文档视界 最新最全的文档下载
当前位置:文档视界 › 种群相互竞争的Matlab程序

种群相互竞争的Matlab程序

种群相互竞争的Matlab程序
种群相互竞争的Matlab程序

两种群相互竞争模型如下:

其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2n 为它们的最大容量。1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。

经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题:

(1) 设r1=r2=1,n1=n2=100,s1=,s2=2,初值x0=y0=10,计算x(t),y(t),画出它

们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋势。

(2) 改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分

析所得结果,若s1=(>1),s2=(<1),再分析结果。由此可以得到什么结

论,请作出解释。

(3) 试验当s1=,s2=时会有什么结果,当s1=,s2=时,又会有什么结果。 模型求解:

程序如下:

:

function dx=fun(t,x,r1,r2,n1,n2,s1,s2)

dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)]; :

h=;%所取时间点间隔

ts=[0:h:30];%时间区间

x0=[10,10];%初始条件

opt=odeset('reltol',1e-6,'abstol',1e-9);%相对误差1e-6,绝对误差1e-9

[t,x]=ode45(@fun,ts,x0,opt,1,1,100,100,,2);%使用5级4阶龙格—库塔公式计算%后面的参数传给fun,分别是r1,r2,n1,n2,s1,s2

[t,x]%输出t,x(t),y(t)

plot(t,x,'.-'),grid%输出x1(t), x2(t)的图形

gtext('x1(t)'),gtext(' x2(t)'),pause

plot(x(:,1),x(:,2),'.-'),grid,%作相轨线

gtext('x1'),gtext('x2');

运行结果[t,x]为:

ans =

……

最后数值稳定在x=100,y=0上,即物种甲达到最大值,物种乙灭绝。

x(t),y(t)图形

x(y)的图形:

从第一张图可以看到,物种乙开始一段时间数量稍稍有所增长,10年后就渐渐灭绝了,最后稳定状态就只剩下甲物种。

改变参数进一步讨论:

下面在保持s1,s2不变的基础上,分别改变r1,r2;n1,n2;x0,y0观察变化趋势:(1)改变r1,r2:

r1=r2=

我们可以看到甲乙两物种最终结果仍然是甲达到数量极限而乙灭绝,但与原先不同的是变化速度减缓了,这是由于自然增长率r1,r2变小的缘故(相当于变化率减小)。

(2)改变n1,n2:

n1=10000,n2=100:

由于一开始甲物种的数量相对较少(x/n1),所以乙物种得以快速增长,数量一度达到90以上,但最终仍然灭绝。物种容量的改变并不能影响最终谁会灭绝。下面的情况证明了这一点:

(3)改变x0,y0:

x0=10,y0=100:

乙物种的初始数量大使其灭绝时间稍稍延后,但它灭绝的趋势不变。

综上,无论怎样改变r1,r2,n1,n2,x0,y0,都改变不了最后甲物种存活并达到数量最大且乙物种灭绝的结果。

下面再改变s1,s2观察变化趋势:

(1)s1>1,s2<1

s1=,s2=

结果正和s1=,s2=2时相反,最后甲物种灭绝,乙物种存活并达到数量极限。如果这时改变r1,r2,n1,n2,x0,y0这些参数,变化趋势和上面列举的相同(甲乙相反),这从方程的对称性上可以求证。现在得出结论,由s1,s2的物理意义,当某个s1或者s2大于1时(另一个小于1),它将严重消耗其作用的物种的生存资源,最终的结果是致使此物种灭绝。

(2)s1<1,s2<1

s1=,s2=

最后稳定在x= y=上。两物种共存。

(3)s1>1,s2>1

s1=,s2=

可见虽然s1,s2都大于1,但由于s2更大,更严重消耗了乙物种的生存资源,使乙物种在竞争中灭绝。

综上所述,s1,s2小于1时消耗生存资源的严重程度较轻,所以甲乙物种可以共存,但两者都达不到最大值;当其中之一大于1时,对应作用的物种就会由于生存资源的过度消耗而灭绝;当s1,s2都大于1时,两物种竞争激烈,最后s1,s2中更大者对应作用的物种灭绝。所谓物尽天择,自然资源是有限的,需要更少资源就能生存的物种在竞争中将占有优势。

