b>cB.b>c>aC?b>a>cD.a>c>b解析:由a2+c2>^ic^2bc>2iic^b>a" />
文档视界 最新最全的文档下载
当前位置:文档视界 › 第二十九讲不等式的证明

第二十九讲不等式的证明

第二十九讲不等式的证明
第二十九讲不等式的证明

D.以上均有可能

名师作业?练全能

第二十九讲不等式的证明

yfh

解析:因为饭 >远的否定是\[b,即競=饭或競V 饭.

答案:D

4.已知心b 、c. d 都是正实数,且彳<]贝lj ()

班级 姓名 考号 日期 得分 括号内?) 1. ", 6 c 为互不相等的正数,且以+心=2加,则下列关系中可能成立的是() A ? a>b>c B.b>c>a C ? b>a>c D.a>c>b 解析:由 a 2+c 2>^ic^2bc>2iic^b>a 9 可排除 A 、D,令 a=29 c=l,可得 Z?=|,

可知C 可能成立.

答案:c 2.若实数x, y, z 满足戏+尸+以=1,则小+*+旷的取值范围是() A. [-1J] c. [-1, |] D ?[-g |]

解析:弓三+匕搭=/+尸+?2=1, 又 T 2 (xy +yz+zx)=(x+y+z)2—(x 2+y 2+z 2

) 0 —1 = —1, ???xy+yz+bM -g 故选择 B. 答案:B 3?用反证法证明“如果a >b. 那么茁〉饭”,假设内容应是()

輪祐+ 曲一 be 瞬协:

5 b+d~b (b+dy // c

又T"、by c> 〃都是正实数,且牙V 》

答案:B

6. 若不等式/+?+4豪0对一切皿(0.1]恒成立,则“的取值范围为()

A. [0, +8)

B ?[—4, +8)

C ?[一5, +8)

D ?[-4,4]

解析:原不等式可转化为 心一匕宁=一6+£)在区间(0,1]上恒成立.即将问题转化为

H+4

求函数.心)=一一在区间(0川上的最大值问题.

*.*函数yu )=—(x+g )在(o, i ]上为增函数,

???.几1)岸位=/(1)=一5,??.“2—5,故选C.

答案:C

点评:本题考查了不等式恒成立问题的转化与处理及分离变量法解不等式参数问题.若 用通法求函数不等式一边的最值,不仅需要分类讨论,而且解题过程中出现的可能性错误也 非常多,因而审題时也要注意解题方案与策略的选择.

二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

7. 设“=2—逅,b=£_2, c=5-2逅,则“,b, c 之间的大小关系是 ____________________ . 解析:"VO, b>0, c>0,

i=W_2=屛,。=5_2审

1+ 5

.ud —bc ?/?(/?+

"+e c ud —bc

又 ^h+d~d =(b+d)cl <()9

?"+c ,c ?:屁V 》 故选A ?

答案:A 5.设 Q 0, b>0,且 “+bW4,则有(

) A ?詔 B ?++抽

解析: 因为 a±h 丁

2右,所以夕+扣 a +b Ml ?应选B ?

?.?逅>羊,2>1,??.训+2>1+彳西>0,

■ . 1

11 11 <7 ■ 1 7十2 ]+訴 答案:c>b>a

8. ____________________________________________________ 若 a 、b 、c>0t 贝lj a+b~c 9 a~b+ct h+c —a 中至少有 ____________________________________ 个为正值.

解析:假设 u+b_c, "―b+c, h-i-c —a 中有一个为正,不妨令"+〃一eWO, "―b+cWO, b+e —">0.

???“WO,与">0矛盾,假设不成立.

答案:2

9. 设 m>\, P =i \[ni —y/m — 1 ? Q=pm + l —y[^,则 P 与 Q 大小关系为 __________ 答案:P>Q

10. (2019.潍坊模拟)给出下列四个命题:

② 若a>b>0,则"一扌;

③ 若(i>b>0,则吕g >号;

2

④ 若a>0. /?>0,且2n+b=l ?贝£ +万的最小值为9?

