文档视界 最新最全的文档下载
当前位置:文档视界 › 1 陀螺定向法

1 陀螺定向法

1 陀螺定向法
1 陀螺定向法

1 陀螺定向法

陀螺定向法是采用光学垂准仪(或重锤球)投出井上、井下在同一铅锤线上的点位,根据井上、井下陀螺定向成果,求算投点在空间的平面夹角,使得井上、井下的导线连成一体,把井上导线坐标、方位传递到井下导线。

下面以广州地铁杨体区间竖井联系测量为例,介绍陀螺定向法实施的特点。

1.1 仪器设备

TC1610全站仪,GAK1+T2陀螺经纬仪,NL光学垂准仪。

1.2作业实施

(1)竖井投点

井上、井下导线布置情况如图1所示,供电局、J54、A为井上已知导线点,Z1、Z2、Z3为井下待求导线点。在井口选定T1、T2两个点位,在井盖上相应位置预留有可遮盖的小孔,将垂准仪置于小孔上方,垂准仪在井上及井下投下T1和T1′、T2和T2′。T1、T1′在空间上为2个点,但投影到同一平面时就成为1个点;T2、T2′情况相同。井上、井下导线通过投点连成一闭合环。

(2)陀螺经纬仪定向

定向时采用逆转点法进行。对一条边定向时,完成一端定向为半测回,完成两端定向为一测回。由于井筒上下不宜安置陀螺经纬仪,故井上选择AJ54为定向边,井下选择Z1Z3为定向边,进行陀螺定向观测。求出陀螺仪的定向常数,并进行改正。

假定陀螺经纬仪测得的AJ54陀螺方位角为N0,Z1Z3陀螺方位角为N5。

(3)导线边角测量

①测b0、b1、b4、b5、b6角度;

②量d1、d2、d3、d4、d5、d6边长。

(4)空间夹角计算b2为AT1、T1′Z1在空间上的夹角,b3为AT2、T2′Z2在空间上的夹角。

(5)导线计算

根据以上导线测量成果,进行导线平差计算。坐标、方位从井上导线点传递到井下导线点,Z1、Z2、Z3坐标成果用于指导施工。

1.3工作体会

①陀螺定向法的主要优点是占用井筒时间短、精度高、观测作业简单,在地铁施工的竖井中均可采用此方法进行联系测量,是一种值得推广应用的作业方法。

②陀螺定向的实质是通过投点、定向,把井上、井下的导线联成一体,陀螺经纬仪起了测空间边夹角的作用。

③陀螺定向应选择固定边进行,每条边由不同的观测员观测1~2个测回。以后再进行竖井联系测量时,陀螺定位应在上次定位边上进行,以利检核。

④陀螺定向法的不足之处是陀螺经纬仪的价格昂贵,拥有陀螺经纬仪的单位较少,难以推广应用。

2 钻孔投点法

钻孔投点法是根据地铁浅埋的特点,应用一根垂线上平面坐标相同的原理而总结出的竖井联系测量方法。下面以广州地铁东杨区间2号竖井为例,对钻孔投点法作一介绍(如图2所示)。

2.1 仪器设备

东杨区间按钻孔投点法进行联系测量时,使用的仪器设备为TC1610全站仪和NL垂准仪,并聘请有钻机的单位予以配合。

2.2作业实施

(1)导线布设

根据现场情况,选择竖井井盖上一点为T1(利用竖井,不需钻孔);在已经开挖的竖井通道或中线导洞上方选择一点T2,并用钻机钻出约20cm的圆孔。地面投点T1、T2,从地面已知导线SGK24、SGK25、DY 2、DY1引测。

(2)钻孔和竖井投点

钻孔投点与竖井投点的方法及要求相同:利用垂准仪在竖井和钻孔分别投出井上点T1、T2和井下点T1′、T2′。地下投点T1′、T2′要预先埋设固定钢标,投点后刻好标记。

(3)地面投点坐标

地面投点T1、T2边角测量:测b1、b2、b3、b4角度,量d1、d2、d3边长。

根据以上测量成果,计算出T1、T2坐标。

(4)地下投点坐标

如前所述,因地下投点T1′、T2′和地面投点T1、T2分别位于同一根垂线上,所以取T1′坐标等于T1坐标,T2′坐标等于T2坐标。T1′、T2′用于指导洞内施工。

2.3工作体会

①钻孔投点法是一种适合于浅埋(埋深小于30m)工程的竖井联系测量方法,具有作业时间短、测量精度高、简单直观、容易操作的特点。当具有钻孔条件时,地铁竖井应优先考虑采用此法进行联系测量。

②当工程埋深大于30m时,应结合钻孔费用、投点误差、投点作业环境等具体情况,慎重考虑是否采用钻孔投点法。

③钻孔投点距离以大于150m为宜,以减少投点误差对坐标方位的影响。

④钻孔投点法不足之处是准备工作繁多,如恢复地面中线,确定投点位置;寻找钻孔队伍,现场钻孔等;不利于钻孔投点法的推广应用。

3 联系三角形法

联系三角形法是一种传统的竖井联系测量方法。下面以黄沙盾构竖井联系测量为例对联系三角形法作一介绍(如图3所示)。

3.1 仪器设备

TC1800全站仪;10kg重锤2个;Φ0.5mm高强钢丝60m;小绞车、导向滑轮及经过比长的钢卷尺等。

3.2作业实施

(1)导线布设

导线布设情况如图3。垂线1、垂线2是通过竖井绞车及导向滑轮悬挂并吊有垂锤的高强钢丝。Z、A为已知的地面导线点,B、G为待求的井下导线点,井下、井上三角形布设时应满足下列要求:

①垂线边距a、a′应尽量布置长些;

②e、f、e′、f′角度应尽量小,最大不应大于2°;

③b/a、b′/a′'之比值应尽量小,最大值不应大于1 5。

(2)三角形测量

①测e、f、e′、f′角度;

②量a、b、c、a′、b′、c′边长。

(3)三角形平差计算

根据a、b、c、f求j:sinj=bsinf/a

c的计算值:c算=bcosf+asinj

c的不符值:h=c算-c

a边改正值:Δa=-h/4

b边改正值:Δb=-h/4

c边改正值:Δc=h/2

以改正后的边长a、b、c为平差值,按正弦定理计算出i、j,即为平差后的角值。f改正很小,仍采用原测角值。

采用上述方法可计算出井下三角形平差后的边角a′、b′、c′、i′、j′。f′改正很小,仍采用原测角值。

(4)坐标和方位传递计算

已知A点坐标为XA、YA,AZ方位角为Z0。根据平差后的三角形边角进行计算。

①BG方位角Z0′

AF方位角Z1=Z0+e

FE方位角Z2=Z1+180+j

E′B方位角Z3=Z2+180-j′

求算边BG方位角Z0′=Z3+180+e′

②B点坐标

XB=XA+ccosZ1+acosZ2+c′cosZ3

YB=YA+csinZ1+asinZ2+c′sinZ3

(5)重复观测

进行联系三角形测量时,为保证精度,要重复观测数组。每组只将两垂线位置稍加移动,测量方法完全相同。由各组推算井下同一导线点之坐标和同一导线边之坐标方位角。各组数值互差满足限差规定时,取各组的平均值作为该次测量的最后成果。