还有一种情况,当s1,s2都大于1但相等时,由于方程的对称性,甲乙两物种都能生存下来,但都不能达到最大值。

matlab电力系统潮流计算

华中科技大学 信息工程学院课程设计报告书题目: 电力系统潮流计算 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2015年 11 月 10 日

2015年11月12日

信息工程学院课程设计成绩评定表

摘要 电力系统稳态分析包括潮流计算和静态安全分析。本文主要运用的事潮流计算,潮流计算是电力网络设计与运行中最基本的运算,对电力网络的各种设计方案及各种运行方式进行潮流计算,可以得到各种电网各节点的电压,并求得网络的潮流及网络中的各元件的电力损耗,进而求得电能损耗。本位就是运用潮流计算具体分析,并有MATLAB仿真。 关键词:电力系统潮流计算 MATLAB仿真

Abstract Electric power system steady flow calculation and analysis of the static safety analysis. This paper, by means of the calculation, flow calculation is the trend of the power network design and operation of the most basic operations of electric power network, various design scheme and the operation ways to tide computation, can get all kinds of each node of the power grid voltage and seek the trend of the network and the network of the components of the power loss, and getting electric power. The standard is to use the power flow calculation and analysis, the specific have MATLAB simulation. Key words: Power system; Flow calculation; MATLAB simulation

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

种群相互竞争模型

数学实验设计 课题: 两种群相互竞争模型如下: ()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ? =--??? ?=--?? 其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。 分析: 这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。y(t)表示乙种群在时刻t 的数量。假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。则我们可以得到如下模型: x(t)=r1*x*(1-x/n1-s1*y/n2)

同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2) 如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。 对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解; 问题一: 设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。 编写如下M文件: function xdot=jingzhong(t,x) r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x; 然后运行以下程序: ts=0:0.1:10; x0=[10,10]; [t,x]=ode45(@jingzhong,ts,x0); [t,x] plot(t,x),grid,

matlab潮流计算

附录1 使用牛顿拉夫逊法进行潮流计算的Matlab程序代码 % 牛拉法计算潮流程序 %----------------------------------------------------------------------- % B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值 % 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量 % 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点;3为PV 节点; %------------------------------------------------------------------------ clear all; format long; n=input('请输入节点数:nodes='); nl=input('请输入支路数:lines='); isb=input('请输入平衡母线节点号:balance='); pr=input('请输入误差精度:precision='); B1=input('请输入由各支路参数形成的矩阵:B1='); B2=input('请输入各节点参数形成的矩阵:B2='); Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); %------------------------------------------------------------------ for i=1:nl %支路数 if B1(i,6)==0 %左节点处于1侧 p=B1(i,1);q=B1(i,2); else %左节点处于K侧 p=B1(i,2);q=B1(i,1); end Y(p,q)=Y(p,q)-1、/(B1(i,3)*B1(i,5)); %非对角元 Y(q,p)=Y(p,q); %非对角元 Y(q,q)=Y(q,q)+1、/(B1(i,3)*B1(i,5)^2)+B1(i,4); %对角元K侧 Y(p,p)=Y(p,p)+1、/B1(i,3)+B1(i,4); %对角元1侧 end %求导纳矩阵 disp('导纳矩阵Y='); disp(Y) %------------------------------------------------------------------- G=real(Y);B=imag(Y); %分解出导纳阵的实部与虚部 for i=1:n %给定各节点初始电压的实部与虚部 e(i)=real(B2(i,3)); f(i)=imag(B2(i,3));

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

基于MATLAB的电力系统潮流计算

基于MATLAB的电力系统潮流计算 %简单潮流计算的小程序,相关的原始数据数据数据输入格式如下: %B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗置于低压侧处理。 %第三列为支路的串列阻抗参数。 %第四列为支路的对地导纳参数。 %第五烈为含变压器支路的变压器的变比 %第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,%“0”为不含有变压器。 %B2为节点参数矩阵,其中第一列为节点注入发电功率参数;第二列为节点%负荷功率参数;第三列为节点电压参数;第六列为节点类型参数,其中 %“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数。 %X为节点号和对地参数矩阵。其中第一列为节点编号,第二列为节点对地%参数。 n=input('请输入节点数:n='); n1=input('请输入支路数:n1='); isb=input('请输入平衡节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入支路参数:B1='); B2=input('请输入节点参数:B2='); X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)==0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/(B1(i,3)*B1(i,5)); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3);

