文档视界 最新最全的文档下载
当前位置:文档视界 › 专题七下第2讲几何证明选讲、不等式选讲

专题七下第2讲几何证明选讲、不等式选讲

专题七下第2讲几何证明选讲、不等式选讲
专题七下第2讲几何证明选讲、不等式选讲

第2讲几何证明选讲、不等式选讲

高考定位高考对本内容的考查主要有:(1)三角形及相似三角形的判定与性质;

(2)圆的相交弦定理,切割线定理;(3)圆内接四边形的性质与判定;(4)相交弦定理.本内容考查属B级要求;(5)含绝对值的不等式解法、不等式证明的基本方法、利用不等式性质求最值以及几个重要不等式的应用,属B级要求.

真题感悟

1.(2017·江苏卷)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.

求证:(1)∠P AC=∠CAB;

(2)AC2=AP·AB.

证明(1)因为PC是圆O的切线,所以∠PCA=∠CBA,

又AP⊥PC,所以∠P AC+∠PCA=90°,

因为AB为半圆O的直径,

所以∠CAB+∠CBA=90°,

所以∠P AC=∠CAB.

(2)由(1)可得△P AC∽△CAB,所以AP

AC=AC AB,

所以AC2=AP·AB.

2.(2016·江苏卷)如图,在△ABC中,∠ABC=90°,BD⊥AC,D 为垂足,E是BC的中点,求证:∠EDC=∠ABD.

证明由BD⊥AC.可得∠BDC=90°,

由E为BC中点,可得DE=CE=1

2BC,

则∠EDC=∠C,由∠BDC=90°,得∠C+∠DBC=90°,又∠ABC=90°,则∠ABD+∠DBC=90°,

∴∠ABD=∠C,

又∵∠EDC =∠C ,∴∠EDC =∠ABD .

3.(2017·江苏卷)已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac +bd ≤8. 证明 由柯西不等式可得(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 即(ac +bd )2≤4×16=64,故ac +bd ≤8.

4.(2016·江苏卷)设a >0,||x -1<a 3,|y -2|<a 3,求证:|2x +y -4|<a . 证明 由a >0,|x -1|<a 3可得|2x -2|<2a 3, 又|y -2|<a

3,

∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a

3=a . 则|2x +y -4|<a 成立.

考 点 整 合

1.相似三角形的判定定理

判定定理1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.

判定定理2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.

判定定理3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似. 2.(1)圆内接四边形的性质定理: ①圆的内接四边形的对角互补;

②圆内接四边形的外角等于它的内角的对角.

(2)圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.

3.(1)圆的切线的性质定理:圆的切线垂直于经过切点的半径.

(2)圆的切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. (3)弦切角定理:弦切角等于它所夹的弧所对的圆周角.

(4)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. (5)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

4.含有绝对值的不等式的解法 (1)|f (x )|>a (a >0)?f (x )>a 或f (x )<-a ; (2)|f (x )|0)?-a

(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 5.柯西不等式

(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)若a i ,b i (i ∈N

*

)为实数,则(∑n

i =1a 2i )????∑n i =1b 2i ≥(∑n

i =1

a i

b i )2,当且仅当b i =0(i =1,2,…,

n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.

(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.

6.证明不等式的传统方法有比较法、综合法、分析法.另外还有拆项法、添项法、换元法、放缩法、反证法、判别式法、数形结合法等.

热点一 三角形相似的判定及应用

[命题角度1] 利用弦切角定理证明三角形相似

【例1-1】 如图,已知圆上的弧AC ︵=BD ︵

,过C 点的圆的切线与BA 的延长线交于E 点. 证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ·CD .

证明 (1)因为AC ︵=BD ︵

,所以∠ABC =∠BCD . 又因为EC 与圆相切于点C ,故∠ACE =∠ABC , 所以∠ACE =∠BCD .

(2)因为∠ECB =∠CDB ,∠EBC =∠BCD , 所以△BDC ∽△ECB ,故BC BE =CD

BC ,即BC 2=BE ·CD .