其中正确命题的序号是 ______ ?(把你认为正确命题的序号都填上)

解析:①中由a>b>Q t 可得十<|,故①错误:

② 中由a>b>09可得+ <£,

~ >_+,??‘_? >b_舟,故②正确:

③ 中由 /?>0, /.tr>Z?2>0, a 2

+2xib >/?24-2ab f 即 u(u+2b) >b(b + 2a),即彳 > 2a±b

u+2b

④ 中,解法一:由 0, b>09 且 2

"a 卞b sin'G 十cos?&

即 h

①若a>b>0.

1- l-b±2a a + 2b 9

=4csc2&+sec2&=4+4cot2&+1 +tan 2^

=54- 4cot 2^+tan 2^ 25+2-\/4cot 2^ tan 2^=9

2 1 +牙的最小值为9,故④正确.

解法二:! +1弋+如“)

=4+半 + 空 +3 + 2、唇=9 b a b ci

2 1 故7 +牙的最小值为9,故④正确.

答案:②④

三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步 证明:证法一:(放缩法)

对任意圧N :都有:

I 2 2 ___

矿时<#+洁 T 偌尸),

???1+下+击+…+±<2+2(返- 1)+2(羽-曲+…+2(&-扳—)=2如 证法二:(构造法) 设加)=2&一 (1+击+*+???+制 ^+1)-^) = 2(^/1+1-^)-^==^=[2 伙

+1) - 2^ 心+1) -1]=玄吕[伙+1)

-2y/k (k+l )+k]

=(^^)2>0,?如1)冰).

因此,对任意 /?GN\ 都有 -1 )>—>/( 1)= 1>0,

???1+下+请+7养2五

12. 设心k c, d 是正数,求证:下列三个不等式

a+h

(a +b)(c+d) < ah+cd?

(a+b)cd< ab(c+d)@

中至少有一个不正确.

,那么对任意都有:

11?证明不等式1 GN 4).

证明:本题显然应该用反证法,假设不等式①.②、③都成立.因为⑴b9 c9〃都是正数,所以式①与式②相乘,得:

(a+防 V ah+c(K§)

由式③得(a+b)cc/V"b(c+c/)日一—]'(c+d)

T "+b > 0, /. 4cd V (a+b)(c+d), 结合式②得4cdVab+cd, /. 3cd

4 ?

由式④得(a + b)?V亍〃儿即a2+h2<—^ab9矛盾.

???不等式①、②、③中至少有一个不正确.

13.设a>0, b>0, “+b=l,

(1)求证:ab+舟 N4# :

(2)探索猜想,并将结果填在以下括号内:

舟I >( );咼'+為鼻( );

(3)由⑴(2)归纳出更一般的结论,并加以证明.

17肪+4豪00(4"— 1 )(

因此(4ab — 1 )(ah—4)0 成立,故“b+舟 .

证法二:肪+汾="+金 +趕,

S卄既22寸哥气

当且仅当肋=歹± ,即書=4, a=b=+时取等号. 故“b+寺詣 +苧=47 (当且仅当a=h=\ Bf,等号成立).

解析:(1)证法一:

???趕券

当且仅当a=b=舟时取等号.

当且仅当ab=* ,即a=b=*时取等号.

证法二:令ab=t 9由(1)知Ov/w£

1 vo<^|, y r =nf 4

…广詩严?

茁单调减

.

(2)猜想:当“=b=*时,

不等式"“2 +踪>( )与“呻+舟j >( )取等号,故在括号内分别填16召与 ⑶由此得到更一般性的结论:

42,

,-1 证法_:『胪=

42n - 1 ~4^~ X4,f

4助一 1 2 , 4川一1 ,1 护+"4^ =甲+乔,

/. 1 =a~^b^ 2y[ab 9

???y <0, ???〉=,++在

(0, 1 ???+工4?