music 方位估计 实验报告三 MATLAB 代码

实验报告三 实验目的: 实现常规波束形成及基于MUSIC 方法的方位估计。 实验内容: 1)若干阵元的接收阵,信号频率为10KHz ,波束主轴12度,仿真给出常规波束形成的波束图。 2)16个阵元的均匀线列阵,信号频率为10KHz ,信号方位为12度,用MUSIC 方法完成目标定向,信噪比-5dB ,0dB ,5dB 。 i) 波束形成时的阵型设计为两种,一种是均匀线列阵,阵元16个;一种是均匀圆阵,阵元数为16个,比较这两种阵型的波束图。 ii )比较不同信噪比下MUSIC 方法估计的性能(统计100次)。 实验原理: i)常规波束形成: 如图所示,基阵的输出),(θt v 。 ∑∑=*=* ==M m i i M m i i w t x t x w t v 1 1 ) ()()()(),(θθθ 采用向量符号则有, )()()()(),(H H θθθw x x w t t t v == 式中,x(t)和w(q )分别为观测数据向量和加权系数向量, ) ,(θt v 图 1 波束形成器基本原理图

T M 21])()()([)(t x t x t x t Λ=x T M 21])()()([)(θθθθw w w Λ =w 基阵输出端的空间功率谱表示为: ) ()( )()]()([)( )]()()()([ )],(),([ ] ),([)(H H H H H *2 θθθθθθθθθθRw w w x x w w x x w =====t t E t t E t v t v E t v E P 式中,R 为观测数据的协方差矩阵。 ii )基于MUSIC 方法的方位估计: )()()()(1 t n t s a t x i d i +=∑=θ T M 21])()()([)(t x t x t x t Λ =x )()()()(t n t s A t x +=θ 假设: (1 ) 信号源的数目d 是已知的, 且d < M ; (2 ) 各信号的方向矢量是相互独立的, 即)(θA 是一个列满秩矩阵; (3 ) 噪声)(t n 是空间平稳随机过程, 为具有各态历经性的均值为零、方差为σ2n 的高斯过程; (4 ) 噪声各取样间是统计独立的。 在上述假设条件下, 基阵输出的协方差矩阵可表示为: I A AR t x t x E R H s H 2])()([α+== 其中, R s 为信号的协方差矩阵;I 为单位矩阵。对R 进行特征分解, 并以特 征值降值排列可得 H m m M d m m H m m d m m e e e e R ∑∑+==+ =1 1λ λ 信号子空间与噪声子空间正交。 若噪声子空间记为E N , 即 ∑+== M d m H m m N e e E 1

基于MATLAB的潮流计算源程序代码(优.选)

%*************************电力系统直角坐标系下的牛顿拉夫逊法潮流计算********** clear clc load E:\data\IEEE014_Node.txt Node=IEEE014_Node; weishu=size(Node); nnum=weishu(1,1); %节点总数 load E:\data\IEEE014_Branch.txt branch=IEEE014_Branch; bwei=size(branch); bnum=bwei(1,1); %支路总数 Y=(zeros(nnum)); Sj=100; %********************************节点导纳矩阵******************************* for m=1:bnum; s=branch(m,1); %首节点 e=branch(m,2); %末节点 R=branch(m,3); %支路电阻 X=branch(m,4); %支路电抗 B=branch(m,5); %支路对地电纳 k=branch(m,6); if k==0 %无变压器支路情形 Y(s,e)=-1/(R+j*X); %互导纳 Y(e,s)=Y(s,e); end if k~=0 %有变压器支路情形 Y(s,e)=-(1/((R+j*X)*k)); Y(e,s)=Y(s,e); Y(s,s)=-(1-k)/((R+j*X)*k^2); Y(e,e)=-(k-1)/((R+j*X)*k); %对地导纳 end Y(s,s)=Y(s,s)-j*B/2; Y(e,e)=Y(e,e)-j*B/2; %自导纳的计算情形 end for t=1:nnum; Y(t,t)=-sum(Y(t,:))+Node(t,12)+j*Node(t,13); %求支路自导纳 end G=real(Y); %电导 B=imag(Y); %电纳 %******************节点分类************************************* * pq=0; pv=0; blancenode=0; pqnode=zeros(1,nnum); pvnode=zeros(1,nnum); for m=1:nnum; if Node(m,2)==3 blancenode=m; %平衡节点编号 else if Node(m,2)==0 pq=pq+1; pqnode(1,pq)=m; %PQ 节点编号 else if Node(m,2)==2 pv=pv+1; pvnode(1,pv)=m; %PV 节点编号 end end end end %*****************************设置电压初值********************************** Uoriginal=zeros(1,nnum); %对各节点电压矩阵初始化 for n=1:nnum Uoriginal(1,n)=Node(n,9); %对各点电压赋初值 if Node(n,9)==0;