探究提高 在证明角或线段相等时,证三角形相似是首选的解题思路,如果涉及弦切角,则需考虑弦切角定理.

[命题角度2]利用圆周角、圆心角定理证明三角形相似

【例1-2】如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径,过点C作圆O的切线交BA的延长线于点F.

(1)求证:AC·BC=AD·AE;

(2)若AF=2,CF=22,求AE的长.

(1)证明连接BE,由题意知△ABE为直角三角形.

因为∠ABE=∠ADC=90°,∠AEB=∠ACB,

所以△ABE∽△ADC,

所以AB

AD=AE AC,

即AB·AC=AD·AE.

又AB=BC,所以AC·BC=AD·AE.

(2)解因为FC是圆O的切线,所以FC2=F A·FB,

又AF=2,CF=22,所以BF=4,AB=BF-AF=2,因为∠ACF=∠FBC,又∠CFB=∠AFC,

所以△AFC∽△CFB.

所以AF

FC=AC

BC,得AC=

AF·BC

CF=2,在△ABC中,

cos∠ACD=BC2+AC2-AB2

2BC·AC=

4+2-4

2×2×2

2

4,

∴sin∠ACD=14

4=sin∠AEB,

∴AE=

AB

sin ∠AEB

414

7.

探究提高在证明线段的乘积相等时,通常用三角形相似或圆的切割线定理.同时,要注意等量的代换.

【训练1】(2014·江苏卷)如图,AB是圆O的直径,C,D是圆O上位于AB异

侧的两点.

证明:∠OCB=∠D.

证明因为B,C是圆O上的两点,

所以OB=OC.

故∠OCB=∠B.

又因为C,D是圆O上位于AB异侧的两点,

故∠B,∠D为同弧所对的两个圆周角,所以∠B=∠D.

因此∠OCB=∠D.

热点二四点共圆的判定及性质

[命题角度1]四点共圆的判定

【例2-1】(2017·南师附中等四校联考)如图,A,B,C是圆O上不共线的三点,OD⊥AB于点D,BC和AC分别交DO的延长线于点P和点Q,求证:∠OBP=∠CQP.

证明连接OA,因为OD⊥AB,OA=OB,

所以∠BOD=∠AOD=1

2∠AOB.

又∠ACB=1

2∠AOB,

所以∠ACB=∠DOB.

又∠BOP=180°-∠DOB,∠QCP=180°-∠ACB,所以∠BOP=∠QCP.

所以B,O,C,Q四点共圆.

所以∠OBP=∠CQP.

探究提高 (1)如果四点与一定点距离相等,那么这四点共圆;(2)如果四边形的一组对角互补,那么这个四边形的四个顶点共圆;(3)如果四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆. [命题角度2] 四点共圆的性质

【例2-2】 (2016·全国Ⅲ卷)如图,⊙O 中AB ︵

的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.

(1)若∠PFB =2∠PCD ,求∠PCD 的大小;

(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD . (1)解 连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .

因为AP ︵=BP ︵

,所以∠PBA =∠PCB ,又∠BPD =∠BCD , 所以∠BFD =∠PCD .

又∠PFB +∠BFD =180°,∠PFB =2∠PCD , 所以3∠PCD =180°,因此∠PCD =60°.

(2)证明 因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上. 又O 也在CD 的垂直平分线上,因此OG ⊥CD .

探究提高 利用四点共圆的性质可解决角的相等,或结合切割线定理解决线段成比例问题.

【训练2】 (2016·全国Ⅱ卷)如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .

(1)证明:B ,C ,G ,F 四点共圆;

(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.

(1)证明 因为DF ⊥EC ,则∠EFD =∠DFC =90°, 易得∠DEF =∠CDF ,

所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB , DF CF =DE CD =DG CB ,

所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF . 因此∠CGF +∠CBF =180°, 所以B ,C ,G ,F 四点共圆.