2~49 22 1

?42” ?『夕

?“=广+召在(0,》单调减,

???>‘24"+£,

即如+舟詩4"+£

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新人教A版选修45

高中数学第二讲证明不等式的基本方法复习课练习(含解析)新 人教A 版选修45 [整合·网络构建] [警示·易错提醒] 1.比较法的一个易错点. 忽略讨论导致错误,当作差所得的结果“正负不明”时,应注意分类讨论. 2.分析法和综合法的易错点. 对证明方法不理解导致证明错误,在不等式的证明过程中,常因对分析法与综合法的证明思想不理解而导致错误. 3.反证法与放缩法的注意点. (1)反证法中对结论否定不全. (2)应用放缩法时放缩不恰当. 专题一 比较法证明不等式 比较法是证明不等式的最基本、最重要的方法,主要有作差比较法和作商比较法,含根号时常采用比平方差或立方差.基本步骤是作差(商)—变形—判断—结论,关键是变形,变形的目的是判号(与1的大小关系),变形的方法主要有配方法、因式分解法等. [例?] 若x ,y ,z ∈R ,a >0,b >0,c >0.求证:b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx ). 证明:因为b +c a x 2+c +a b y 2+a +b c z 2-2(xy +yz +zx )= ? ????b a x 2+a b y 2-2xy +? ?? ??c b y 2+b c z 2-2yz +

? ????a c z 2+c a x 2-2zx =? ????b a x -a b y 2+ ? ????c b y -b c z 2+? ?? ??a c z -c a x 2≥0, 所以b +c a x 2+c +a b y 2+a +b c z 2≥2(xy +yz +zx )成立. 归纳升华 作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法. [变式训练] 已知a ,b ∈R ,求证:a 2+b 2 +1≥ab +a +b . 证明:法一 因为a 2+b 2-ab -a -b +1=12 [(a -b )2+(a -1)2+(b -1)2]≥0, 所以a 2+b 2+1≥ab +a +b . 法二 a 2+b 2-ab -a -b +1=a 2-(b +1)a +b 2-b +1, 对于a 的二次三项式, Δ=(b +1)2-4(b 2-b +1)=-3(b -1)2≤0, 所以a 2-(b +1)a +b 2 -b +1≥0, 故a 2+b 2+1≥ab +a +b . 专题二 综合法证明不等式 综合法证明不等式的思维方式是“顺推”,即由已知的不等式出发,逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立. 证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误. [例2] 设a ,b ,c 均为正数,且a +b +c =1,求证: a 2b +b 2c +c 2 a ≥1. 证明:因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2 a +a ≥2c , 故a 2b +b 2c +c 2 a +(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2 a ≥a +b +c . 所以a 2b +b 2c +c 2 a ≥1. 归纳升华

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

几个范数不等式的证明

设X为一n维赋范空间,其范数定义为, 1≤p<∞,证明以下命题: 1. ||x||2≤||x||1≤; 2. ||x||p≤||x||1; 3. ||x||q≤||x||p≤,p|≤||x||2||y||2,令x=( |x1|, |x2|,..., |x n|),y=(1,1, (1) 可得(|x1|+|x2|+…+|x n|)≤(|x1|+| x2|+…+|x n|)1/2n1/2 ||x||1≤成立。 根据Jensen不等式,令α=2,β=1可以证明。 2. 令f(x)= p=1,f(x)=1,所以只考虑p>1的情况

从上图可以看出f(x)在x=0时为1,先上升,在x=1达到最大值2p-1,然后下降,但始终≥1。所以有,即,令x=b/a,有a p+b p≤(a+b)p,同理,使用归纳法可 证明:|x1|p+|x2|p+…+|x n|p≤(|x1|+|x2|+…+|x n|)p②(|x1|p+|x2|p+…+|x n|p)1/p≤|x1|+|x2|+…+|x n| 也即||x||p≤||x||1成立。 3. 先证||x||q≤||x||p (pp)可以证明。 据说可以根据赫尔德不等式证明,但实在想不到方法证。如果你能想到,不妨发封邮件给我:james05y@https://www.docsj.com/doc/d017800736.html, 参考文献 1. 邢家省, 郭秀兰, 崔玉英. 几个幂次不等式的应用[J]. 河南科学, 2008, 26(11):1306-1309. 2. 柯西—施瓦茨不等式. https://www.docsj.com/doc/d017800736.html,/view/979424.htm. 3. Jensen不等式. https://www.docsj.com/doc/d017800736.html,/view/1427148.htm.

