文档视界 最新最全的文档下载
当前位置:文档视界 › 安培力和洛伦兹力的关系

安培力和洛伦兹力的关系

安培力和洛伦兹力的关系
安培力和洛伦兹力的关系

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。

(a )求导线中的电流I ;

(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。

(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。

(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)

24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有:neSv t t neSv t q I =??=??=

(b )每个自由电子所受的洛仑兹力:F 洛=evB

设导体中共有N 个自由电子:N =n ·Sl

导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB

由安培力公式,有:F 安=BlI =Bl ·neSv

得:F 安= F

(2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv

如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:t nSv N ?=6

1 Δt 时间内粒子给器壁的冲量为:t nSmv l N I ?=?=23

1 面积为S 的器壁受到粒子压力为:t

I F ?= 器壁单位面积所受粒子压力为:231nmv S F f == 安培力与洛仑兹力的关系

杨兴国

运动电荷在磁场中受到洛仑兹力,通电导线在磁场中受到安培力,导线中的电流是由大量自由电子的定向移动形成的,安培力与洛仑兹力之间必定存在密切的关系,可以认为安培力是洛仑兹力的宏观表现,洛仑兹力是安培力的微观实质,但不能认为安培力是导线上自由电子所受洛仑兹力的合力,也不能认为安培力是通过自由电子与导线的晶格骨架碰撞产生的.

图中,通电导线置于静止的磁场之中,导线通有电流I ,长为d l 的导线元,所受的安培力为I d l ×B . 从微观的角度看,导线中的自由电子以速度v 向右运动,在洛仑兹力f =-ev ×B 的作用下,以圆周运动的方式向导线下方侧向偏移,使导线下侧出现负电荷的积累;在导线中产生侧向的霍耳电场,霍耳电场对自由电子有作用力,阻碍自由电子作侧向运动.经过一段时间后,自由电子受到的洛仑兹力与霍耳电场力N 平衡,自由电子只沿导线方向作定向运动,此时,-eE +(-ev ×B )=0,霍耳电场的场强

t

导线内有带负电的自由电子和带正电的晶格,均匀导线内部的电荷体密度为零,自由电子所带电量与晶格骨架所带电量等量异号,若单位体积内自由电子的个数为n,导线的横截面积为S,则在导线元d l中,自由电子电量为- enS d l,晶格骨架所带的电量为

在讨论安培力时,可以认为品格均匀分布,排列有序.霍耳电场在导线元d l内也是均匀的,在导线元d l通有电流I时,晶格骨架所受的力为

将(3.1 3.5)、(3.1 3.6)两式代入,有

考虑到自由电子的定向运动与电流元的关系

可将(3.1 3.7)式改写为df= Idl×B,即为(3.1 3.3)式.

如果通电导线在静磁场运动,运动速度为u(图3. 13 -3).在导线中的自由电子,相对于参考系的速度为u+v,受洛仑兹力-e (u+ v)×B,同样令在导线中产生霍耳电场.当霍耳电场的场强为E= -(u+v)×B时,自由电子没有侧向偏移,仍沿导线方向作定向运动,

通电导线运动时,晶格骨架随之运动,也受到洛仑兹力,晶格骨架受到的力为

通过上面的论述可以看出:无论磁场中的通电导线是否运动,导线中作定向运动的自由电子均在洛仑兹力的作用下,使导线表面的电荷分布发生变化,在导线内产生霍耳电场,平衡时,自由电子在侧向受到的合力为零,仍沿导线方向作定向运动,没有偏向偏移,不会在侧向与晶格碰撞产生安培力.带正电的晶格所受合力不为零,导线的晶格骨架所受到各力的合力即为安培力.

5.2洛仑兹力与安培力的关系

赵凯华

比较一下洛仑兹力公式(4.41)和安培力公式(4.34),可以看出二者很相似。这里的qv与电流元Idl相当。这并不是偶然的,因为运动电荷就是一个瞬时的电流元。载流导线中包含了大量自由电子,下面我们来证明,导线受的安培力就是作用在各自由电子上洛仑兹力的宏观表现。

如图4-50所示,考虑一段长度为△l的金属导线,它放置在垂直纸面向内的磁场中(在图中用“×’’表示磁感应线方向)。设导线中通有电流I,其方向向上。

从微观的角度看,电流是由导体中的自由电子向下作定向运动形成的。设自由电子的定向运动速度为u,导体单位体积内的自由电子数(叫做自由电子数密度)为n,每个电子所带的电量为-e(e =1.60 ×10-19库仑)。按照定义,电流强度是单位时间内通过导线截面的电量。现在我们看看,在时间间隔△t内通过导线某一截面B的电量有多少。因为在时间△t内每个电子由于定向运动而向下移动了距离u△t.我们可以在截面S之上相距u△t的地方取另一截面S’.在这两个截面之间是一段体积△V=Su△t的柱体(这里心又代表截面的面积).不难看出,凡是处在这个柱体内的电子,在时间间隔△t后都将通过截面S;凡是位于这个柱体之外的电子,在时间间隔△t内都不会通过S.所以在时间间隔△t内通过S的电子数等于这个柱体内的全部电子数,它应是

n△V=nSu△t

而在时间间隔△t内通过S的电量△q应等于上述这个数目再乘以每个电子的电量e(这里只考虑数值,暂不管它的正负),即

子是电流强度

由于这里电子的定向速度u与磁感应强度B垂直,sir 0=1,每个电子由于定向运动受到的洛仑兹力f

为euB

虽然这个力作用在金属内的自由电子上,但是自由电子总是与金属的晶体点阵不断碰撞的,自由电子获得的动量,最终都会传递给金属的晶格骨架。宏观上看起来将是金属导线本身受到这个力。整个长度为

△l 的这段导线的体积为S △l ,共中包含自由电子的总数为nS △l ,每个电子受力f=euB ,所以这段导线最终受到的总力为

根据式(4.43),上面括弧中的量刚好是宏观的电流强度I ,故最后得到力的大小为

这正好与安培力的公式符合。请读者自己验证一下,力的方向也是符合的。

应当指出,导体内的自由电子除定向运动之外,还有无规的热运动。由于热运动速度v 朝各方向的几率相等,在任何一个宏观体积内平均说来,各自由电子热运动速度的矢量和∑v 为0.而洛仑兹力与v 和B 都垂直,由热运动引起的洛仑兹力朝各方向的几率也是相等的。传递给晶格骨架后迭加起来,其宏观效果也等于0.即对于宏观的安培力F 来说,电子的热运动没有贡献,所以在上述初步的讨论中我们可以不考虑它。

梁灿斌328

电流是由电荷的定向运动产生的,因此磁场中的载流导体内的每一定向运动的电荷,都要受到洛伦兹力.由于这些电荷(例如金属导体中的自由电子)受到导体的约束,而将这个力传递给导体,表现为载流导体受到一个磁场力,通常称为安培力,下面我们从运动电荷所受的洛伦兹力导出安培力公式.