(2)解 由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .连接GB . 由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,

故Rt △BCG ≌Rt △BFG .因此,四边形BCGF 的面积S 是△GCB 的面积S △GCB 的2倍, 即S =2S △GCB =2×12×12×1=

12. 热点三 绝对值不等式

[命题角度1] 绝对值不等式的解法 【例3-1】 已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;

(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.

(1)当a =-3时,f (x )=???-2x +5,x ≤2,

1,2

当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2

当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1,或x ≥4}. (2)f (x )≤|x -4|?|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ?4-x -(2-x )≥|x +a |?-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2, 即-3≤a ≤0.

故满足条件的a 的取值范围是[-3,0].

探究提高 (1)用零点分段法解绝对值不等式的步骤:

①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.

[命题角度2] 含有绝对值不等式的恒成立、存在性问题 【例3-2】 (2017·全国Ⅲ卷)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;

(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.

(1)f (x )=|x +1|-|x -2|=???-3,x ≤-1,

2x -1,-1

由f (x )≥1可得

①当x ≤-1时显然不满足题意; ②当-1

③当x ≥2时,f (x )=3≥1恒成立,∴x ≥2. 综上知f (x )≥1的解集为{x |x ≥1}.

(2)不等式f (x )≥x 2-x +m 等价于f (x )-x 2+x ≥m , 令g (x )=f (x )-x 2+x ,

则g (x )≥m 解集非空只需要[g (x )]max ≥m .

由(1)知g (x )=???-x 2+x -3,x ≤-1,

-x 2

+3x -1,-1

①当x ≤-1时,[g (x )]max =g (-1)=-3-1-1=-5; ②当-1

[g (x )]max =g ? ????32=-? ????322

+3·32-1=

54; ③当x ≥2时,[g (x )]max =g (2)=-22+2+3=1.

综上,[g (x )]max =54,故m ≤5

4. 所以实数m 的取值范围是? ?

?

??-∞,54.

探究提高 解答含有绝对值不等式的恒成立、存在性问题时,通常将其转化为分段函数,再求分段函数的最值,从而求出所求参数的值. 【训练3】 (2016·全国Ⅲ卷)已知函数f (x )=|2x -a |+a . (1)当a =2时,求不等式f (x )≤6的解集;

(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解 (1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.

(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a , 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞). 热点四 不等式的证明

【例4】 (2014·江苏卷)已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . 证明 因为x >0,y >0,

所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33

x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33

x 2y =9xy .

探究提高 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.

【训练4】 (2013·江苏卷)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b . 证明 2a 3-b 3-(2ab 2-a 2b ) =2a (a 2-b 2)+b (a 2-b 2) =(a 2-b 2)(2a +b ) =(a -b )(a +b )(2a +b ). 因为a ≥b >0,

所以a -b ≥0,a +b >0,2a +b >0, 从而(a -b )(a +b )(2a +b )≥0, 即2a 3-b 3≥2ab 2-a 2b . 热点五 柯西不等式

【例5】 已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.

解 (1)由|x +a |<b ,得-b -a <x <b -a , 则???-b -a =2,b -a =4,解得???a =-3,b =1. (2)-3t +12+t

=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4,当且仅当

4-t 3

=t

1, 即t =1时等号成立,故(-3t +12+t )max =4.

探究提高 根据柯西不等式的结构特征,利用柯西不等式对有关不等式进行证明,证明时,需要对不等式变形,使之与柯西不等式有相似的结构,从而应用柯西不等式.

【训练5】 (2017·全国Ⅱ卷)已知实数a >0,b >0,且a 3+b 3=2. 证明:(1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.

证明 (1)∵a >0,b >0且a 3+b 3=2. 由柯西不等式,得

(a +b )(a 5+b 5)≥(a ·a 5+b ·b 5)2=(a 3+b 3)2=4. 当且仅当ab 5=ba 5,即a =b =1时等号成立. 因此(a +b )(a 5+b 5)≥4.

(2)∵a 3+b 3=2,∴(a +b )(a 2-ab +b 2)=2, 即(a +b )[(a +b )2-3ab ]=2.