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

基本不等式的证明

重要不等式及其应用教案 教学目的 (1)使学生掌握基本不等式a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)和a3+b3+c3≥3abc(a、b、c∈R+,当且仅当a=b=c时取“=”号)及其推论,并能应用它们证明一些不等式. (2)通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 教学过程 一、引入新课 师:上节课我们学过证明不等式的哪一种方法?它的理论依据是什么? 生:求差比较法,即 师:由于不等式复杂多样,仅有比较法是不够的.我们还需要学习一些有关不等式的定理及证明不等式的方法. 如果a、b∈R,那么(a-b)2属于什么数集?为什么? 生:当a≠b时,(a-b)2>0,当a=b时,(a-b)2=0,所以(a-b)2≥0.即(a-b)2∈ R+∪{0}. 师:下面我们根据(a-b)2∈R+∪{0}这一性质,来推导一些重要的不等式,同时学习一些证明不等式的方法.

二、推导公式 1.奠基 师:如果a、b∈R,那么有 (a-b)2≥0. ①把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,它是一个很重要的绝对不等式,对任何两实数a、b 都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 师:充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 师:公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab;

高中数学 第2讲 证明不等式的基本方法 1 比较法、综合法与分析法课后练习 新人教A版选修4-5

2016-2017学年高中数学 第2讲 证明不等式的基本方法 1 比较法、 综合法与分析法课后练习 新人教A 版选修4-5 一、选择题 1.设02x =4x >2x , ∴只需比较1+x 与1 1-x 的大小. ∵1+x -11-x =1-x 2-11-x =-x 2 1-x <0, ∴1+x <1 1-x . 答案: C 2.已知a ,b ,c ,d ∈{正实数}且a b

答案:A

3.已知a >2,x ∈R ,P =a +1a -2,Q =? ????12x 2-2,则P ,Q 的大小关系为( ) A .P ≥Q B .P >Q C .P 2,∴a -2>0, P =a +1a -2=a -2+1a -2 +2≥2+2=4. 又Q =? ????12x 2-2≤? ?? ??12-2=4.∴P ≥Q . 答案: A 4.已知a ,b ∈R ,则“a +b >2,ab >1”是“a >1,b >1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析: ∵a >1,b >1?a +b >2,ab >1 a + b >2,ab >1?/ a >1,b >1 举例说明a =3,b =12 . 答案: B 二、填空题 5.设a >b >0,x =a +b -a ,y =a -a -b ,则x ,y 的大小关系是x ________y . 解析: ∵a >b >0, ∴x -y =a +b -a -(a -a -b ) =b a +b +a -b a +a -b = b a -b -a +b a +b +a a +a -b <0. 答案: < 6.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,若∠C =90°,则a +b c 的取值范围是________. 解析: 由题意知c 2=a 2+b 2≥2ab , 即ab c 2≤12 .

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.docsj.com/doc/d017800736.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.docsj.com/doc/d017800736.html,) 原文地址: https://www.docsj.com/doc/d017800736.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

(通用版)201X版高考数学一轮复习 不等式选讲 2 第2讲 不等式的证明教案 理

第2讲 不等式的证明 1.基本不等式 定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则 a +b 2 ≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a 、b 、c 为正数,则 a + b +c 3 ≥3 abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则 a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 2.不等式的证明方法 证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 3.数学归纳法证明不等式的关键 使用数学归纳法证明与自然数有关的不等式,关键是由n =k 时不等式成立推证n =k +1时不等式成立,此步的证明要具有目标意识,要注意与最终达到的解题目标进行分析、比较,以便确定解题方向. 对于任意的x 、y ∈R ,求证|x -1|+|x |+|y -1|+|y +1|≥3. 证明:根据绝对值的几何意义,可知|x -1|+|x |≥1, |y -1|+|y +1|≥2, 所以|x -1|+|x |+|y -1|+|y +1|≥1+2=3. 若a ,b ∈(0,+∞)且a +b =1,求证:1a 2+1 b 2≥8. 证明:因为a +b =1, 所以a 2+2ab +b 2=1. 因为a >0,b >0, 所以1 a 2+1 b 2= (a +b )2 a 2 + (a +b )2 b 2 =1+2b a + b 2a 2+1+2a b +a 2b 2=2+? ????2b a +2a b +? ?? ?? b 2a 2+a 2 b 2≥2+

