个纳米之间,长度为数微米,甚至毫米,称为“碳纳米管”。理论分析和实验观察认为它是一种由六角网状的石墨烯片卷成的具有螺旋周期管状结构。正是由于饭岛的发现才真正引发了碳纳米管研究的热潮和近十年来碳纳米管科学和技术的飞速发展。 按照石墨烯片的层数,可分为: 1) 单壁碳纳米管(Single-walled nanotubes, SWNTs):由一层石墨烯片组成。单壁管典型的直 径和长度分别为0.75~3nm和1~50μm。又称富勒管(Fullerenes tubes)。 2) 多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。 其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典 型直径和长度分别为2~30nm和0.1~50μm。 多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相 比,单壁管是由单层圆柱型石墨层构成, 其直径大小的分布范围小,缺陷少,具有 更高的均匀一致性。无论是多壁管还是单 壁管都具有很高的长径比,一般为100~ 1000,最高可达1000~10000,完全可以 认为是一维分子图1 碳纳米管原子排列结构示意图 2. 碳纳米管的独特性质 1) 力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级。它是最强的纤维,在强度与重量之比方面,这种纤维是最理想的。如果用碳纳米管做成绳索,是迄今唯一可从月球挂到地球表面而不会被自身重量拉折的绳索,如果用它做成地球——月球载人电梯,人们来往月球和地球献方便了。用这种轻而柔软、结实的材料做防弹背心那就更加理想了。 除此以外,它的高弹性和弯曲刚性估计可以由超过兆兆帕的杨氏模量的热振幅测量证实。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa;对于多层壁,理论计算太复杂,难于给出一确定的值。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

纳米材料的自组装综述

纳米材料的自组装综述 专业:高分子材料与工程 摘要: 自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体。 关键词: 自组装; 纳米技术; 材料;超分子材料 1 引言 纳米科学与技术是一门在0. 1~100 nm 尺度空间研究电子、原子和分子运动规律和特性的高技术学科。它以现代先进科学技术为基础,是现代科学(混沌物理、量子物理、介观物理、分子生物学) 和现代技术(计算机技术、微电子技术、扫描隧道显微技术、核分析技术) 相结合的产物。它的最终目标是人类按照自己的意志直接操纵单个原子,制造具有特定功能的产品。纳米技术作为21 世纪新的推动力,将对经济发展、国家安全、人民生活、以至于人们的思维产生深远的影响[1 ] 。 自组装是在无人为干涉条件下,组元自发地组织成一定形状与结构的过程[2 ] 。自组装纳米结构的形成过程、表征及性质测试,吸引了众多化学家、物理学家与材料科学家的兴趣,已经成为目前一个非常活跃并正飞速发展的研究领域[3 ] 。它一般是利用非共价作用将组元(如分子、纳米晶体等) 组织起来,这些非共价作用包括氢键、范德华力、静电力等[1 ,4 ] 。通过选择合适的化学反应条件,有序的纳米

结构材料能够通过简单地自组装过程而形成,也就是说,这种结构能够在没有外界干涉的状态下,通过它们自身的组装而产生。因此,自组装是制备纳米结构的几种为数不多的方法之一[2 ] ,它已成为纳米科技一个重要的核心理论和技术。纳米材料因其尺寸上的微观性,从而表现出特殊的光、电、磁及界面特性。这些特性使得纳米材料广泛应用于各种领域:涂料 [5 ]、催化剂[6-7] 、电化学[8] 、光化学[ 9]及材料科学[10-12 ](如光电子器件)。 2 自组装单层膜 分子与生物分子膜正在被广泛应用到许多研究领域。自组装单层膜就是其中的一个研究重点。它是分子通过化学键相互作用,自发吸附在固/ 液或固/ 气界面,形成热力学稳定和能量最低的有序膜。在适当的条件下,自组装单层膜可以通过不同类型的分子和衬底来制备,常用的衬底有Au (111) 、Pt(111) 、Ag 、Al 、Si 、云母、玻璃等。 目前,研究最多的自组装单层膜可以分为三种类型[13 ] :由脂肪酸自组装的单层膜; 由有机硅及其衍生物自组装的单层膜;烷烃硫醇在金表面自组装的单层膜。它们的原理很简单,一个烷烃长链分子 (带有10~20 个亚甲基单元) ,其头部基团吸附到所用的衬底上,如硫醇(S —H) 头部基团和Au (111) 衬底已被证明可以进行完美的结合,它代表了一种控制表面性质的模式。硫醇分子在溶液中很容易吸附到金衬底上,形成一密集的单层,尾部基团从表面伸向外部,通过应用带有不同尾基的硫醇分子,化学样品的表面功能可以在很大范围内进行调节。自组装单层膜有着广泛的应用,如电子传输的研究、生物