所以(a +b )3-2=3ab (a +b ), 又ab ≤? ??

??a +b 22=(a +b )2

4,

∴(a +b )3

-2≤34(a +b )3

,则14(a +b )3≤2.

从而a +b ≤2当且仅当a =b =1时等号成立.

1.(2015·江苏卷)如图,在△ABC 中,AB =AC ,△ABC 的外接圆⊙O 的弦AE 交BC 于点D .求证:△ABD ∽△AEB . 证明 因为AB =AC , 所以∠ABD =∠C . 又因为∠C =∠E , 所以∠ABD =∠E , 又∠BAE 为公共角, 可知△ABD ∽△AEB .

2.(2013·江苏卷)如图,AB 和BC 分别与圆O 相切于点D ,C ,AC 经过圆心O ,且BC =2OC .求证:AC =2AD .

证明 连接OD .因为AB 和BC 分别与圆O 相切于点D ,C , 所以∠ADO =∠ACB =90°. 又因为∠A =∠A , 所以Rt △ADO ∽Rt △ACB . 所以BC OD =AC AD . 又BC =2OC =2OD , 故AC =2AD .

3.(2012·江苏卷)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连接BD 并延长至点C ,使BD =DC ,连接AC ,AE ,DE .

求证:∠E =∠C .

证明 连接OD ,因为BD =DC ,O 为AB 的中点,所以OD ∥AC ,于是∠ODB =∠C .因为OB =OD ,所以∠ODB =∠B ,于是∠B =∠C .

因为点A ,E ,B ,D 都在圆O 上,且D ,E 为圆O 上位于AB 异侧的两点,所以∠E 和∠B 为同弧所对的圆周角, 故∠E =∠B .所以∠E =∠C .

4.(2017·全国Ⅰ卷)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解 (1)当a =1时,f (x )=-x 2+x +4,g (x )

=|x +1|+|x -1|=???2x ,x >1,2,-1≤x ≤1,-2x ,x <-1.

①当x >1时,f (x )≥g (x )?-x 2+x +4≥2x , 解之得1

17-12.

②当-1≤x ≤1时,f (x )≥g (x )?(x -2)(x +1)≤0, 则-1≤x ≤1.

③当x <-1时,f (x )≥g (x )?x 2-3x -4≤0, 解得-1≤x ≤4,

又x <-1,∴不等式此时的解集为空集.

综上所述,f (x )≥g (x )的解集为?

???

??

????

x |-1≤x ≤

17-12. (2)依题意得:-x 2+ax +4≥2在[-1,1]上恒成立. 则x 2-ax -2≤0在[-1,1]上恒成立.

则只需???12-a ·

1-2≤0,(-1)2

-a (-1)-2≤0,解之得-1≤a ≤1. 故a 取值范围是[-1,1].

5.(2015·江苏卷)解不等式 x +|2x +3|≥2. 解 原不等式可化为?????x <-32,-x -3≥2或?????x ≥-32,

3x +3≥2. 解得x ≤-5或x ≥-1

3.

综上,原不等式的解集是??????x ?

??x ≤-5或x ≥-13. 6.(2017·苏、锡、常、镇调研)已知a ,b ,c 为正实数,求证:b 2a +c 2b +a 2

c ≥a +b +c .

证明 法一 ∵a ,b ,c 都为正实数, ∴a +b 2a ≥2b ,b +c 2b ≥2c ,c +a 2

c ≥2a ,

当且仅当a =b 2a ,b =c 2b ,c =a 2

c , 即a =b =c 时取等号.

∴a +b 2a +b +c 2b +c +a 2

c ≥2a +2b +2c , ∴b 2a +c 2b +a 2

c ≥a +b +c .

法二 ∵a ,b ,c 都为正实数,∴由柯西不等式有

(a +b +c )? ????

b 2a +

c 2b +a 2c ≥(b +c +a )2,

当且仅当b a =c b =a

c ,即a =b =c 时取等号. ∴b 2a +c 2b +a 2

c

≥a +b +c .