3.3工作体会

联系三角形法是一种传统的竖井几何联系测量方法,存在设备笨重、工序繁多、工作时间长、劳动强度大等不足,与其他方法相比已显得比较落后。只是在不具备其他方法作业条件的情况下,可采用此法进行竖井联系测量。

陀螺定向方法和精度评定

陀螺逆转点法定向及精度评定 摘要 隧道或井巷工程测量导线布设的形式因受巷道形状的制约,若单纯采用改变导线布设形式或提高测角次数与精度等方法,往往难以满足工程施工对于测量的精度要求。陀螺经纬仪是测量井下导线边方位角、提高测量精度的重要仪器。尤其是在贯通测量中陀螺经纬仪的应用非常广泛。贯通测量是一项十分重要的测量工作,必须严格按照设计要求进行。巷道贯通后,其接合处的偏差不能超过一定限度,否则就会给采矿工程带来不利影响,甚至造成很大的损失。本文对陀螺经纬仪工作原理介绍,以及陀螺经纬仪在贯通测量中的精度评定。陀螺经纬仪在不同领域的贯通测量工作中运用实例的分析,总结出在贯通测量导线加测陀螺定向边的最佳位置。 关键词:陀螺定向,贯通测量,陀螺经纬仪,精度评定 ABSTRACT Tunnel or shaft engineering measurement wires for the form of roadway, if simple shape by changing arrangement forms or improve wires and precision Angle measurement methods, and often difficult to satisfy the measurement accuracy for engineering construction. Gyro theodolite is measured in wire edge Angle, improve the measuring precision instruments. Especially in the measurement of the photoelectric theodolite gyro breakthrough is used extensively. Through measurement is a very important measurement work, must strictly according to the design requirements. The roadway expedite, its joint deviation cannot exceed a certain limit, otherwise they will be detrimental to the mining project, and even cause great losses. This paper introduces working principle of gyro theodolite, as well as the breakthrough in the measurement of the gyro theodolite accuracy assess. Gyro theodolite in different fields

陀螺测斜仪定向操作规程

SinoGyro陀螺测斜仪定向操作规程 一、检查仪器密封圈是否都已上好并完好无缺,仪器连接丝扣处用丝扣油涂抹,连接好仪器 并打紧。 二、在井上将井下仪放置在井斜20—30度之间。 三、转动井下仪,使定向引鞋的定键槽垂直向上并保持稳定。 四、开机,待仪器运转稳定后开始测量;连续测量三次以上,取最后三次稳定重力高边数值 的平均值(重复性误差≤+10)作为“高边初始角”的值输入计算机。 五、重测,确认此时重力高边实测数值为零(误差≤+10);仪器断电。 六、为了确保仪器井下顺利入键,定向接头下井之前必须与仪器引鞋进行地面入键测试,一 切顺利后,定向接头方可下井。 七、仪器下井时,在定向键槽涂上铅油。下放时下放速度≤2000米/小时;上提时≤1800 米/小时。当井下仪下放距离定向接头50米时,控制下放速度在1200-1500米/小时之间;仪器入键后,待地滑轮落地时,方可停绞车。 八、绞车停稳2分钟后,开机测量,连续测量2次,检查仪器稳定性和重复性并记录测量数 据;一切正常后仪器断电,待陀螺停稳后上提30米以上,开始第二次坐键并测量;连续坐键三次,三次高边测量值误差≤+50时即可确认仪器入键。 九、仪器入键后不动,地面转动钻杆或油管至所需位置,然后上提下放钻杆或油管各三次, 每次活动范围3—5米,待活动完成后开机测量定向键的位置,如果达不到要求,继续转动和活动井下工具,至定向键位置达到工艺要求为止,至此陀螺定向结束。 十、陀螺测斜仪高边转换角默认值为3度,测量过程中如果想同时观察陀螺高边和重力高边 时,可在同一位置改变高边转换角的数值来实现。 十一、定向测量结束后,数据存盘,起出井下仪,进行现场资料交接。

陀螺定向测量

陀螺定向测量 陀螺定向测量(gyrostatic orientation survey)是用陀螺经纬仪测定某控制网边的陀螺方位角,并经换算获得此边真方位角的测量工作。常用于定向连接测量。陀螺方位角,是从陀螺仪子午线(测站上通过假想的陀螺轴稳定位置的子午面,即陀螺仪子午面与地平面的交线)北方向顺时针量至某定向边的水平角。 常用方法 确定测站真子午线北方向的常用方向有:中天法,是通过对陀螺仪轴运转的观测,先确定近似北方向,在连续读记摆动的指标线(陀螺轴)反复经过分划线板零线时的时间,和到达东、西逆转点时的水平度盘读数,经计算获得近似北方向的改正数,进而确定测站真北方向;逆转点法,是用陀螺经纬仪跟踪观测摆动的指标线(陀螺轴)反复到达东、西逆转点时的水平度盘读数,经计算确定测站真北方向。 矿井应用 服了几何定向占用井筒而造成停产、耗费大量人力、物力和时间等缺点,同时也克服了随井筒深度增加而降低定向精度的缺点。由于矿井生产中对陀螺定向测量技术的应用还很少,陀螺定向技术在矿井生产中还缺乏系统性的操作要求及数据处理模式。2011年4月,麦格集团天渱公司螺仪部带领天津707所厂家技术人员到煤矿进行陀螺仪的测量演示,通过TJ9000陀螺全站仪与日本品牌陀螺全站仪比较,获取了实证分析数据。从技术及经济角度考虑,对陀螺定向测量技术的研究,在矿井生产中具有非常重要的意义。 1、陀螺定向作业依据 本次陀螺定向作业依据为1989年1月能源部制定的《煤矿测量规程》并参照1990年原中国统配煤矿总公司组织修订、煤炭工业出版社出版的《煤矿测量手册》。 2、陀螺定向作业仪器 陀螺定向采用中船重工TJ9000陀螺全站仪为例,该仪器是下架式的陀螺仪器,有陀螺仪、全站仪、控制器和三脚架等组成。陀螺仪方位角测定标准偏差为±20",全站仪测角精度为2"。 3、陀螺定向方法 陀螺定向采用当今先进的积分法进行观测,定向程序为:

定向工程师习题DOC

初级施工员习题 2009年5月16日

一、填空题: 1、在钻台上听到异常的声音,你的第一反应应该是———。(向安全的地方“逃跑”) 2、钻井队普遍使用的四级净化设备指:、、、。 (振动筛、除砂器、除泥器、离心机) 3、水基钻井液主要由: 、、三大部分组成。 (水、粘土、化学处理剂) 4、常见的钻机驱动方式可分为:和。(机械驱动、电力驱动) 5、常见的钻头种类有:、、、、、、等。 (刮刀钻头、牙轮钻头、金刚石钻头、PDC钻头、取芯钻头、特种钻头) 6、常用的钻井液参数包括:、、、、 、、、。 (密度、粘度、切力、动塑比、泥饼、失水、含砂量、PH值) 7、钻井参数通常指:、、、。 (钻压、转速、泵压、排量) 8、写出三种常用的泥浆体系:、、。 (不分散泥浆体系、聚合物泥浆体系、细分散泥浆体系) 9、常用的钻具扣型有:、、。英文符号分别为:、、。(内平扣、贯眼扣、正规扣、IF、FH、REG) 11、牙轮钻头的结构包括:、、。 (牙爪、牙轮、轴承和喷嘴) 12、常用的防喷器种类有:、。 (万能防喷器、闸板防喷器) 13、钻柱的基本组成元素有:、、和。 (方钻杆、钻杆、钻铤、接头) 14、指重表指示的参数有:、。(钻压、悬重) 15、普通钻杆的扣型一般为:。(内平扣) 16、测量钻具扣型最常用的工具是:。(钻具接头尺) 17、静平衡钻井指与基本相等。 (钻井液液柱压力、地层静压力) 18、离钻台较近的泥浆泵通常称作号泵。(1) 19、钻铤包括:、、等许多种类型。 (普通钻铤、螺旋钻铤、无磁钻铤) 20、震击器以上的钻具外径不得震击器的外径。(大于) 21、最常见的定向井剖面类型有:、、等种。 (三段制剖面、四段制剖面、五段制剖面) 22、控制定向井斜井段井眼轨道,常用的钻具组合类型有:、 、、、。 (定向钻具、增斜钻具、稳斜钻具、降斜钻具、导向钻具) 23、定向井井眼轨道常用的三种图示法指:、 、。(三维坐标图示法、投影图示法、柱面图示法) 24、用于描述井眼轨道空间形态的参数包括:、、 、、。 (基本参数、坐标参数、挠曲参数、施工参数、井间关系参数)

定向侧钻 技术汇总

裸工艺技术 字体大小:大- 中- 小shke2004发表于11-01-11 19:51 阅读(85) 评论(0)分类:定向井 一.侧钻点的选择 侧钻点的选择应遵循以下几点原则: 1.应选在岩性比较稳定的可钻性较好的地层,尽量避开极硬、岩石研磨性强的地层。 2.应根据设计井深( 垂直井深) 、水平位移设计适当的井身剖面,使侧钻后的井段最短。 3.在定向井斜井段中或在直井内硬地层中,可选在原井眼的井斜或方位变化率比较大的位置侧钻。 4.大斜度井段侧钻,应尽量变方位稳斜或降斜侧钻。 二.作业准备 1.工具钻柱准备 (1) 侧钻工具仪器准备 侧钻工具包括井底动力钻具、无磁钻铤或无磁承压钻杆、定向接头、弯接头、稳定器。 定向仪器包括电子多点测斜仪、无线随钻测斜仪、有线随钻测斜仪。 (2) 钻柱准备 钻柱包括钻铤、钻杆、随钻震击器等。钻杆、钻铤的规格、数量符合设计要求。

2.井筒准备 (1)注水泥塞 按SY/T 5587.14—93 设计施工。 (2) 水泥塞质量要求 ◆候凝72h,φ215.9㎜以上结构的井眼静压80~100KN, 水泥塞下沉不超过5cm。 ◆候凝72h,φ152㎜井眼静压40~6OKN,水泥塞下沉不超过5cm。 三.井底动力钻具定向侧钻钻具组合的设计 按SY/T 5619-1999 中第4条设计。 1.侧钻井井眼曲率的控制 311.2㎜井眼:8-18°/100m 215.9㎜井眼:10-30°/100m 152.4㎜井眼:15- 40°/100m 2.侧钻钻头的选型 ◆对于软地层、可钻性好的地层选用牙轮钻头。 ◆对于硬地层、研磨性强的地层选用PDC或BDC钻头。3.对于侧钻点位置原井眼是直井段或稳斜井段的侧钻井,侧钻钻具组合应是弯接头加螺杆钻具或弯螺杆钻具组合。 4.对于侧钻点位置有一定井斜、且井段有一定曲率的可以采用直钻具(直螺杆)稳斜或降斜侧钻。 四.侧钻施工

陀螺定向测量报告

中国人民解放军第一〇〇一工厂 陀螺仪定向报告 XXX矿业1# 与3# 斜坡道实测 2015年10月26日

潼金矿业1#、3#斜坡道陀螺定向测量成果报告 1 定向设备 本次陀螺定向采用中国人民解放军第一〇〇一工厂自主研发、生产的HGG05型陀螺全站仪(1σ≤5″),编号15001,上置中翰测绘公司生产的TS-802N型全站仪。 2 数据来源 点位信息由XXX矿业地勘部提供。 表1 控制点信息 其中地面控制点为:G3007、G3006;G3024、G3022。 α=246°52′09″,根据计算得知控制边方位角分别为:3006 G3007→ G α=334° 40′ 28″。 G3024→ 3022 G 3 定向过程

1) 在控制边进行2测回定向测量,标定仪器常数; 2) 在待定边进行3测回定向测量; 3) 在原控制边进行2测回定向测量, 以两次控制边测量结果检验仪器的稳定性和精度,确保陀螺定向成果准确可靠。 4 陀螺定向的限差要求 1) 同一条边各测回测量结果最大互差不得超过10″; 2) 两次地面控制边测量结果均值之差不得大于15″。 5 数据处理结果 5.1 方法1数据处理方法及结果 5.1.1 仪器常数的计算 1T 1T1--A A A C γα+==控制控制 式中:?-仪器常数; 控制α-控制边坐标方位角,即3006G G3007→α、3022G G3024→α; 1γ-控制边仪器架设点子午线收敛角; 1T A -控制边测得(含复测)的陀螺方位角均值; 子午线收敛角1γ用下式计算。 ?λλγsin )-(1中控制= 式中:控制λ-控制边仪器架设点经度,精确到秒; 中λ-仪器架设点所处3° 带中央子午线; ?-仪器架设点纬度,精确到分。 标定仪器常数实测陀螺方位角结果见表2。