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

人教版高数选修4-5第2讲:证明不等式的基本方法(教师版)

证明不等式的基本方法 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点: 掌握比较法、综合法和分析法、反证法和放缩法的方法; 教学难点: 理解放缩法的解题及应用。 1、比较法:所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 2、分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。 3、综合法:从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。 4、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反正法.用反证法证明不等式时,必须将命题结论的反面的各种情形一一导出矛盾这里作一简单介绍。 反证法证明一个命题的思路及步骤: 1) 假定命题的结论不成立; 2) 进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾; 3) 由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的; 4) 肯定原来命题的结论是正确的。 5.放缩法:放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明.放缩法的目的性强,必须恰到好处, 同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及.否则不能达到目的。 类型一: 比较法、分析法和综合法去证明不等式 例1. 求证:x 2 + 3 > 3x 解析:∵(x 2 + 3) - 3x = 04 3 )23(3)23()23 (32222>+ -=+-+-x x x ∴x 2 + 3 > 3x 答案:见解析 练习1. 已知a , b , m 都是正数,并且a < b ,求证: b a m b m a >++

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

第二讲 证明不等式的基本方法 复习课 学案(含答案)

第二讲证明不等式的基本方法复习课学案 (含答案) 第二讲第二讲证明不等式的基本方法证明不等式的基本方法复习课复习课学习目标 1.系统梳理证明不等式的基本方法. 2.进一步体会不同方法所适合的不同类型的问题,针对不同类型的问题,合理选用不同的方法. 3.进一步熟练掌握不同方法的解题步骤及规范1比较法作差比较法是证明不等式的基本方法,其依据是不等式的意义及实数大小比较的充要条件证明的步骤大致是作差恒等变形判断结果的符号2综合法综合法证明不等式的依据是已知的不等式以及逻辑推理的基本理论证明时要注意的是作为依据和出发点的几个重要不等式已知或已证成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当时,取等号”的理由要理解掌握3分析法分析法证明不等式的依据也是不等式的基本性质.已知的重要不等式和逻辑推理的基本理论分析法证明不等式的思维方向是“逆推”,即从待证的不等式出发,逐步寻找使它成立的充分条件执果索因,最后得到的充分条件是已知或已证的不等式一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加

以证明,所以分析法和综合法可结合使用4反证法反证法是一种“正难则反”的方法,反证法适用的范围直接证明困难;需要分成很多类进行讨论;“唯一性”“存在性”的命题;结论中含有“至少”“至多”否定性词语的命题5放缩法放缩法就是将不等式的一边放大或缩小,寻找一个中间量,常用的放缩技巧有舍掉或加进一些项;在分式中放大或缩小分子或分母;用基本不等式放缩.类型一比较法证明不等式例1若x,y,zR,a0,b0,c0.求证bcax2caby2abcz22xyyzzx证明 bcax2caby2abcz22xyyzzxbax2aby22xycby2bcz22yzacz2cax22zxba xaby2cbybcz2aczcax20,bcax2caby2abcz22xyyzzx成立反思与感悟作差法证明不等式的关键是变形,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法跟踪训练1设a,b为实数,0n1,0m1,mn1,求证a2mb2nab 2.证明 a2mb2nab2na2mb2mnnma22abb2mnna21mmb21n2mnabmnn2a2m2b22mna bmnnamb2mn0,a2mb2nab 2.类型二 综合法与分析法证明不等式例2已知a,b,cR,且 abbcca1,求证1abc3;2abcbaccab3abc证明1要证abc3,由于a,b,cR,因此只需证abc23,即证a2b2c22abbcca3,根据条

相关文档 最新文档