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

纳米材料的概述

“纳米材料”—开启微观世界之门 1.纳米材料及纳米技术 纳米技术界定为:在1nm~100nm尺度空间内研究电子、原子和分子运动规律和特性,通过直接操纵原子、分子或原子团和分子团使其形成所需要的物质的新技术。 纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。2.纳米材料的发展 人类对物质的认识分为两个层次:一个是宏观,另一个是微观。人们对宏观物质的研究已经很深人,研究的历史也较悠久。对于微观物质的研究,到20世纪60年代出现了团簇科学,成为凝聚态物理研究的热点。在团簇物理研究中,人们在团簇和亚微米体系之间又发现了一个十分令人注目的新体系,即纳米体系。这个体系通常研究的范畴为1~100nm,其中典型的代表是纳米粒子。由于纳米粒子的尺寸小、比表面积大和量子尺寸效应使其具有不同于常规固体的新特性,而成为材料科学、物理学和化学等学科的前沿焦点。 1959年著名的美国物理学家理查德?费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲,预言说:“我不怀疑,如果我们对物质微小规模上的排列加以某种控制的话,我们就能使物质得到大量的可能的特性。”虽然没有使用“纳米”这个词,但他实际上介绍了纳米技术的基本概念。1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。 1981年格尔德?宾宁(Gerd Binnig)和海因里希?罗雷尔Heinrich Rohrer 发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。 1984年Gleiter 首次采用气体冷凝的方法,成功地制备了Fe纳米粉。随后,美国、西德和日本先后研制成纳米级粉体及块体材料。 1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特?富勒(R. Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使

碳纳米材料简介

碳纳米材料简介 第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切 生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%碳元素是元素周期表中IV A族中最轻的元素。它存在三种同位素:12C、13C、14c。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯( fullerenes ),一维的碳纳米管(carb on nano tubes ),二维的石墨烯(graphe ne),三维的金冈寸石(diam ond) 和石墨(graphite )等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子一一C6。。这一发现使得他们赢得了1996年的诺贝尔化学奖。G。由60个原子组成,包含20个六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备出来。G。的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多

优良的物理和化学性质(表1-1 ) 表 60的一些基本物理和化学性质 碳纳米管(carbon nano tubes )是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nano tubes ,MWNTs其直径从几百皮米到几十纳米, 而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引 起了科学界的广泛兴趣。1991年日本的Iijima 在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993 年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图 1-1 )。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管 被称为锯齿形(zigzag )单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形 (armchair )单壁碳纳米管;其他的均被称为手性(chiral )碳纳米管。单壁碳纳米管 的直径可以通过两个指数算出来。

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

碳纳米材料简介

碳纳米材料简介

第一章碳纳米材料简介 碳元素 碳在元素周期表中排第六位,是自然界分布非常广泛的元素,也是目前最重要、最使人着迷的元素之一。尽管它在地壳中含量仅为0.027%,但是对一切生物体而言,它是最重要且含量最多的元素,人体中碳元素约占总质量的18%。 碳元素是元素周期表中ⅣA族中最轻的元素。它存在三种同位素:12C、13C、14C。 碳单质有多重同素异形体,他是迄今为止人类发现的唯一一种可以从零围到三维都稳定存在的物质。如零维的富勒烯(fullerenes),一维的碳纳米管(carbon nanotubes),二维的石墨烯(graphene),三维的金刚石(diamond)和石墨(graphite)等。 碳纳米材料 富勒烯 富勒烯是指完全由碳原子组成的具有空心球状或管状结构的分子。1985年, 。这一Kroto,Smalley和Curl在美国莱斯大学发现了第一个富勒烯分子——C 60 发现使得他们赢得了1996年的诺贝尔化学奖。C 由60个原子组成,包含20个 60 六元环和12个五元环。这些环平面堆积在一起的方式和足球的表面结构一样,因此也也被称为足球烯。从那以后,不同分子质量和尺寸的富勒烯纷纷被制备的发现和研究开启了对碳元素和碳纳米材料广泛、深入研究的新时代,出来。C 60 对纳米材料科学和技术的发展起到了极大的推动作用。 由于其独特的结构,富勒烯同时具有芳香化合物和缺电子烯烃的性质,表现出很多优良的物理和化学性质(表1-1) 表1-1 C 的一些基本物理和化学性质 60

碳纳米管 碳纳米管(carbon nanotubes)是由碳原子形成的管状结构分子,包括单壁碳纳米管(single-walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi-walled carbon nanotubes,MWNTs)。其直径从几百皮米到几十纳米,而长径比可以上万。碳纳米管是前最重要的一维纳米材料之一。 虽然对碳纳米管发现的确切时间存在争议,但公认碳纳米管从1991年才引起了科学界的广泛兴趣。1991年日本的Iijima在研究富勒烯的制备过程中由于电弧产物中发现了多壁碳纳米管,并利用透射电镜证实了它的存在。随后在1993年,他又发现了单壁碳纳米管,与此同时,Bethune等也独立观察到了单壁碳纳米管。 单壁碳纳米管可看成是由一层石墨烯沿一定角度卷曲而成的管状结构(图1-1)。根据卷曲角度的不同,可以形成具有不同手性和直径的碳纳米管,因此常用两个整数(n,m)表征单壁碳纳米管的结构。当m=0时,该类单壁碳纳米管被称为锯齿形(zigzag)单壁碳纳米管;当n=m时,该类单壁碳纳米管被称为扶手椅形(armchair)单壁碳纳米管;其他的均被称为手性(chiral)碳纳米管。单壁碳纳米管的直径可以通过两个指数算出来。 图1-1 单壁碳纳米管结构示意图 由于其特殊的结构,碳纳米管具有许多优良的性质。从电学性质来看,碳纳米管可分为金属型(metallic,带隙为零)和半导体型(semiconducting,带隙可达2eV)。单壁碳纳米管的一些重要性质如表1-2。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料综述 论文

纳米材料综述 1 引言 纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。 1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。 2 纳米材料特性 一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 2.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。 2.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质: 1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

相关文档