图5-45表示一固定不动的电流元,其电流强度为I ,横截面为dS ,长为dl ,设在电流元范围内有相同的磁感应强度B ,则金属载流导体内每一定向运动的电子所受到的洛伦兹力为

v 为电子定向漂移速度,与电流密度矢量j 反向(j=-nev ,n 为导体单位体积的自由电子数),电流元内作定向运动的自由电子数N=-ndSdl ,因而电流元内作定向运动的电子所受的合力为

在电流元的条件下,我们用dl 来表示其中电流密度的方向,并注意到电流强度I =jdS ,于是上式表示为: 式(5.57)为电流元Idl 内定向运动的电子所受到的合磁场力,如前所述,这个力被传递给载流导体,表现为电流元这个载流导体所受到的磁场力.通常称式(5.517)为安培力公式.

式(5.57)由式(5.4)推导而得.但在历史上式(5.57)首先是由实验得出的,因此不少作者将式(5.57)做为基本实验定律.

由式(5-57)原则上可以求得任意形状的电流在磁场中所受的合力,即求积分

l 为在磁场中的导线长度.

如果有兴趣的话,我们来探讨一下金属载流导体(例如金、铜、铝、银、镍等)中,定向运动的电子所受到的洛伦兹力是怎样成为载流导体的安培力的.

现设有如讲述“霍尔效应’’时的图5-44 b 所示的载流导体,以及如图所示的电流I ,所加的外磁场B ,因为载流导体中每一个定向运动的电子,都要受到一个洛伦兹力f L

显然,f L 沿+z 方向,这导至导体的A 侧出现负电荷,而在A ’侧出现正电荷的堆积,结果将在载流导体上下两侧产生一个U AA ,<0的电位差,以及一个沿+z 的横向电场E t .最后,当E t =vB 之后,导体中定向运动的电子所受到的横向电场力与磁场力(洛伦兹力)平衡,这时,载流导体中作定向运动而形成电流的电子的运动状况,与外磁场B 不存在时相同(沿-z 方向运动).与外磁场B 不存在时的区别,在于载流导体内部出现了横向电场E t .

我们来分析一下受力关系.载流导体中定向运动的电子在z 轴方向受到两个力的作用,一为洛伦兹力,B ev f L ?-=,沿+z 方向;一为稳恒电场E t 所给予的电场力f l =-e E t ,沿-z 方向。两者等值反向,使电子不出现z 轴方向的位移.我们知道稳恒电场力遵从牛顿第三定律,因此,该电子将给A ,A’两侧的负、正电荷以一个指向+z 的反作用力.显然这个力的数值和方向正好等于外磁场给予运动电子的洛伦兹力,也就是说,外磁场作用在运动电上的洛伦兹力,通过横向电场的作用,表现为外磁场给予载流导体的安培力. 以上只讨论了磁场中静止的载流导线所受到的安培力.如果载流导体在磁场中运动,问题就会复杂些,一方面,只要导线运动方向不与安培力方向垂直,安培力就要在导线运动时做功,另一方面,安培力是洛伦兹力的宏观表现,而前面讲过洛伦兹力是永不做功的.这似乎是一个矛盾.这个问题将在第六章介绍“动生电动势概念时得到一个满意的回答,我们将看到:当载流导体运动时,安培力只是洛伦兹力的一个分量(而不是全部)的宏观表现.

安培力洛伦兹力重点分析

知识点: 1. 安培力:磁场对电流的作用力。 2. 安培力的方向判断:左手定则,安培力与电流方向、磁场有效方向相互垂直。 3. 安培力的大小:BLI F 。 4. 磁感应强度:通电导线与磁场方向垂直时,通电导线所受的安培力F 与跟电流I 和导线长度L 的乘积IL 的比值。B=F/IL 单位:特(特斯拉)T 。是描述磁场强弱的物理量 5. 匀强磁场:磁场强弱、方向处处相等的磁场。 磁通量:在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直面积为S 的平面,则磁感应强度B 与面积S 的乘积叫做磁通量,简称磁通。Φ=BS 单位:韦(伯) Wb 。 标量,但有正负 一、应用安培力应注意的问题 1、分析受到的安培力时,要善于把立体图,改画成易于分析受力的平面图形 2、注意磁场和电流的方向是否垂直 二、判断通电导线在安培力作用下的运动方向问题 1.画出导线所在处的磁场方向 2.确定电流方向 3.根据左手定则确定受安培力的方向 4.根据受力情况判断运动情况 三、处理导线受到安培力的一般思路 先对导线进行受力分析,画出导线的受力平面图,然后依照F 合=0,F 合=ma , 列出相应的方程 17.(13分)如图所示,两平行光滑的导轨相距l =0.5m ,两导轨的上端通过一阻值为R =0.4Ω的定值电阻连接,导轨平面与水平面夹角为θ=30o,导轨处于磁感应强度为B =1T 、方向垂直于导轨平面向上的匀强磁场中,一长度恰等于导轨间距、质量为m =0.5kg 的金属棒, 由图示位置静止释放,已知金属棒的电阻为r =0.1Ω,导轨电阻不计,g =10m/s 2 。求: (1)求金属棒释放后,所能达到的最大速度v m ; (2)当金属棒速度达v =2m/s 时,其加速度的大小; (3)若已知金属棒达最大速度时,下滑的距离为s =10m ,求金属棒下滑过程中,棒中产生的焦耳热。 1. 磁场对电流有力的作用,而通电导体中的电流是由电荷的定向移动形成的。洛伦兹力是

磁场洛伦兹力基础计算

磁场---洛伦兹力基础计算 1、(12分)下左图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。 2、如图所示,一束电子流以速率v通过一个处于矩形空间的大小为B的匀强磁场,速度方向与磁感线垂直.且平 行于矩形空间的其中一边,矩形空间边长为a与a电子刚好从矩形的相对的两个顶点间通过,求: (1)电子在磁场中的飞行时间? (2)电子的荷质比q/m. 3、如图所示,一个电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时的速度方向与原来入射方向的夹角就是30°,试计算: (1)电子的质量m。(2)电子穿过磁场的时间t。