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新人教A版选修45

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新 人教A 版选修45 [整合·网络构建] [警示·易错提醒] 1.比较法的一个易错点. 忽略讨论导致错误,当作差所得的结果“正负不明”时,应注意分类讨论. 2.分析法和综合法的易错点. 对证明方法不理解导致证明错误,在不等式的证明过程中,常因对分析法与综合法的证明思想不理解而导致错误. 3.反证法与放缩法的注意点. (1)反证法中对结论否定不全. (2)应用放缩法时放缩不恰当. 专题一 比较法证明不等式 比较法是证明不等式的最基本、最重要的方法,主要有作差比较法和作商比较法,含根号时常采用比平方差或立方差.基本步骤是作差(商)—变形—判断—结论,关键是变形,变形的目的是判号(与1的大小关系),变形的方法主要有配方法、因式分解法等. [例?] 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx ). 证明:因为b +c a x 2+c +a b y 2+a +b c z 2-2(xy +yz +zx )= ? ????b a x 2+a b y 2-2xy +? ?? ??c b y 2+b c z 2-2yz +

? ????a c z 2+c a x 2-2zx =? ????b a x -a b y 2+ ? ????c b y -b c z 2+? ?? ??a c z -c a x 2≥0, 所以b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx )成立. 归纳升华 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法. [变式训练] 已知a ,b ∈R ,求证:a 2+b 2 +1≥ab +a +b . 证明:法一 因为a 2+b 2-ab -a -b +1=12 [(a -b )2+(a -1)2+(b -1)2]≥0, 所以a 2+b 2+1≥ab +a +b . 法二 a 2+b 2-ab -a -b +1=a 2-(b +1)a +b 2-b +1, 对于a 的二次三项式, Δ=(b +1)2-4(b 2-b +1)=-3(b -1)2≤0, 所以a 2-(b +1)a +b 2 -b +1≥0, 故a 2+b 2+1≥ab +a +b . 专题二 综合法证明不等式 综合法证明不等式的思维方式是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立. 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误. [例2] 设a ,b ,c 均为正数,且a +b +c =1,求证: a 2b +b 2c +c 2 a ≥1. 证明:因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2 a +a ≥2c , 故a 2b +b 2c +c 2 a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2 a ≥a +b +c . 所以a 2b +b 2c +c 2 a ≥1. 归纳升华

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

基本不等式的证明

重要不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.

二、推导公式 1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ①把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b 都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab;

高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课后练习 新人教A版选修4-5

2016-2017学年高中数学 第2讲 证明不等式的基本方法 1 比较法、 综合法与分析法课后练习 新人教A 版选修4-5 一、选择题 1.设02x =4x >2x , ∴只需比较1+x 与1 1-x 的大小. ∵1+x -11-x =1-x 2-11-x =-x 2 1-x <0, ∴1+x <1 1-x . 答案: C 2.已知a ,b ,c ,d ∈{正实数}且a b

答案:A

3.已知a >2,x ∈R ,P =a +1a -2,Q =? ????12x 2-2,则P ,Q 的大小关系为( ) A .P ≥Q B .P >Q C .P 2,∴a -2>0, P =a +1a -2=a -2+1a -2 +2≥2+2=4. 又Q =? ????12x 2-2≤? ?? ??12-2=4.∴P ≥Q . 答案: A 4.已知a ,b ∈R ,则“a +b >2,ab >1”是“a >1,b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: ∵a >1,b >1?a +b >2,ab >1 a + b >2,ab >1?/ a >1,b >1 举例说明a =3,b =12 . 答案: B 二、填空题 5.设a >b >0,x =a +b -a ,y =a -a -b ,则x ,y 的大小关系是x ________y . 解析: ∵a >b >0, ∴x -y =a +b -a -(a -a -b ) =b a +b +a -b a +a -b = b a -b -a +b a +b +a a +a -b <0. 答案: < 6.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若∠C =90°,则a +b c 的取值范围是________. 解析: 由题意知c 2=a 2+b 2≥2ab , 即ab c 2≤12 .