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

种群相互竞争的Matlab程序

两种群相互竞争模型如下: 1112 2221(1)(1)dx x y r x s dt n n dy y x r y s dt n n =--=-- 其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2 n 为它们的最大容量。1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。 经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题: (1) 设r1=r2=1,n1=n2=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出 它们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋 势。 (2) 改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分 析所得结果,若s1=1.5(>1),s2=0.7(<1),再分析结果。由此可以得到 什么结论,请作出解释。 (3) 试验当s1=0.8,s2=0.7时会有什么结果,当s1=1.5,s2=1.7时,又会有 什么结果。 模型求解: 程序如下: fun.m: function dx=fun(t,x,r1,r2,n1,n2,s1,s2) dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)]; p3.m: h=0.1;%所取时间点间隔 ts=[0:h:30];%时间区间 x0=[10,10];%初始条件 opt=odeset('reltol',1e-6,'abstol',1e-9);%相对误差1e-6,绝对误差1e-9 [t,x]=ode45(@fun,ts,x0,opt,1,1,100,100,0.5,2);%使用5级4阶龙格—库塔公式计算%后面的参数传给fun,分别是r1,r2,n1,n2,s1,s2 [t,x]%输出t,x(t),y(t) plot(t,x,'.-'),grid%输出x1(t), x2(t)的图形 gtext('x1(t)'),gtext(' x2(t)'),pause plot(x(:,1),x(:,2),'.-'),grid,%作相轨线 gtext('x1'),gtext('x2'); 运行结果[t,x]为: ans = 0 10.0000 10.0000 0.1000 10.8805 10.7120 0.2000 11.8235 11.4454 0.3000 12.8309 12.1962 0.4000 13.9044 12.9595 0.5000 15.0453 13.7295 ……

基于matlab--psat软件的电力系统潮流计算课程设计

东北电力大学课程设计改革试用任务书: 电力系统潮流计算课程设计任务书 设计名称:电力系统潮流计算课程设计 设计性质:理论计算,计算机仿真与验证 计划学时:两周 一、设计目的 1.培养学生独立分析问题、解决问题的能力; 2.培养学生的工程意识,灵活运用所学知识分析工程问题的能力 3.编制程序或利用电力系统分析计算软件进行电力系统潮流分析。 二、原始资料 1、系统图:IEEE14节点。 2、原始资料:见IEEE14节点标准数据库 三、课程设计基本内容: 1.采用PSAT仿真工具中的潮流计算软件计算系统潮流; 1)熟悉PSAT仿真工具的功能; 2)掌握IEEE标准数据格式内容; 3)将IEEE标准数据转化为PSAT计算数据; 2.分别采用NR法和PQ分解法计算潮流,观察NR法计算潮流中雅可比矩阵的变化情况, 分析两种方法计算潮流的优缺点; 3.分析系统潮流情况,包括电压幅值、相角,线路过载情况以及全网有功损耗情况。