4、一宽为L的匀强磁场区域,磁感应强度为B,如图所示,一质量为m、电荷量为-q的粒子以某一速度(方向如图所示)射入磁场。若不使粒子从右边界飞出,则其最大速度应为多大?(不计粒子重力) 5、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:(1) 粒子做圆周运动的半径 (2)匀强磁场的磁感应强度B 6、如图所示,在xoy平面内有垂直坐标平面的范围足够大的匀强磁场,磁感强度为B,一带正电荷量Q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求: (1)初速度方向与x轴夹角θ. (2)初速度的大小、

洛伦兹力

洛伦兹力 在这篇文章内,矢量与标量分别用粗体与斜体显示。例如,位置矢量通常用表示;而其大小则用来表示。 不同电荷量的带电粒子,由于磁场(磁场方向从银幕内指出来)的影响,感受到洛伦兹力的作用,所呈现的可能运动轨道。 由于磁场的影响,电子射束的移动路径呈圆形。电子经过的路径会有紫色光发射出来。这是因为电子与玻璃球内的气体分子碰撞而产生的现象。 在电动力学里,洛伦兹力 (Lorentz force) 是运动于电磁场的带电粒子所感受到的作用力。洛伦兹力是因荷兰物理学者亨德里克·洛伦兹而命名。根据洛伦兹力定律,洛伦兹力可以用方程,称为洛伦兹力方程,表达为 ; 其中,是洛伦兹力,是带电粒子的电荷量,是电场,是带电粒子的速度,是磁场。 洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。 感受到电场的作用,正电荷会朝着电场的方向加速;但是感受到磁场的作用,按照右手定则,正电荷会朝着垂直于速度和磁场的方向弯曲(详细地说,假设右手的大拇指与同向,食指与同向,则中指会指向的方向)。 洛伦兹力方程的项目是电场力项目,项目是磁场力项目。处于磁场内的载电导线感受到的磁场力就是这洛伦兹力的磁场力分量。

洛伦兹力方程的积分形式为 。 其中,是积分的体积,是电荷密度,是电流密度,是微小体元素。洛伦兹力密度是单位体积的洛伦兹力,表达为: 。 历史 亨德里克·洛伦兹 1892年,荷兰物理学家亨德里克·洛伦兹提出洛伦兹力的概念。但是,在洛伦兹之前,就已经有发掘出洛伦兹力方程的形式,特别是在詹姆斯·麦克斯韦的1861 年论文《论物理力线》里的公式 (77): 、 、 ;

安培力和洛伦兹力测试题

安培力和洛伦兹力 一、选择题 1.如图所示,长为2L 的直导线拆成边长相等、夹角为60°的V 形,并置于与其所在平 面相垂直的匀强磁场中,磁场的磁感应强度为B ,当在该导线中通以大小为I 的电流时, 该V 形通电导线受到的安培力大小为( ) A .0 B .0.5BIL C .BIL D .2BIL 2.某同学画的表示磁场B 、电流I 和安培力F 的相互关系如图所示,其中正确的是( ) 3.对磁感应强度的定义式IL F B 的理解,下列说法正确的是 ( ) A .磁感应强度B 跟磁场力F 成正比,跟电流强度I 和导线长度L 的乘积成反比 B .公式表明,磁感应强度B 的方向与通电导体的受力F 的方向相同 C .磁感应强度B 是由磁场本身决定的,不随F 、I 及L 的变化而变化 D .如果通电导体在磁场中某处受到的磁场力F 等于0,则该处的磁感应强度也等于0 4.如图所示,矩形导线框abcd 与无限长通电直导线MN 在同一平面内,直导线中的电流方由M 到N ,导线框的ab 边与直导线平行。若直导线中的电流增大,导线框中将产生感应电流,导 线框会受到安培力的作用,则以下关于导线框受到的安培力的判断正确的是( ) A .导线框有两条边所受安培力的方向相同 B .导线框有两条边所受安培力的大小相同 C .导线框所受的安培力的合力向左 D .导线框所受的安培力的合力向右 5.如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a 、b 和c ,各导线中的电流大小相同,其中a 、c 导线中的电流方向垂直纸面向外,b 导线电流方向垂直纸面向内。每根导线都受到另外两根导线对它的安培力作用。关于每根导线所受安培力的合力,以下说法中正确的是( ) A .导线a 所受安培力的合力方向向右 B .导线c 所受安培力的合力方向向右 C .导线c 所受安培力的合力方向向左 D .导线b 所受安培力的合力方向向左 6.如图所示,有一固定在水平地面上的倾角为θ的光滑斜面,有一根水平放在斜面上的导体棒,长为L ,质量为m ,通有垂直纸面向外的电流I 。空间中存在竖直向下的匀强磁场,磁感应强度为B 。现在释放导体棒,设导体棒受到斜面的支持力为N ,则关于导体棒的受力分析一定正 确的是(重力加速度为g ) ( ) A .mgsinθ=BIL B .mgtanθ=BIL C .mgcosθ=N -BILsinθ D .Nsinθ=BIL 7、 如图所示,两根长通电导线M 、N 中通有同方向等大小的电流,一闭合线框abcd 位于两平行通电导线所在平面上,并可自由运动,线框两侧与导线平行且等距,当 线框中通有图示方向电流时,该线框将( ) A .ab 边向里,cd 边向外转动 B .ab 边向外,cd 边向里转动 C .线框向左平动,靠近导线M D .线框向右平动,靠近导线N