陀螺经纬仪原理

陀螺经纬仪工作原理与应用 【2007-4-28来源:中翰仪器网】 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止时可加以应用。

2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反射镜、陀螺马达、刻度线、目镜)。 陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。

追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动) (图5:指针与刻度盘刻度线/0点/指针)

陀螺经纬仪操作

GAK-1陀螺经纬仪操作说明: GAK-1陀螺经纬仪是上架悬挂式陀螺仪器,由陀螺仪、经纬仪、逆变器(带蓄电池)和三脚架组成。 一、首先进行陀螺仪悬带零位测定: 先将经纬仪整平并固定照准部,下放陀螺灵敏部,从读数目镜中观测灵敏部的摆 动,在分划板上连续读三个逆转点读数,估读到0.1格。第一和第三个逆转点取 平均后,再和第二个逆转点取平均得到陀螺仪的零位。同时还需要用秒表测定周 期。 二、粗略定向 在测定已知边和定向边的陀螺方位角之前,必须把经纬仪望远镜视准轴置于近似 北方。最常用的方法为两个逆转点法。 三、精密定向 精密定向就是精确测定已知边和定向边的陀螺方位角。精密定向一般采用逆转点 法或者中天法。 逆转点法: 1、严格整置经纬仪,以一个测回测定待定和已知测线的方向值,然后将仪器大 致对正北方。 2、锁紧摆动系统,启动陀螺马达,待达到额定转速后,下放陀螺灵敏部,进行 粗略定向,再制动陀螺并托起锁紧,将望远镜视准轴转到近似北方位置,固 定照准部,把水平微动螺旋调到行程中间位置。 3、打开陀螺照明,下放陀螺灵敏部,进行测前悬带零位观测,同时用秒表记录 自摆周期。零位观测完毕,托起并锁紧灵敏部。 4、启动陀螺马达,达到额定转速后,慢慢下放灵敏部到半脱离位置,稍停数秒, 再全部下放。用水平微动螺旋微动照准部,让光标像与分划板零刻划线随时 重合,在摆动到逆转点时,连续读取5个逆转点读数。然后锁紧灵敏部,制 动陀螺马达。 5、进行测后零位观测 6、以一个测回测定待定和已知测线的方向值 中天法: 和逆转点法一样进行粗略定向和零位测定,启动陀螺马达,到达额定转速后下放 灵敏部,经限幅,使光标像摆幅不超过目镜视场。然后按下列顺序观测:、 1、灵敏部指标线经过分划板零刻划线时启动专用秒表,读取中天时间 2、灵敏部指标线到达逆转点时,在分划板上读取摆幅读数 3、灵敏部指标线返回零刻划线时读出秒表上的读数 4、灵敏部指标线到达另一逆转点时读取摆幅读数 5、灵敏部指标线返回零刻划线时再读取秒表上中天时间 重复上述操作,一次定向需连续测定5次中天时间,记录不跟踪摆动周期。 观测完毕,托起并锁紧灵敏部,制动陀螺马达。 6、进行测后零位观测 7、以一个测回测定待定和已知测线的方向值

定向方法与定向专用工具介绍

根据测斜仪器的种类不同,分为四种定向方式: 1.单点定向 此方法只适用造斜点较浅的情况,通常井深小于1000米。因为造斜点较深时,反扭角很难控制,且定向时间较长。施工过程如下: (l)下入定向造斜钻具至造斜点位置(注意:井下马达必须按厂家要求进行地面试验)。 (2)单点测斜,测量造斜位置的井斜角,方位角,弯接头工具面; (3)在测斜照相的同时,对方钻杆和钻杆进行打印,并把井口钻杆的印痕投到转盘面的外缘上,作为基准点; (4)调整工具面(调整后的工具面是:设计方位角十反扭角)。锁住转盘、开泵钻进; (5)定向钻进。每钻进2~4个单根进行一次单点测斜,根据测量的井斜角和方位角及时修正反扭矩的误差,并调整工具面; (6)当井斜角达到8~10度和方位合适时,起钻换增斜钻具,用转盘钻进。在单点定向作业中要注意:

①在确定了反扭角和钻压后,要严格控制钻压的变化范围,通常在预定钻压±19.6千牛(2吨)内变化; ②每次接单根时,钻杆可能会转动一点,注意转动钻杆的打印位置至预定位置; ③如果调整工具面的角度较大(>90度),调整后应活动钻具2~3次(停泵状态),以便钻杆扭矩迅速传递。 2.地面记录陀螺(SRO)定向 在有磁干扰环境的条件下(如套管开窗侧钻井)的定向造斜,需采用SRO定向。这种仪器可将井下数据通过电缆传至地面处理系统,并显示或用计算机打印出来,直至工具面调整到预定位置,再起出仪器,施工过程如下: (l)选择参照物,参照物应选择易于观察的固定目标,距井40米左右; (2)预热陀螺不少于15分钟,工作正常才可下井; (3)瞄准参照物,并调整陀螺初始读数; (4)接探管,连接陀螺外筒,再瞄准参照物,对探管和计算机初始化; (5)下井测量,按规定作漂移检查; (6)起出仪器坐在井口,再次瞄准参照物记录陀螺读数; (7)校正陀螺漂移,确定测量的精度; (8)定向钻进。 3.有线随钻测斜仪(SST)定向 造斜钻具下到井底后,开泵循环半小时左右,然后接旁通头或循环接头。把测斜仪的井下仪器总成下入钻杆内,使定向鞋的缺口坐在定向键上。定向造斜时,可从地面仪表直接读出实钻井眼的井斜、方位和工具面,司钻和定向井工程师要始终跟踪预定的工具面方向,保持井眼轨迹按预定方向钻进。 4.随钻测量仪(MWD)定向