4.选择以下内容之一进行分析: 1)找出系统中有功损耗最大的一条线路,给出减小该线路损耗的措施,比较各种措施 的特点,并仿真验证; 2)找出系统中电压最低的节点,给出调压措施,比较各种措施的特点,并仿真验证; 3)找出系统中流过有功功率最大的一条线路,给出减小该线路有功功率的措施,比较 各种措施的特点,并仿真验证; 5.任选以下内容之一作为深入研究:(不做要求) 1)找出系统中有功功率损耗最大的一条线路,改变发电机有功出力,分析对该线路有 功功率损耗灵敏度最大的发电机有功功率,并进行有效调整,减小该线路的损耗; 2)找出系统中有功功率损耗最大的一条线路,进行无功功率补偿,分析对该线路有功 功率损耗灵敏度最大的负荷无功功率,并进行有效调整,减小该线路的损耗; 3)找出系统中电压最低的节点,分析对该节点电压幅值灵敏度最大的发电机端电压, 并有效调整发电机端电压,提高该节点电压水平; 四、课程设计成品基本要求: 1.绘制系统潮流图,潮流图应包括: 1)系统网络参数 2)节点电压幅值及相角 3)线路和变压器的首末端有功功率和无功功率 2.撰写设计报告,报告内容应包括以下几点: 1)本次设计的目的和设计的任务; 2)电力系统潮流计算的计算机方法原理,分析NR法和PQ分解法计算潮流的特点; 3)对潮流计算结果进行分析,评价该潮流断面的运行方式安全性和经济性; 4)找出系统中运行的薄弱环节,如电压较低点或负载较大线路,给出调整措施; 5)分析各种调整措施的特点并比较它们之间的差异; 6)结论部分以及设计心得; 五、考核形式 1.纪律考核:学生组织出勤情况和工作态度等; 2.书面考核:设计成品的完成质量、撰写水平等; 3.答辩考核:参照设计成品,对计算机方法进行电力系统潮流计算的相关问题等进行答辩; 4.采用五级评分制:优、良、中、及格、不及格五个等级。

(完整版)MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK % Pe=zeros(1,26); jishu=1; for snr=-10:0.5:15 max = 10000; s=round(rand(1,max));%长度为max的随机二进制序列 f=100;%载波频率 nsamp = 1000;每个载波的取样点数 tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同 cm=zeros(1,nsamp*max); cp=zeros(1,nsamp*max); mod=zeros(1,nsamp*max); for n=1:max; if s(n)==0; m=zeros(1,nsamp); b=zeros(1,nsamp); else if s(n)==1; m=ones(1,nsamp); b=ones(1,nsamp); end end c = sin(f*tc); cm((n-1)*nsamp+1:n*nsamp)=m; cp((n-1)*nsamp+1:n*nsamp)=b; mod((n-1)*nsamp+1:n*nsamp)=c; end tiaoz=cm.*mod;%2ASK调制 t = linspace(0,length(s),length(s)*nsamp); tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调 [N,Wn]=buttord(0.2,0.3,1,15); [b,a]=butter(N,Wn); dpsk=filter(b,a,jiet);%低通滤波 % 抽样判决,判决门限为0.5 depsk = zeros(1,nsamp*max); for m = nsamp/2:nsamp:nsamp*max; if dpsk(m) < 0.5; for i = 1:nsamp depsk((m-500)+i) = 0; end

MATLAB下的潮流计算实现-稀疏技术毕业设计

毕业设计(论文)MATLAB下的潮流计算实现-稀疏技术

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗等等。在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。因此潮流计算是研究电力系统的一种很重要和很基础的计算。由于电力系统结构及参数的一些特点,并且随着电力系统不断扩大,潮流问题的方程式阶数越来越高,对这样的方程式并不是任何数学方法都能保证给出正确答案的。这种情况成为促使电力系统计算人员不断寻求新的更可靠方法的重要因素。 本文旨在于研究潮流计算的牛顿—拉夫逊法的基本原理,在Matlab环境中实现牛顿—拉夫逊法潮流计算的数学模型,程序流程以及编制相应程序,并在程序中融合了节点优化编号和稀疏技术,以提高计算效率。最后用IEEE-3O节点标准测试系统验证所编程序。 关键词:潮流计算Newtom-Raphson法节点优化稀疏技术Matlab ABSTRACT Power flow calculation is fundanmental of analysis. Network reconfiguration,fault management,state estimator etc also need the data of electrial system power flow.There is important significance to develop power flow calculation in allusion to traits of distribution network. This paper introduces the principle of Newtom-Raphson algorithm, which is developed for calculation of power flow calculation ,where zero sequence network is open.With this algorithm,the three-phase load is resolved into positive/negative sequence power and coupling power,thus,decoupling three phase power flow into sequencet component power flow.The power flow can be obtained by just finding the positive sequence power flow and then finding the negative sequent component from the coupling https://www.docsj.com/doc/b25513413.html,pared with the existing methods,the jacobian matrix with the proposed algorithm is of much lower order,thus substantially reducing the computation burden.The proposed algorithm,together with a reference algorithm,has been simulated on an actual IEEE-30 system using statistic load date.And then it will