探究洛伦兹力的表达式

探究洛伦兹力的表达式 开发区一中胡志凌 新课改最推崇的二字便是“探究”,在教材中也有着很多体现,“探究求合力的方法”“探究加速度与力和质量的关系”……当然由于或限于学生的理解能力、或限于高中学校的实验条件、或限于编写者的顾虑等原因,教材也没有拘泥于一味的要求探究,而是采用了陈述和探究相结合的方式。全国各地的高中教师在自己对相关物理知识的理解基础之上,结合教材演绎出了各具特色的不同知识点的探究方案,所以我也凑凑热闹,谈谈我对探究洛伦兹力的表达式的一点思考。 教材本节的题目是《磁场对运动电荷的作用力》,教材中的处理方法是:用生活实例引入新课,演示阴极射线在磁场中的偏转实验观察结果,比照安培力分析总结洛伦兹力的左手定则,利用电流的微观解释结合安培力的知识推导洛伦兹力的表达式,最后研究显像管的工作原理。基本思路吻合教材经常使用的“提出问题----解决问题----实际应用”的思维方式,文字简明扼要,给教师留下了足够自由发挥的空间。本着锻炼学生思维的目的,我在这儿采用了和教材不一样的处理方法。 【教学过程】 一、引课设计 课前小测:如图所示,当一个带正电的粒子沿虚线水平向右飞过时,不考虑地磁场带来的影响,小磁针会如何运动?为什么? 学生很容易答出小磁针的北极会转向纸外,原因是带电粒子的定向移动形成等效电流,从而产生磁场使得小磁针在磁场作用下转动。 顺接学生回答的余韵提出质疑1:既然运动电荷对磁体(磁场)有力的作用,那么磁场对运动电荷有没有力的作用呢? 二、设计并动手实验,观察现象 提出本节课的目标:本节课我们来研究这个力,需要设计实验来验证这个力是否存在,它的大小和方向如何确定,在日常生活中的应用。 探究活动1:首先我们需要设计一个实验来验证这个力是否存在,请同学们分小组讨论设计自己的实验方案。设计的时候要注意:本实验中使用到的实验仪器大家可能没有见过,同学们可以想出你想要达到的功能,然后向全班同学和老师寻求帮助看有没有相应的仪器。 学生通过讨论很容易发现困难所在: 1、需要有能够产生运动电荷的仪器 2、需要想办法让我们看到运动电荷的轨迹 结果老师介绍了阴极射线管,学生很容易就设计了实验方案,并预测了实验可能看到的现象。 三、探究判断洛伦兹力的方向 实验结果表明运动电荷在磁场中受到力的作用,这个力叫做洛伦兹力。 质疑2:为什么运动电荷在磁场中会受到力的作用,和我们已经学过的知识有什么可以联系的地方? 学生轻松回答出:运动电荷形成等效电流会受到安培力的作用,所以运动电荷受到磁场的作用力。 追问质疑3:究竟是因为电流受到安培力而使运动电荷受到洛伦兹力还是运动电荷受到到洛伦兹力而是电流受到安培力?这两个力在本质上有什么关系? 安培力是洛伦兹力的宏观表现 探究活动2:洛伦兹力的方向如何判断?结合三个问题思考 1、洛伦兹力和安培力的关系 2、不同电荷的运动方向和电流方向的关系 3、安培力方向的判断方法。 由学生总结出正负电荷的左手定则,并用前面观察到的实验结果进行验证。

安培力和洛伦兹力的关系

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。 (1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。 (a )求导线中的电流I ; (b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。 (2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。 (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有:neSv t t neSv t q I =??=??= (b )每个自由电子所受的洛仑兹力:F 洛=evB 设导体中共有N 个自由电子:N =n ·Sl 导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB 由安培力公式,有:F 安=BlI =Bl ·neSv 得:F 安= F (2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv 如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:t nSv N ?=6 1 Δt 时间内粒子给器壁的冲量为:t nSmv l N I ?=?=23 1 面积为S 的器壁受到粒子压力为:t I F ?= 器壁单位面积所受粒子压力为:231nmv S F f == 安培力与洛仑兹力的关系 杨兴国 运动电荷在磁场中受到洛仑兹力,通电导线在磁场中受到安培力,导线中的电流是由大量自由电子的定向移动形成的,安培力与洛仑兹力之间必定存在密切的关系,可以认为安培力是洛仑兹力的宏观表现,洛仑兹力是安培力的微观实质,但不能认为安培力是导线上自由电子所受洛仑兹力的合力,也不能认为安培力是通过自由电子与导线的晶格骨架碰撞产生的. 图中,通电导线置于静止的磁场之中,导线通有电流I ,长为d l 的导线元,所受的安培力为I d l ×B . 从微观的角度看,导线中的自由电子以速度v 向右运动,在洛仑兹力f =-ev ×B 的作用下,以圆周运动的方式向导线下方侧向偏移,使导线下侧出现负电荷的积累;在导线中产生侧向的霍耳电场,霍耳电场对自由电子有作用力,阻碍自由电子作侧向运动.经过一段时间后,自由电子受到的洛仑兹力与霍耳电场力N 平衡,自由电子只沿导线方向作定向运动,此时,-eE +(-ev ×B )=0,霍耳电场的场强 t

磁场---洛伦兹力基础计算

磁场---洛伦兹力基础计算 1、(12分)下左图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。 2、如图所示,一束电子流以速率v通过一个处于矩形空间的大小为B的匀强磁场,速度方向与磁感线垂直.且平行于矩形空间的其中一边,矩形空间边长为a和a电子刚好从矩形的相对的两个顶点间通过,求: (1)电子在磁场中的飞行时间? (2)电子的荷质比q/m. 3、如图所示,一个电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时的速度方向与原来入射方向的夹角是30°,试计算: (1)电子的质量m。(2)电子穿过磁场的时间t。 4、一宽为L的匀强磁场区域,磁感应强度为B,如图所示,一质量为m、电荷量为-q的粒子以某一速度(方向如图所示)射入磁场。若不使粒子从右边界飞出,则其最大速度应为多大?(不计粒子重力) 5、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:(1)粒子做圆周运动的半径 (2)匀强磁场的磁感应强度B

6、如图所示,在xoy平面有垂直坐标平面的围足够大的匀强磁场,磁感强度为B,一带正电荷量Q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求: (1)初速度方向与x轴夹角θ. (2)初速度的大小. 7、一电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图所示,则P点到O点的距离为多少?电子由O点运动到P点所用的时间为多少? 8、如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a。求: (1)该带电粒子的电性; (2)该带电粒子的比荷。