初级定向工程师习题

初级施工员习题

填空题: 1、在钻台上听到异常的声音,你的第一反应应该是———。(向安全的地方“逃跑”) 2、钻井队普遍使用的四级净化设备指:、、、。 (振动筛、除砂器、除泥器、离心机) 3、水基钻井液主要由: 、、三大部分组成。 (水、粘土、化学处理剂) 4、常见的钻机驱动方式可分为:和。(机械驱动、电力驱动) 5、常见的钻头种类有:、、、、、、等。 (刮刀钻头、牙轮钻头、金刚石钻头、PDC钻头、取芯钻头、特种钻头) 6、常用的钻井液参数包括:、、、、 、、、。 (密度、粘度、切力、动塑比、泥饼、失水、含砂量、PH值) 7、钻井参数通常指:、、、。 (钻压、转速、泵压、排量) 8、写出三种常用的泥浆体系:、、。 (不分散泥浆体系、聚合物泥浆体系、细分散泥浆体系) 9、常用的钻具扣型有:、、。英文符号分别为:、、。(内平扣、贯眼扣、正规扣、IF、FH、REG) 10、大港地区的主要地质分层为:、、、、。(平原组、明化镇组、馆陶组、东营组、沙河街组) 11、牙轮钻头的结构包括:、、。 (牙爪、牙轮、轴承和喷嘴) 12、常用的防喷器种类有:、。 (万能防喷器、闸板防喷器) 13、钻柱的基本组成元素有:、、和。 (方钻杆、钻杆、钻铤、接头) 14、指重表指示的参数有:、。(钻压、悬重) 15、普通钻杆的扣型一般为:。(内平扣) 16、测量钻具扣型最常用的工具是:。(钻具接头尺) 17、静平衡钻井指与基本相等。 (钻井液液柱压力、地层静压力) 18、离钻台较近的泥浆泵通常称作号泵。(1) 19、钻铤包括:、、等许多种类型。 (普通钻铤、螺旋钻铤、无磁钻铤) 20、震击器以上的钻具外径不得震击器的外径。(大于) 21、最常见的定向井剖面类型有:、、等种。 (三段制剖面、四段制剖面、五段制剖面) 22、控制定向井斜井段井眼轨道,常用的钻具组合类型有:、 、、、。 (定向钻具、增斜钻具、稳斜钻具、降斜钻具、导向钻具) 23、定向井井眼轨道常用的三种图示法指:、 、。(三维坐标图示法、投影图示法、柱面图示法) 24、用于描述井眼轨道空间形态的参数包括:、、

陀螺全站仪定向精度评定和在工程中应用

陀螺全站仪定向精度评定和在工程中应用 摘要:目前陀螺全站仪标称精度大多在8到20秒之间,而常用全站仪标称精度 1秒或2秒,很多测量人员困惑于如何能用这么“低精度”陀螺全站仪来复测检核 的“高精度”全站仪测量的精密导线呢?查看了很多陀螺经纬仪(全站仪)精度相 关文献,一般只提到某款陀螺经纬仪(全站仪)精度指标达到多少,或者某工程 应用中实测精度达到多少,缺乏对精度指标的说明,造成了现在大量精度要求较 高项目(如:地铁导线复测)测量技术人员对陀螺精度困惑。本文从标称精度评 定及工程实际应用方法来说明这个问题。 关键词:陀螺全站仪精度、陀螺定向、导线方位校核 Abstract:At present,the gyro total station nominal accuracy mostly between 8 to 20 seconds,and commonly used total station instrument nominal accuracy of 1 or 2 seconds,many Surveyor confused on how to with such low accuracy gyro total station reflex test check the high precision of total station instrument measurement precision wire? To view the lot of gyro theodolite(total station)relative to the precision of the literature,generally only mentioned a gyro theodolite(total station)precision index reach the number,or a project application measurement accuracy reach,lack of precision description index,caused by now a large number of high precision project(such as:subway traverse azimuth verification)measurement of technical personnel on the precision of gyro is confused.In this paper,the nominal accuracy assessment and engineering application methods to description the problem. Keywords:gyro total station,gyro direction,traverse azimuth verification 1、引言 目前各地大量建设地铁轨道交通工程,地下定向测量十分重要,隧道《城市轨道交通工 程测量规范》中联系测量可采用陀螺经纬仪、铅垂仪(钢丝)组合定向测量;地下控制测量 部分要求贯通面一侧隧道长度大于1500米时,适当位置加测陀螺边提高控制导线精度。目 前陀螺全站仪标称精度大多在8到20秒之间,而常用全站仪标称精度1秒或2秒,地铁控 制测量导线采用2.5秒精密导线,以往陀螺定向测量应用较多的矿山测量中一般采用7秒导线,很多测量人员困惑于如何能用这么“低精度”陀螺全站仪来复测检核地铁施工中采用的“高 精度”全站仪测量的精密导线呢?对陀螺全站仪标称精度理解,测量方法和精度评定掌握,解 决这个问题对正确使用陀螺定向保证导线复测有重要的实践意义。 2、陀螺全站仪精度指标 查看了很多陀螺经纬仪(全站仪)精度相关文献,一般只提到某款陀螺经纬仪(全站仪)精度指标达到多少,或者某工程应用中实测精度达到多少,缺乏对精度指标的说明,造成了 现在大量精度要求较高项目(如:地铁导线复测)测量技术人员对陀螺精度困惑。这里先提 两个概念:精确度和精密度。准确度(Accuracy):被测量所得值与真值间的一致程度。精 密度(precision),被测对象重复测量所得示值。(JJF1001-2011通用计量术语及定义)。陀 螺全站仪的精度指标采用的是准确度(Accuracy)。下面通过NTS-342T(54783)陀螺全站仪 标称精度:一次定向中误差m=±10″,在广州市计量检测技术研究院校准过程来说明这两个概念。 2015年1月28日,在广州市计量检测技术研究院陀螺仪校准装置上校准南方NTS-342T (54783)陀螺全站仪,校准装置天文基准方位角为=161°35′27.9″±0.5″。 陀螺全站仪实测数据如下: 序号测量参数值陀螺方位角(° ′ ″)与天文基准方位角差值(″)