种群的相互竞争模型中数值计算与结果分析

河北大学《数学模型》实验实验报告 一、实验目的 1.学会编写程序段。 2.能根据m文件的结果进行分析。 3.根据图像进行比较和分析。 二、实验要求 8-1捕鱼业的持续收获 运行下面的m文件,并把相应结果填空,即填入“_________”。 clear;clc; %无捕捞条件下单位时间的增长量:f(x)=rx(1-x/N) %捕捞条件下单位时间的捕捞量:h(x)=Ex %F(x)=f(x)-h(x)=rx(1-x/N)-Ex %捕捞情况下渔场鱼量满足的方程:x'(t)=F(x) %满足F(x)=0的点x为方程的平衡点 %求方程的平衡点 syms r x N E; %定义符号变量 Fx=r*x*(1-x/N)-E*x; %创建符号表达式 x=solve(Fx,x) %求解F(x)=0(求根) %得到两个平衡点,记为: % x0=______________ , x1=___________ x0=x(2); x1=x(1);%符号变量x的结构类型成为<2×1sym> %求F(x)的微分F'(x) syms x; %定义符号变量x的结构类型为<1×1sym> dF=diff(Fx,'x'); dF=simple(dF) %简化符号表达式 %得 F'(x)=________________ %求F'(x0)并简化 dFx0=subs(dF,x,x0); %将x=x0代入符号表达式dF dFx0=simple(dFx0) %得 F’(x0)=_______ %求F’(x1) dFx1=subs(dF,x,x1) %得 F’(x1)=________ %若 E0,故x0点稳定,x1点不稳定(根据平衡点稳定性的准则); %若 E>r,则结果正好相反。 %在渔场鱼量稳定在x0的前提下(E

多种群的数学模型

自然界的多种群模型分析 小组成员:杨宏志 09053055 曾云霖 09053057 赵恒宇 09053060 目录 摘要第3页 关键词第3页 问题重述第3页 符号说明第4页 基本假设第4页 问题分析第4页 正文第5页 总结与思考第12页 参考文献第13页 (注:正文中包括对模型的建立,模型的具体检验,模型的改进,改进模型的检验以及问题的扩展深化。) 自然界的多种群模型分析

摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争

Matlab牛拉法潮流计算程序

%本程序的功能是用牛顿——拉夫逊法进行潮流计算 % B1矩阵:1、支路首端号;2、末端号;3、支路阻抗;4、支路对地电纳 % 5、支路的变比;6、支路首端处于K侧为1,1侧为0 % B2矩阵:1、该节点发电机功率;2、该节点负荷功率;3、节点电压初始值 % 4、PV节点电压V的给定值;5、节点所接的无功补偿设备的容量 % 6、节点分类标号:1为平衡节点(应为1号节点);2为PQ节点; % 3为PV节点; clear; n=input('请输入节点数:n='); nl=input('请输入支路数:nl='); isb=input('请输入平衡母线节点号:isb='); pr=input('请输入误差精度:pr='); B1=input('请输入由各支路参数形成的矩阵:B1='); B2=input('请输入各节点参数形成的矩阵:B2='); Y=zeros(n);e=zeros(1,n);f=zeros(1,n);V=zeros(1,n);sida=zeros(1,n);S1=zeros(nl); % % %--------------------------------------------------- for i=1:nl %支路数 if B1(i,6)==0 %左节点处于1侧 p=B1(i,1);q=B1(i,2); else %左节点处于K侧 p=B1(i,2);q=B1(i,1); end Y(p,q)=Y(p,q)-1./(B1(i,3)*B1(i,5)); %非对角元 Y(q,p)=Y(p,q); %非对角元 Y(q,q)=Y(q,q)+1./(B1(i,3)*B1(i,5)^2)+B1(i,4)./2; %对角元K侧 Y(p,p)=Y(p,p)+1./B1(i,3)+B1(i,4)./2; %对角元1侧 end %求导纳矩阵 disp('导纳矩阵Y='); disp(Y) %---------------------------------------------------------- G=real(Y);B=imag(Y); %分解出导纳阵的实部和虚部 for i=1:n %给定各节点初始电压的实部和虚部 e(i)=real(B2(i,3)); f(i)=imag(B2(i,3)); V(i)=B2(i,4); %PV节点电压给定模值 end for i=1:n %给定各节点注入功率 S(i)=B2(i,1)-B2(i,2); %i节点注入功率SG-SL B(i,i)=B(i,i)+B2(i,5); %i节点无功补偿量 end %=================================================================== P=real(S);Q=imag(S); %分解出各节点注入的有功和无功功率 ICT1=0;IT2=1;N0=2*n;N=N0+1;a=0; %迭代次数ICT1、a;不满足收敛要求的节点数IT2