高中物理——安培力与洛伦兹力及物理规律

安培力与洛伦兹力在作用效果上有什么不同为什么有时候安培力做功而洛伦兹力不做功 安培力时洛仑兹力的宏观表现。洛仑兹力f=qvB,电流的微观表达式I=nqSv(n 为单位体积自由电子个数,q 为每个电子的电荷量,S 为导线横截面积,v 为自由电子定向移动速率)。一长为L 横截面积为S 的导线,所含自由电子个数为N=SLn ,安培力F=BIL=BnqSvL=(SLn)qvB=(SL,n)即f 安培力为导线中每个电子所受力的洛仑兹力的总和。 洛仑兹力对电荷不做功,但是安培力对导线可以做功,而且安培力又是洛仑兹力的宏观表现,那么为什么呢(这个问题本来就很绞的,很多人读完高中都没搞清楚,所以好好领悟)洛仑兹力对电荷不做功,但是并不代表洛仑兹力的分力对运动电荷不做功。一段导线,假设在磁场中受安培力而水平移动。注意,电子也在沿导线运动。所以根据运动的合成与分解,电子的运动轨迹是斜着的。洛仑兹力是垂直于电子运动轨迹的,所以洛仑兹力一定是斜着的。那么我们就可以将洛仑兹力分解为垂直于导线方向和沿导线方向(既然都预习到这里了,应该知道力的分解吧)。垂直于导线方向的洛仑兹力分力做正功,沿导线方向的分力做负功,这样实现了电能与界械能的转化。正功使导线机械能增加(就是我们看到的安培力做的功),负功阻碍电子运动(即阻碍电流,消耗电能,这部分功体现在电能

的减小上)。并且正功大小一定等于负功大小,这样洛仑兹力的总功才为0。所以我们平时就看到到安培力对导线做功,而洛仑兹力不做功。 还有一点,安培力做正功时,我们可以看到是电能与机械能的转化而不是磁场的能与机械能转化。同时,电流在洛仑兹力的分力作用下受到阻碍,这就是电动机为什么不能使用U=IR 公式的原因,除了电阻对电流的阻碍,这里又多了一个力,因此U=IR不再成立。 一、静电学 二、 1.两种电荷、电荷守恒定律、元电荷:(e=×10-19C);带电体电 荷量等于元电荷的整数倍 三、 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力 (N),k:静电力常量k=× 109N?m/C22,Q1、Q2:两点电荷的电 量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用 力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 四、 3.电场强度:E=F/q(定义式、计算式){ E:电场强度(N/C),是 矢量(电场的叠加原理) ,q:检验电荷的电量(C)} 五、 4.真空点(源)电荷形成的电场E=kQ/r2 {r :源电荷到该位置的 距离( m),Q:源电荷的电量} 六、 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB 两点在场强方向的距离(m)}

洛伦兹力

3.4磁场对运动电荷的作用——洛伦兹力 ★教学目标 (一)知识与技能 1、知道什么是洛伦兹力。 2、理解安培力和洛伦兹力的关系,掌握洛伦兹力大小的推理过程。 3、知道洛伦兹力产生条件,会用左手定则判定洛伦兹力的方向。 4、了解洛伦兹力的特点,会推导电荷在磁场中运动的半径和周期。 (二)过程与方法 通过洛伦兹力大小的推导过程进一步培养学生的分析推理能力。 (三)情感、态度与价值观 让学生认真体会科学研究思维方法。 ★教学重点 1、掌握洛伦兹力大小的推导过程。 2、会推导电荷在磁场中运动的半径和周期。 ★教学难点 1、理解洛伦兹力对运动电荷不做功。 2、洛伦兹力方向的判断。 ★教学过程 (一)引入新课:同学们,我们首先来观看一下神奇而有美丽的极光。 播放极光的图片。 师:同学们知道极光是怎样形成的吗? 生:来自太阳的高能粒子进入大气后,在地磁场作用下与大气发生作用而产生的。 师:你们知道极光一般出现在什么地方吗? 生:两极等高纬度地区。 师:为什么极光不能在赤道等低纬度地区出现呢? 生:学生好奇。 师:我们通过这一节课的学习就知道这是为什么了。今天我们一起来学习第三章第四节 磁场对运动电荷的作用——洛伦兹力(板书标题) 一.洛伦兹力

我们先来做一个实验。这是一个蹄形磁铁,它周围存在磁场。 这是阴极射线管,它能产生运动电荷。 介绍:阴极射线管的玻璃管内已经抽成真空,当左右两个电极按标签上的极性接上高压电源时,阴极会发射电子。在电场的加速下飞向阳极,电子束掠射到荧光板上,显示出电子束的轨迹。 演示: 1.没有磁场时电子束是一条直线。 2.用一个蹄形磁铁在电子束的路径上加磁场,尝试不同方向的磁场对电子束径迹的不同影响,并填下表。 通过这个实验我们可以得到什么结论? 结论:磁场对运动电荷有作用力,我们把这一个作用力称为洛伦兹力。 (板书)运动电荷在磁场中受到的作用力叫做洛伦兹力。 二:洛仑兹力的大小(板书) 师:我们之前学习了磁场对通电导线的作用力,也就是安培力。那么安培力的公式是什么? 生:F=BIL. 师:那当导线中没有电流时,安培力是多大呢? 生:安培力为零。 师:磁场对通电的导线才有作用力,那么这个作用就与电流有关,那么电流是如何形成的呢? 生:电荷的定向移动形成的。 师:之前的实验我们已经证明了磁场对运动电荷也有作用力,也就是洛伦兹力。 那洛伦兹力和安培力有关系吗? 生:有。电流是电荷的定向移动形成的,那么,静止的通电导体在磁场中受到的安培力,在数值上等于大量定向运动电荷受到的洛伦兹力的总和。 建模 师:这就需要我们建立一个模型。而模型的建立,我们总是选择简单的,所以: 磁场:匀强磁场 电流:通以恒定电流的直导线,并与磁场垂直 设有一段长为L,横截面积为S的直导线,单位体

高中物理选修磁场安培力洛伦兹力定稿版

高中物理选修磁场安培 力洛伦兹力 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

选修3-1 磁场练习 姓名:___________分数:___________ 一、选择题(题型注释) 1.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截 面.一质量为m、电荷量为q(q>0)的粒子以速率v 沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为()A. B. C. D. 2.如图,长为2l的直导线拆成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为() 3.在以下几幅图中,洛伦兹力的方向判断正确的是: 4.对确定磁场某一点的磁感应强度,根据关系式B=F/IL得出的下列结论中,说法正确的是() A.B随I的减小而增大; B.B随L的减小而增大; C.B随F的增大而增大; D.B与I、L、F的变化无关 5.如图所示,两根水平放置且相互平行的长直导线分别通有方向相反的电流I 1与I 2 .与 两导线垂直的一平面内有a、b、c、d四点,a、b、c在两导线的水平连线上且间距相等,b是两导线连线中点,b、d连线与两导线连线垂直.则