陀螺测斜仪在定方位射孔中的应用

龙源期刊网 https://www.docsj.com/doc/f210505476.html, 陀螺测斜仪在定方位射孔中的应用 作者:刘俊 来源:《中国化工贸易·上旬刊》2018年第05期 摘要:随着陆上油田开发中后期侧(水平)钻井以及海洋平台加密井和从式井数量的增多,不受磁干扰的陀螺测斜仪得到了广泛的应用,但目前国内应用的主要是有线陀螺测斜仪。本文简要介绍TLX50-100D陀螺测斜仪的在定方位射孔中的应用进行详细论述。 关键词:定方位射孔;陀螺测斜仪射孔;管柱方位角 陀螺仪最早应用于航空航天领域的飞行器导航,是以惯性器件为核心的定位定向系统。经过改进用于钻井的陀螺仪称为陀螺测斜仪,它可以满足油田钻探的耐高温(125℃)、可靠、小口径等一些特殊的要求。陀螺测斜仪于上世纪90年代开始用于定向钻井中,因为其可感应地球自转速度,不受磁干扰,在强磁环境和油套管或钻杆中准确测量井斜、方位,磁重力高边而得到迅速的推广与应用。陀螺测斜仪自动寻北,无需校北,测量数据为井眼轨迹的真实数据,无需校正就可直接使用。 常规射孔孔眼的方向是随机的,因此无法满足一些特殊情况对射孔施工的要求,而定方位射孔技术是一种可以进行井下有方向性射孔的射孔工艺技术,其利用油管输送射孔管柱的方式,在油管与射孔管柱之间接人一定方位短节,通过测量定方位短节上方位键的方位来确定射孔弹穿孔的方位。 陀螺测斜仪下端的导向装置与定方位短节内的定方位键吻合对接,测量定方位键的方位角(射孔弹穿孔的方向),若测量定方位键的方位角与目标方位角不一致时,则需在井口转动油管调整射孔管柱的方向,直至测量的方位角与目标方位角的误差在允许误差范围内后,测斜仪器进行射孔作业。起出陀螺测斜仪器进行射孔作业。 1 TLX50-1000陀螺测斜仪工作原理 TLX50-100D陀螺测斜仪采用抗冲击、抗震动能力强的双轴动力调谐陀螺和三个石英加速度计作为核心传感器。具有高精度高可靠性体积小重量轻等特点。 以北东地为基准建立一个参考坐标系即大地坐标系,以三维正交安装的加速度计和陀螺建立测量坐标系即仪器坐标系。 在大地坐标系中X指向水平东Y指向水平北oZ垂直地面向上,在仪器坐标系中,由仪器轴线方向定义为Z轴,将与仪器轴线垂直的截面上一对正交的方向定义为x,Y轴。如果人为地将两个坐标系重合,则xo对应X,Yo对应Y,oZ对应z。仪器坐标系x、Y、z的任何位置可以认为相对于大地坐标系XYoZ经过三次旋转。仪器在井眼中静止时,利用仪器三维坐标轴

陀螺定向测量报告记录

陀螺定向测量报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国人民解放军第一〇〇一工厂 陀螺仪定向报告 XXX矿业1# 与3# 斜坡道实测 2015年10月26日

潼金矿业1#、3#斜坡道陀螺定向测量成果报告 1 定向设备 本次陀螺定向采用中国人民解放军第一〇〇一工厂自主研发、生产的HGG05型陀螺全站仪(1σ≤5″),编号15001,上置中翰测绘公司生产的TS-802N型全站仪。 2 数据来源 点位信息由XXX矿业地勘部提供。 表1 控制点信息 点位X Y G3007 3816634.319 428917.073 G3006 3816594.778 428824.508 G3024 3811951.219 432293.488 G3022 3812175.001 432187.585 1053 3814565.216 430662.229 1055 3814721.892 430541.139 E106 3814496.765 431437.456 E107 3814459.429 431541.895 3083 3811452.311 431630.663 3082 3811581.143 431634.860 其中地面控制点为:G3007、G3006;G3024、G3022。 α=246°52′09″,根据计算得知控制边方位角分别为:3006 G G3007→ α=334° 40′ 28″。 G3024→ G 3022 3 定向过程

光纤陀螺测斜仪技术

光纤陀螺测斜仪技术综述 北京航空航天大学光纤传感器研究所刘晓(lx760506@https://www.docsj.com/doc/f210505476.html,) 光纤陀螺测斜仪的核心传感器是光纤陀螺元件和重力加速度元件。重力加速度元件的技术和产品工艺在上世纪80年代已经非常成熟。所以当时用于地质钻井测量的测斜仪都应用这种元件作顶角测量传感器,加上磁通门元件作方位测量传感器。这种方法制造的测斜仪具有精度高,性能可靠的特点。美中不足的是,这种测斜仪不能在磁性矿区应用,也不可以在钻杆中、套管中应用。相比磁通门式测斜仪,光纤陀螺测斜仪就更具有广泛的应用范围,光纤陀螺测斜仪不依靠大地磁场来确定方位,这种测斜仪确定钻孔方位的原理是检测地球自转角速度在仪器坐标和钻孔方向上的分量,再经过复杂的计算得到钻孔的方位角。地球自转的角速度非常小,平时我们看到的钟的时针运动的角速度已经很小了,但时针运动的角速度比地球自转的角速度却还快两倍。可见要测量地球自转的角速度,要求光纤陀螺仪的精度会是多么高。 光纤陀螺仪的技术发展 自从1976年美国犹他大学的VALI和SHORTHILL等人成功研制第1个光纤陀螺(fiber-optic gyroscope, FOG)以来,光纤陀螺已经发展了30多年历史。在这些年的发展过程中,许多基础技术如光纤环绕制技术等都取得了很大的突破。光纤陀螺仪的突出特点使其在航天航空、机载系统和军事技术上的应用十分理想,因此受到用户特别是军队的高度重视,美、俄、日、法等国的光纤陀螺仪研究工作取得很大的进展。各国光纤陀螺仪研究工作大都集中在干涉式,少数公司却仍在研究谐振式光纤陀螺。光纤陀螺的商品化是在上世纪90年代初才开始,中低精度的光纤陀螺(特别是干涉式光纤陀螺)己经商品化,并在多领域内应用。高精度光纤陀螺仪的开发和研制正走向成熟阶段。国外,1°/h至0.01°/h的商用产品已用于飞行器惯性测量组合装置。美国利顿公司已将0.1°/h的光纤陀螺仪用于战术导弹惯导系统。新型导航系统FNA2012采用了1°/h的光纤陀螺仪和卫星导航GPS。美国光纤陀螺仪的精度1996年达到0.01°/h,2001年达到0.001°/h。2006年达到0.0001°/h,很多场合都已经取代传统的机械陀螺仪。 美国的光纤陀螺研制公司有利顿公司、霍尼威尔公司、德雷泊实验室公司、斯坦福大学以及光纤传感技术公司等。利顿公司的光纤陀螺技术在低、中精度应用领域已经成熟,并且已经量产化。1988年研制出SCIT实验惯性装置,惯件器件是光纤陀螺和硅加速度计。1989年公司研制的CIGIF论证系统飞行试验装置。1991/1992年研制出用于导弹和姿态与航向参考系统的惯性测量系统。1992年研制出GPS/INS组合导航系统。霍尼韦尔公司研制的第一代高性能的干涉仪式光纤陀螺采用的是Ti内扩散集成光学相位调制器。采用的其它器件还有0.83um宽带光源、光电探测器/前置放大器模块、保偏光纤偏振器、两个保偏光纤熔融型耦合器以及由1km保偏光纤构成的传感环圈。为了满足惯导级光纤陀螺的要求,霍尼韦尔公司研制的第二代高性能干涉仪式光纤陀螺采用了集成光学多功能芯片技术以及全数字闭环电路。美国德雷珀实验室从1978年起为JPL空间应用研制高精度光纤陀螺,曾研制过谐振腔式光纤陀螺,研制了9年,由于背向散射误差限制了精度,后来改为采用干涉仪式方案。在研制干涉仪式光纤陀螺的过程中,采用了三大技术措施:a.把光源、探测器和前置放大器做成一个模块。b.光纤传感环圈结构影响精度很大,采用了无骨架绕制光纤环圈的技术途径。 c.多功能集成光学器件模块,包括了所有其余的光纤陀螺的光纤器件。德雷珀实验室的研究人员认为:目前0.01°/h 的干涉仪式光纤陀螺成本较高,需要研制自动生产线,降低成本,保证质量。对于今后的发展问题,德雷珀实验室的研究人员认为:a.惯性级的干涉仪式光纤陀螺仪,可以取代动力调谐陀螺仪,并逐渐取代激光陀螺仪。b.惯性级干涉仪式光纤陀螺仪的