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

(通用版)201X版高考数学一轮复习 不等式选讲 2 第2讲 不等式的证明教案 理

第2讲 不等式的证明 1.基本不等式 定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则 a +b 2 ≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a 、b 、c 为正数,则 a + b +c 3 ≥3 abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向. 对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2, 所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3. 若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1 b 2≥8. 证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0, 所以1 a 2+1 b 2= (a +b )2 a 2 + (a +b )2 b 2 =1+2b a + b 2a 2+1+2a b +a 2b 2=2+? ????2b a +2a b +? ?? ?? b 2a 2+a 2 b 2≥2+

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

人教版高数选修4-5第2讲:证明不等式的基本方法(教师版)

证明不等式的基本方法 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点: 掌握比较法、综合法和分析法、反证法和放缩法的方法; 教学难点: 理解放缩法的解题及应用。 1、比较法:所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 2、分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。 3、综合法:从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。 4、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反正法.用反证法证明不等式时,必须将命题结论的反面的各种情形一一导出矛盾这里作一简单介绍。 反证法证明一个命题的思路及步骤: 1) 假定命题的结论不成立; 2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; 3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4) 肯定原来命题的结论是正确的。 5.放缩法:放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明.放缩法的目的性强,必须恰到好处, 同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及.否则不能达到目的。 类型一: 比较法、分析法和综合法去证明不等式 例1. 求证:x 2 + 3 > 3x 解析:∵(x 2 + 3) - 3x = 04 3 )23(3)23()23 (32222>+ -=+-+-x x x ∴x 2 + 3 > 3x 答案:见解析 练习1. 已知a , b , m 都是正数,并且a < b ,求证: b a m b m a >++

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

第二讲 证明不等式的基本方法 复习课 学案(含答案)

第二讲证明不等式的基本方法复习课学案 (含答案) 第二讲第二讲证明不等式的基本方法证明不等式的基本方法复习课复习课学习目标 1.系统梳理证明不等式的基本方法. 2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法. 3.进一步熟练掌握不同方法的解题步骤及规范1比较法作差比较法是证明不等式的基本方法,其依据是不等式的意义及实数大小比较的充要条件证明的步骤大致是作差恒等变形判断结果的符号2综合法综合法证明不等式的依据是已知的不等式以及逻辑推理的基本理论证明时要注意的是作为依据和出发点的几个重要不等式已知或已证成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当时,取等号”的理由要理解掌握3分析法分析法证明不等式的依据也是不等式的基本性质.已知的重要不等式和逻辑推理的基本理论分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件执果索因,最后得到的充分条件是已知或已证的不等式一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加

以证明,所以分析法和综合法可结合使用4反证法反证法是一种“正难则反”的方法,反证法适用的范围直接证明困难;需要分成很多类进行讨论;“唯一性”“存在性”的命题;结论中含有“至少”“至多”否定性词语的命题5放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有舍掉或加进一些项;在分式中放大或缩小分子或分母;用基本不等式放缩.类型一比较法证明不等式例1若x,y,zR,a0,b0,c0.求证bcax2caby2abcz22xyyzzx证明 bcax2caby2abcz22xyyzzxbax2aby22xycby2bcz22yzacz2cax22zxba xaby2cbybcz2aczcax20,bcax2caby2abcz22xyyzzx成立反思与感悟作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法跟踪训练1设a,b为实数,0n1,0m1,mn1,求证a2mb2nab 2.证明 a2mb2nab2na2mb2mnnma22abb2mnna21mmb21n2mnabmnn2a2m2b22mna bmnnamb2mn0,a2mb2nab 2.类型二 综合法与分析法证明不等式例2已知a,b,cR,且 abbcca1,求证1abc3;2abcbaccab3abc证明1要证abc3,由于a,b,cR,因此只需证abc23,即证a2b2c22abbcca3,根据条

相关文档 最新文档