(A )I 2受到的磁场力水平向左 (B )I 1与I 2产生的磁场有可能相同 (C )b 、d 两点磁感应强度的方向必定竖直向下 (D )a 点和 c 点位置的磁感应强度不可能都为零 6.带电为+q 的粒子在匀强磁场中运动,下面说法中正确的是 A .只要速度大小相同,所受洛仑兹力就相同 B .如果把+q 改为-q ,且速度反向大小不变,则洛仑兹力的大小、方向均不变 C .洛仑兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子只受到洛仑兹力作用,其运动的动能可能增大 7.边长为a 的正方形,处于有界磁场如图所示,一束电子以水平速度射入磁场后,分别从A 处和C 处射出,则v A :v C =__________;所经历的时间之比t A :t C =___________ 8.一电子以垂直于匀强磁场的速度v A ,从A 处进入长为d 宽为h 的匀强磁场区域,如图所示,发生偏移而从B 处离开磁场,若电量为e ,磁感应强度为B ,弧AB 的长为L ,则 A .电子在磁场中运动的平均速度是v A B .电子在磁场中运动的时间为A L t v = C .洛仑兹力对电子做功是A Bev h ?

洛伦兹力

第II 卷(非选择题) 请点击修改第II 卷的文字说明 1.(8分)如图所示为一速度选择器,板间存在方向互相垂直的匀强电场和磁场。现有速率不同的电子从A 点沿直线AB 射入板间。平行板间的电压为300 V ,间距为5 cm ,垂直纸面的匀强磁场的磁感应强度为0.06 T ,问: (1)匀强磁场的方向指向纸面里还是向外? (2)能沿直线通过该速度选择器的电子的速率? 【答案】(1) 垂直于纸面向里(2) 105m/s 【解析】 试题分析:(1)由于电子所受到的电场力向上,由平衡知,洛伦兹力向下,由左手定则判断出 B 的方向垂直于纸面向里(2分) (2)电子受到的洛伦兹力为:F B =evB ,它的大小与电子速率v 有关,只有那些速率的大小刚好使得洛伦兹力与电场力相平衡的电子,才可沿直线KA 通过小孔S 据题意,能够通过小孔的电子,其速率满足下式:evB=eE(2分) 解得:E v B = (1分) 又因为U E d =(2分) 所以U v dB =得v=105m/s (1分) 考点:左手定则、速度选择器、物体平衡、洛伦兹力、电场力 2.(16分)如图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO′在竖直平面内垂直于磁场方向放置,细棒与水平面夹角为α。一质量为m 、带电荷量为+q 的圆环A 套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系

从动生电动势的产生看磁场中能量转换及安培力与洛伦兹力的关系 摘要:本文从引起动生电动势的非静电力开始,通过做功分析磁场中能量转换和安培力与洛伦兹力的关系。 关键词:动生电动势;能量;洛伦兹力;做功;霍尔电场在高中物理《磁场》和《电磁感应》两章的学习中,我们常常会遇到这样的问题:磁场对运动电荷有洛伦兹力的作用,但洛伦兹力不做功,那么动生电动势中能量是如何转换的呢?安培力是洛伦兹力的宏观表现形式,为什么安培力在磁场中可以做功而洛伦兹力不做功呢?洛伦兹力和安培力会引起能量的转换吗?如果能,是如何进行能量的转换呢?笔者针对上述问题进行问答分析。 1 引起动生电动势的非静电力是什么? 电动势是把单位正电荷从电源负极经内部移到正极非静电力所做的功,即:ε=W非q,通过非静电力做功把其它形式的能转化为电能。导体棒在磁场中做切割磁感线运动产生的感应电动势即动生电动势,《教材》中由法拉第电磁感应定律得出其大小为:ε=BLV。但动生电动势是如何产生的呢?下面我们来分析一下。 如图1,导体棒在磁场中以速度V做切割磁感线运动,带动导体棒中正负电荷以相同速度向右运动,由左手定则知:正电荷受到向上的洛伦兹力,负电荷受到向下的洛伦兹力,从而正负电荷发生重新分布,使导体棒上端由于堆积了正电荷电势升高,下端由于堆积了负电荷电势降低,导体棒上下两端产生了电势差,储存了电能,相当于电源,如图2所示。 洛伦兹力是引起电动势的非静电力,那么,它做功了吗?如图3所示,导体棒MN以速度V匀速向右运动,电子将在洛伦兹力作用下沿导体棒加速运动向外部电路供电,电路中形成电流,设某时刻电子相对于导体棒的运动速度为u,则电子运动的合速度为V合=V 2 u 2,与导体棒成θ角;由左手定则知:电子所受洛伦兹力F=eBV合与速度V合垂直,F可以分解为水平向左的力F1和沿导体棒向下的力F2。而F2=Fsinθ=eBV合sinθ=eBV为恒力,故其把单位电荷从M端移动到N端做功为:W=F2Le=eBVLe=BLV,与由法拉第电磁感应定律推导出的表达式一致,所以引起动生电动势的非静电力是洛伦兹力沿导体棒的分力,并且该力移动电荷做功把其它形式的能转化为电能向电路供电。 2 产生动生电动势的过程中,能量是如何转换的呢?洛仑兹力做功了吗? 在产生电动势ε=BLV的过程中,移动电荷靠的是洛伦兹力的分力(非静电力F2),而洛伦兹力不做功,其能量是如何转换的呢? 如图3所示,洛伦兹力F始终与V合垂直,沿左下方,对电荷不做功。但在电荷移动的过程中, F 水平向左的分力F1与导体棒垂直,对电荷做负功,消耗其它能量(动能);F沿导体棒向下的分力F2充当非静电力对电荷做正功,将其它形式的能(导体棒的动能)转化为电能。可作如下定量计算: 对任意时刻,外力克服F1做功的功率:

安培力和洛伦兹力的关系

安培力和洛伦兹力的关 系 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

24.(20分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。 (1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e 。该导线通有电流时,假设自由电子定向移动的速率均为v 。 (a )求导线中的电流I ; (b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F 。 (2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。 (注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 24.(1)(a )设Δt 时间内通过导体横截面的电量为Δq ,由电流定义,有: neSv t t neSv t q I =??=??= (b )每个自由电子所受的洛仑兹力:F 洛=evB 设导体中共有N 个自由电子:N =n ·Sl 导体内自由电子所受洛仑兹力大小的总和:F =NF 洛=nSl ·evB 由安培力公式,有:F 安=BlI =Bl ·neSv 得:F 安= F (2)一个粒子每与器壁碰撞一次,给器壁的冲量为:ΔI =2mv 如答图3,以器壁上的面积S 为底,以v Δt 为高构成柱体,由题设可知,其内的粒 子在Δt 时间内有1/6与器壁S 发生碰撞,碰壁粒子总数为:N