单点测斜仪的使用方法

实验5.1 单点测斜仪使用操作方法 一、目的与要求 1. 熟悉和了解JXY—2型单点测斜仪的结构、工作原理和使用条件。 2. 掌握JZY—2型测斜仪操作方法。 二、实验内容 1. 测量钻孔5m、20m、30m处的顶角和方位角; 2. 作出钻孔顶角和方位角的变化曲线。 三、实验设备、仪器及辅助工具 1. XY—4型钻机,ф50mm钻杆; 2. JXY—2型测斜仪一套2台,井下钢绳吊装护筒一套; 3. 拧卸钻杆工具、管钳等。 四、实验步骤 1. 从保护简内取出测斜仪,旋动定时装置的旋钮,分别将两台仪器的机械钟启动到仪器卡所需要的时间(根据所测点的深度,下钻所需要的时间和组装仪器所需要的时间以及仪器在测点稳定所需时间的总和)。记下时间。 2. 将两台仪器分别装入保护筒内,盖紧密封盖。 3. 将两台仪器分上、下位装入井下钢绳吊装护筒里,拧紧护筒堵头。 4. 将井下钢绳吊装护筒连接在钻杆上。 5. 开动钻机,利用升降机,使用钻杆将测斜仪下到测点。 6. 仪器在测点稳定后,超过仪器锁卡所需时间,待仪器锁卡后,提出井下钢绳吊装护筒,取出测斜仪,分别直接读出两台仪器所测顶角和方位角。作好第一测点记录。 7. 重复上述操作步骤,测量钻孔的下一个测点。 五、实验数据整理(填入表中) 六、实验报告要求 1. 每人交一份实验报告。 2. 简述JXY—2型单点测斜仪结构特点及工作原理。 3. 分析测量结果,简析钻孔弯曲原因。

实验5.2多点测斜仪操作方法 一、目的与要求 1. 熟悉和了解JJX—3型多点测斜仪的结构、工作原理和使用条件。 2. 掌握JJX—3型测斜仪操作方法。 二、实验内容 1. 测量钻孔5m、10m、20m、30m、40m处的顶角和方位角; 2. 作出钻孔顶角和方位角的变化曲线。 三、实验设备、仪器及辅助工具 1. 升降绞车,钢丝绳,三芯电缆线。 2. JJX—3测斜仪。 3. JJG—1型测斜校验台。 4 拧卸工具,常用小工具。 四、实验步骤及操作注意事项 1. 仪器接线与调试 将JJX—3型井下仪器固定在校验台上,把井下仪器顶端三芯线与电缆三芯线按相同颜色联拉起来,用橡胶皮或不透水材料扎紧密封。把电缆线的三个接头(一般红色“+”、灰色“—”,黑色“地”)分别接到面板上的三个接线柱上(“+”、“—”、“╧”)。 将90V直流电源(或90V干电池)接在仪器面板电源接线柱“+”、“—”上(图5-1)。 按下“电源检查”按钮,这时“状态指示”mA表指针应指在两红线之间“V”内。 按下“状态转换”按钮,识别四个状态位置(见表5—1)。 按下“状态转换”按钮,使井下仪器处于自由状态后,将刻度盘红线与有机玻璃红线重合,再按下方位测量按钮,这时平衡指示mA表指针应指“O”,如有偏转,用螺丝刀调节“电缆电阻补偿”电位器,使指针指“O”

陀螺经纬仪定向word版

第三节 陀螺经纬仪定向 将陀螺特性与地球自转有机结合构成的陀螺仪能够自动寻找真北方向,将这样的陀螺仪安装在经纬仪上,组成的陀螺经纬仪便可以测定真北方向在经纬仪水平度盘上的读数N ,从而可求出任一方向的真方位角。这一工作称为陀螺经纬仪定向观测,或陀螺经纬仪定向测量,或简称陀螺经纬仪定向 (gyro-theodolite orientation )。 如图3-1,C 、D 为地面上两点,在C 点上安置 陀螺经纬仪,测得真北方向在经纬仪水平度盘上的读数N ,D 方向在水平度盘上的读数为r CD ,则可求得 地理方位角 CD =r CD N (3-1) 和高斯平面直角坐标方位角 T CD =CD C (3-2) 其中C =(C L C )sin C C ,C 为天文经度,L C 为大地经度,C 为天文纬度,C 为C 处的子午线收敛角。 陀螺特性的发现与应用始于我国西汉末年,将陀螺技术应用于测北定向则是由于近代航海与采矿业发展的需要。法国人L. Foucault 1852年创造了第一台实验陀螺罗经;德国人H.Ansch ütz 制成第一台实用陀螺罗经样机;德国人M. Schuler 1908年首次制成单转子液浮陀螺罗经,用于军事和航海;在船用陀螺罗经的基础上,1949年德国Clausthal 矿业学院O.Rellensmann 研制出MW1型子午线指示仪,并于1958年研制出金属带悬挂陀螺灵敏部的KT-1陀螺经纬仪。此后的几十年间,世界各国先后开展了陀螺经纬仪的研制工作,相继生产出多种型号的产品。依仪器结构和发展阶段,可将各种陀螺经纬仪划分为液体漂浮式、下架悬挂式和上架悬挂式三种类型。液体漂浮式陀螺经纬仪的结构特点是将陀螺转子装在封闭的球形浮子中,采用液体漂浮电子磁定中心,陀螺转子由空气压缩涡轮机带动三相交流电机供电,全套仪器重达几百千克,一次定向需几小时,陀螺方位角一次测定中误差为1~2。这是陀螺经纬仪的早期型式。下架悬挂式陀螺经纬仪则是利用金属悬挂带把陀螺房悬挂在经纬仪空心轴下,悬挂带上端与经纬仪的壳体相固连;采用导流丝直接供电方式,附有携带式蓄电池组和晶体变流器。相对于液浮式,下架式陀螺经纬仪在定向精度、定向时间以及仪器的重量和体积上都产生了飞跃式改进。上架式陀螺经纬仪的结构特征是,用金属丝悬挂带把陀螺转子(装在陀螺房中)悬挂在灵敏部的顶端,灵敏部可稳定地联接在经纬仪横轴顶端的金属桥形支架上(该支架需预先制做、安装),不用时可取下,也就是说,灵敏部实际上相当于经纬仪的一个附件,这是仪器朝更方便使用的一种改进。本节以上架式陀螺经纬仪为例进行讨论。 C D N 真 北 ?C αCD T CD 图3-1 用陀螺经纬仪测量方位角

陀螺测斜仪在定方位射孔中的应用

陀螺测斜仪在定方位射孔中的应用 随着陆上油田开发中后期侧(水平)钻井以及海洋平台加密井和从式井数量的增多,不受磁干扰的陀螺测斜仪得到了广泛的应用,但目前国内应用的主要是有线陀螺测斜仪。本文简要介绍TLX50-100D陀螺测斜仪的在定方位射孔中的应用进行详细论述。 标签:定方位射孔;陀螺测斜仪射孔;管柱方位角 陀螺仪最早应用于航空航天领域的飞行器导航,是以惯性器件为核心的定位定向系统。经过改进用于钻井的陀螺仪称为陀螺测斜仪,它可以满足油田钻探的耐高温(125℃)、可靠、小口径等一些特殊的要求。陀螺测斜仪于上世纪90年代开始用于定向钻井中,因为其可感应地球自转速度,不受磁干扰,在强磁环境和油套管或钻杆中准确测量井斜、方位,磁重力高边而得到迅速的推广与应用。陀螺测斜仪自动寻北,无需校北,测量数据为井眼轨迹的真实数据,无需校正就可直接使用。 常规射孔孔眼的方向是随机的,因此无法满足一些特殊情况对射孔施工的要求,而定方位射孔技术是一种可以进行井下有方向性射孔的射孔工艺技术,其利用油管输送射孔管柱的方式,在油管与射孔管柱之间接人一定方位短节,通过测量定方位短节上方位键的方位来确定射孔弹穿孔的方位。 陀螺测斜仪下端的导向装置与定方位短节内的定方位键吻合对接,测量定方位键的方位角(射孔弹穿孔的方向),若测量定方位键的方位角与目标方位角不一致时,则需在井口转动油管调整射孔管柱的方向,直至测量的方位角与目标方位角的误差在允许误差范围内后,测斜仪器进行射孔作业。起出陀螺测斜仪器进行射孔作业。 1 TLX50-1000陀螺测斜仪工作原理 TLX50-100D陀螺测斜仪采用抗冲击、抗震动能力强的双轴动力调谐陀螺和三个石英加速度计作为核心传感器。具有高精度高可靠性体积小重量轻等特点。 以北东地为基准建立一个参考坐标系即大地坐标系,以三维正交安装的加速度计和陀螺建立测量坐标系即仪器坐标系。 在大地坐标系中X指向水平东Y指向水平北oZ垂直地面向上,在仪器坐标系中,由仪器轴线方向定义为Z轴,将与仪器轴线垂直的截面上一对正交的方向定义为x,Y轴。如果人为地将两个坐标系重合,则xo对应X,Yo对应Y,oZ对应z。仪器坐标系x、Y、z的任何位置可以认为相对于大地坐标系XYoZ 经过三次旋转。仪器在井眼中静止时,利用仪器三維坐标轴上分别安装的三个加速度计和一个二自由度的动调陀螺的测量数值,采用罗盘算法,计算出仪器在井中的任意姿态,进而可以得到仪器的方位角和倾斜角,工具面角等参数。

陀螺经纬仪观测方法研究与应用

陀螺经纬仪观测方法研究与应用 【摘要】陀螺经纬仪(gyro theodolite)是带有陀螺仪装置、用于测定直线真方位角的经纬仪。其关键装置之一是陀螺仪,简称陀螺,又称回转仪。陀螺经纬仪的用途在于它能够确定真北方向(子午面)在水平度盘上的读数,在跟踪状态下即陀螺轴进动(摆动)中心所对应的水平度盘读数,求M的方式不同,确定了两大类陀螺经纬仪定向观测方法:跟踪式与不跟踪式。本文对观测精度进行分析后总结出观测方法、注意事项。 【关键词】陀螺经纬仪;观测方法;研究与应用 引言 陀螺经纬仪(见图1)主要由一个高速旋转的转子支承在一个或两个框架上而构成。具有一个框架的称二自由度陀螺仪;具有内外两个框架的称三自由度陀螺仪。经纬仪上安置悬挂式陀螺仪,是利用其具指北性确定真子午线北方向,再用经纬仪测定出真子午线北方向至待定方向所夹的水平角,即真方位角。指北性,是指悬挂式者在受重力作用和地球自转角速度影响下,陀螺轴将产生进动、逐渐向真子面靠拢,最终达到以真子面为对称中心,作角简谐运动的特性。确定真子午线北方向的常用方法,有中天法和逆转点法。 图1 陀螺经纬仪 目前主要应用于矿用巷道施工测量,以及盾构掘进中的水平及真北方向测量,可大大弥补导线过长所造成的精度损失。 1 陀螺经纬仪观测方法简介 1.1 逆转点法 逆转点法是一种最基本的陀螺定向方法。用逆转点法进行定向观测时,要求照准部处于跟踪状态,即在观测过程中使目镜分划板的零刻线始终与陀螺灵敏部的摆动光标相重合。当跟踪陀螺灵敏部到逆转点时,在经纬仪水平读盘上读数u1;跟踪到另一个逆转点时,在经纬仪水平读盘上读数u2。连续读取五个逆转点读数u1、u2、u3、u4、u5,取舒勒平均值计算结果。五个读数可以得到三个舒勒平均值N1、N2、N3: 则一次测定陀螺方位角的平均值为: N均=(N1+N2+N3)/3=(u1+3u2+4u3+3u4+u5)/12。 1.2 中天法

相关文档
相关文档 最新文档