初中物理洛伦兹力知识点总结

初中物理洛伦兹力知识点总结 初中物理洛伦兹力知识点总结 洛伦兹力左手定则将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方 1.洛伦兹力左手定则 2.洛伦兹力公式 3.洛伦兹力和安培力 将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。

另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方向。 f=qvB q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。 方程的积分形式为F=∫v(pE+J×B)dr 1、洛伦兹力:运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。荷兰物理学家洛仑兹(1853-1928)首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛仑兹力。 洛伦兹力的公式是f=qvB(适用条件:磁场是匀强磁场,v与B 方向垂直)。式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。v与B方向不垂直时,洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。洛伦兹力的方向遵循左手定则。

安培力和洛伦兹力

安培力与洛伦兹力 1.如图所示,一金属直杆MN 两端接有导线,悬挂于线圈上方,MN 与线圈均处于竖直平面内,为使MN 垂直纸面向外运动,可以( ) A .将a 、c 端接在电源的正极,b 、d 端接在电源的负极 B .将a 、c 端接在电源的负极,b 、d 端接在电源的正极 C .将a 、d 端接在电源的正极,b 、c 端接在电源的负极 D .将a 、c 端接在交流电源的一端,b 、d 端接在交流电源的另一端 2.如图所示两根平行放置的长直导线a 和b 载有大小相等、方向相反的电流。A 受到的磁场力大小为1F 。当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力大小变为2F 。则此时b 受到的磁场力大小变为( ) A.2F 1F 2F C.1F +2F 1F 2F 3.如图(a )所示,导线abc 为垂直折线,其中电流为I ,ab=bc=L ,导线所在的平面与匀强磁场垂直,匀强磁场的磁感应强度为B ,求导线abc 所受安培力的大小和方向 4.如图所示,一段导线abcd 位于磁感应强度为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab 、bc 和cd 的长度均为L ,且∠abc=∠bcd=135°。流经导线的电流为I ,方向如图中箭头所示。导线段abcd 所受到的磁场的作用力的合力( )

A.方向沿纸面向上,大小为(2+1)IBL B.方向沿纸面向上,大小为(21-)IBL C.方向沿纸面向下,大小为(2+1)IBL D.方向沿纸面向下,大小为(21-)IBL 5.在光滑的绝缘面上放置一根质量为m 的长直通电导体棒,电流方向垂直纸面向里,如图所示,欲使导体棒静止,在斜面上施加匀强磁场的方向可能为( ) A.竖直向上 B.竖直向下 C.垂直斜面向上 D.水平向右 6.质量为m 的通电细杆置于倾角为θ的导轨上,导轨宽度为d ,杆与导轨间的动摩擦因数为μ,有垂直于纸面向里的电流通过杆,杆恰好静止于导轨上,在如图所示的A 、B 、C 、D 四个图中,杆与导轨间的动摩擦力一定不为零的是( ) A B C D 7.把一通电直导线放在蹄形磁铁的磁极的正上方,导线可以自由移动,当导线通以电流I 时,导线的运动情况从上往下看是( ) A.顺时针方向转动,同时下降 B.顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D.逆时针方向转动,同时上升 8.通有电流的导线1L 和2L 处在同一平面(纸面)内,1L 是固定的,2L 可绕垂直纸面的固

安培力和洛伦兹力检测试题

物理测试卷(安培力和洛伦兹力) 试题容安培力和洛伦兹力 一、选择题(20*2=40分) 1、如图所示,长为2l的直导线拆成边长相等、夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁场的 磁感应强度为B,当在该导线以大小为I的电流时,该V形通电导线受到的安培力大小为( C ) A.0 B.0.5BIl C.BIl D.2Bil 2、某同学画的表示磁场B、电流I和安培力F的相互关系如图所示,其中正确的是( D ) 3、对磁感应强度的定义式的理解,下列说确的是( C ) A.磁感应强度B跟磁场力F成正比,跟电流强度I和导线长度L的乘积成反比 B.公式表明,磁感应强度B的方向与通电导体的受力F的方向相同2 C.磁感应强度B是由磁场本身决定的,不随F、I及L的变化而变化 D.如果通电导体在磁场中某处受到的磁场力F等于0,则该处的磁感应强度也等于0 4、如图2所示,矩形导线框abcd与无限长通电直导线MN在同一平面,直导线中的电流方由M到N,导线框的ab边 与直导线平行。若直导线中的电流增大,导线框中将产生感应电流,导线框会受到安培力的作用,则以下关于导线框受到的安培力的判断正确的是(BD ) A.导线框有两条边所受安培力的方向相同 B.导线框有两条边所受安培力的大小相同 C.导线框所受的安培力的合力向左

A.一小段通电导体在磁场中某处不受磁场力作用,则该处的磁感应强度一定为零 B.一小段通电导体在磁场中某处受到的磁场力越小,说明该处的磁感应强度越小 C.磁场中某点的磁感应强度方向,就是放在该点的一小段通电导体所受磁场力方向 D.磁场中某点的磁感应强度的大小和方向与放在该点的通电导线所受磁场力无关 11、在下四图中,标出了匀强磁场B的方向、通电直导线中电流I的流向,以及通电直导线所受安培力F的方向,其中正确的是(AC ) 12、如图所示,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab、bc和cd的长度均为L,且∠abc=∠bcd=1350。流经导线的电流为I,方向如图中箭头所示。导线段abcd所受到的磁场的作用力的合力( A ) A.方向沿纸面向上,大小为(+1)ILB B.方向沿纸面向上,大小为(-1)ILB C.方向沿纸面向下,大小为(+1)ILB D.方向沿纸面向下,大小为(-1)ILB 13、如图2所示,一个带正电的粒子沿x轴正向射入匀强磁场中,它所受到的洛伦兹力方向沿y轴正向,则磁场方向( D ). A.一定沿z轴正向 B.一定沿z轴负向 C.一定与xOy平面平行且向下 D.一定与xOz平面平行且向下 14、如图所示,一束电子以大小不同的速率沿图示方向飞入横截面为一正方形的匀强磁场区,在从ab边离开磁场的电子中,下列判断正确的是(AD ) A.从b点离开的电子速度最大

安培力和洛伦兹力的区别 有什么联系

安培力和洛伦兹力的区别有什么联系 越来越多的同学对于安培力和洛伦兹力两者之间的关系存在一定的疑惑,他们的区别是什幺,两者又有什幺联系呢,本文小编就为大家整理了相关信息,供大家参考。 1安培力和洛伦兹力有什幺不同两者实际是等同的。可以将安培力想象成 是导线中无数个小电荷在流动时分别受到的洛仑兹力的叠加;譬如,假设现在 的电流是I,那幺说明t时间内,流过某一截面积的电荷数是Q=It 所以流过的电子总数n=Q/e=It/e。这段电子在t时间内流过的长度是l=vt,v 是电子流的宏观平均速度,每个电子都受到洛仑兹力,f=evB,那幺这段l长度 内的电子受到的总的洛仑兹力是f’=nevB=ItevB/e=ItvB=IBl。 现在整段导线在磁场内的长度是大L,而每小段l受到的是f’,所以总的受到 的安培力F=BIL,左手定则是判断受力,右手定则是判断电流反方向,右手定则 还有一个右手螺旋定则是判断磁场方向的.点是电流垂直纸面向外,反之是向里,四指是电流方向,拇指是运动方向。 另外,洛伦兹力是磁场对运动中的带电粒子的作用力,是对单个带电粒子 而言;安培力是磁场对通电导线的作用力,是对整个在磁场中的导线而言。 事实上,为什幺磁场会对通电导线有安培力的作用呢?我们知道,通电导线 中有很多运动的电荷;安培力,正是磁场对所有这些电荷的洛伦兹力的总和。即安培力是洛伦兹力的宏观体现;而洛伦兹力,是安培力的微观原理。区别 就在这里一个宏观,一个微观。 1两者有什幺联系在高三物理选修本中提出安培力是作用在运动电荷上的 力的宏观表现。接着,又利用F=BIL推导了一个电荷受到的洛伦兹力 f=qVB,从推导过程来看,安培力就是所有电荷受到洛伦兹力的合力,这个

安培力合洛伦兹力练习题

× × × × × × × · · · · · F B × ×F× × × ×I · · · · ·I × × × × × × B · ·F · · B I F I × × × × × × × · · · · · B A B C D 安培力和洛伦兹力练习题 安培力练习题 1、如图所示,是一段导线在磁场中的受力分析示意图,其中正确的图示是 2、(2009·海南单科高考)一根容易形变的弹性导线,两端固定.导线中通有电流,方向如图中箭头所示.当没有磁场时,导线呈直线状态;当分别加上方向竖直向上、水平向右或垂直于纸面向外的匀强磁场时,描述导线状态的四个图示中正确的是( ) . 3、通电矩形线框abcd 与长直通电导线MN 在同一平面内,如图3-4-21所示,ab 边与MN 平行.关于MN 的磁场对线框的作用力,下列说法正确的是( ) A .线框有两条边所受的安培力方向相同 B .线框有两条边所受的安培力大小相等 C .线框所受的安培力的合力方向向左 D .线框所受的安培力的合力方向向右 4.如图所示,条形磁铁放在水平粗糙桌面上,它的右上方附近固定有一根长直导线,导线中通与了方向垂直纸面向里(即与条形磁铁垂直)的电流,与原来没有放置通电导线时相比较,磁铁受到的支持力N 和摩擦力f 的变化情况是 A 、N 减小了 B 、N 增大了 C 、f 始终为0 D 、f 不为0,且方向向右

5.(2009年高考全国卷Ⅰ)如图3-4-22,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc和cd 的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd所受到的磁场的作用力的合力( ) A.方向沿纸面向上,大小为(2+1)ILBB.方向沿纸面向上,大小为(2-1)ILB C.方向沿纸面向下,大小为(2+1)ILBD.方向沿纸面向下,大小为(2-1)ILB 6.如图7所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为l,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大? 7.(6分)如图所示,在与水平方向成60°角的光滑金属导轨间连一电源,在相距1m的平行导轨上放一重力为3N的金属棒ab,棒上通过3A的电流,磁场方向竖直向上,这时金属棒恰好静止,求: (1)匀强磁场的磁感强度为多大? (2)ab棒对导轨的压力为多大?

安培力和洛伦兹力的关系

安培力和洛伦兹力的关系 摘要:安培力是磁场对电流的作用力,洛伦兹力是磁场对运动电荷的作用力。安培力可以看作是作用在每个运动电荷上的洛伦兹力的合力。 关键词:安培力 洛伦兹力 关系 1. 安培力是电荷所受的洛伦兹力在某个方向上的分力的合力。 图1 a b 图2 a b v 1 v 2 F 1F 2 如图1所示,水平放置的导体棒ab 中有a →b 的电流,根据左手定则可判断电流所受的安培力方向向右。若导轨光滑,导体棒ab 在安培力的作用下将向右移动。在导体棒ab 向右移动的过程中棒中的自由电子会有两个速度(如图2所示),v 1为自由电子在电源的作用下的定向移动速度,v 2为自由电子随导体棒ab 向右移动的速度。同样,根据左手定则可以判断,自由电子以v 1的速度运动时,所受的洛伦兹力F 1方向向右,与棒ab 移动方向相同,自由电子以v 2的速度运动时,所受的洛伦兹力F 2方向沿棒ab ,由a 指向b 。流过棒ab 的自由电子都要受到洛伦兹力F 1、F 2的作用。我们把流过棒ab 的所有自由电子所受 的洛伦兹力合成为F 1/,F 1/就是我们所说的棒ab 所受的安培力,在F 1/ 的作用下,棒ab 向右移动。自由电子所受的洛伦兹力F 2就是导体棒ab 做切割磁感线运动,产生感应电动势的非静电力。 2.当导体静止时,安培力的实质 如上图所示, 导线静止, 稳定的电流通过一段导线, 载流子电子定向移动速率为v , 每个电子受到的洛伦兹力v 洛= B ev , 这段导线内所有电子受到的洛伦兹力之和为 F = N f 洛=Bev nLS ? = nevS BL ? 式中n 为电子数密度, L 为导线长度, S 为横截面积,电流的微观表达式为I = nevS . 所以推出 F 安= BIL 即导线所受的安培力就是其中每个电子所受洛伦兹力之和。. 上与电子所受洛伦兹力之和相等. 2. 当导线运动时,安培力的实质

相关文档
相关文档 最新文档