潮流计算(matlab)实例计算

潮流例题:根据给定的参数或工程具体要求(如图),收集和查阅资料;学习相关软件(软件自选:本设计选择Matlab进行设计)。 2.在给定的电力网络上画出等值电路图。 3.运用计算机进行潮流计算。 4.编写设计说明书。 一、设计原理 1.牛顿-拉夫逊原理 牛顿迭代法是取x0 之后,在这个基础上,找到比x0 更接近的方程的跟,一步一步迭代,从而找到更接近方程根的近似跟。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0 的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。电力系统潮流计算,一般来说,各个母线所供负荷的功率是已知的,各个节点电压是未知的(平衡节点外)可以根据网络结构形成节点导纳矩阵,然后由节点导纳矩阵列写功率方程,由于功率方程里功率是已知的,电压的幅值和相角是未知的,这样潮流计算的问题就转化为求解非线性方程组的问题了。为了便于用迭代法解方程组,需要将上述功率方程改写成功率平衡方程,并对功率平衡方程求偏导,得出对应的雅可比矩阵,给未知节点赋电压初值,一般为额定电压,将初值带入功率平衡方程,得到功率不平衡量,这样由功率不平衡量、雅可比矩阵、节点电压不

平衡量(未知的)构成了误差方程,解误差方程,得到节点电压不平衡量,节点电压加上节点电压不平衡量构成新的节点电压初值,将新的初值带入原来的功率平衡方程,并重新形成雅可比矩阵,然后计算新的电压不平衡量,这样不断迭代,不断修正,一般迭代三到五次就能收敛。 牛顿—拉夫逊迭代法的一般步骤: (1)形成各节点导纳矩阵Y。 (2)设个节点电压的初始值U和相角初始值e 还有迭代次数初值为0。 (3)计算各个节点的功率不平衡量。 (4)根据收敛条件判断是否满足,若不满足则向下进行。 (5)计算雅可比矩阵中的各元素。 (6)修正方程式个节点电压 (7)利用新值自第(3)步开始进入下一次迭代,直至达到精度退出循环。 (8)计算平衡节点输出功率和各线路功率 2.网络节点的优化 1)静态地按最少出线支路数编号 这种方法由称为静态优化法。在编号以前。首先统计电力网络个节点的出线支路数,然后,按出线支路数有少到多的节点顺序编号。当由n 个节点的出线支路相同时,则可以按任意次序对这n 个节点进行编号。这种编号方法的根据是导纳矩阵中,出线支路数最少的节点所对应的行中非零元素也2)动态地按增加出线支路数最少编号在上述的方法中,各节点的出线支路数是按原始网络统计出来的,在编号过程中认为固定不变的,事实上,在节点消去过程中,每消去一个节点以后,与该节点相连的各节点的出线支路数将发生变化(增加,减少或保持不变)。因此,如果每消去一个节点后,立即修正尚未编号节点的出线支路数,然后选其中支路数最少的一个节点进行编号,就可以预期得到更好的效果,动态按最少出线支路数编号方法的特点就是按出线最少原则编号时考虑了消去过程中各节点出线支路数目的变动情况。 3.MATLAB编程应用 Matlab 是“Matrix Laboratory”的缩写,主要包括:一般数值分析,矩阵运算、数字信号处理、建模、系统控制、优化和图形显示等应用程序。由于使用Matlab 编程运算与人进行科学计算的思路和表达方式完全一致,所以不像学习高级语言那样难于掌握,而且编程效率和计算效率极高,还可在计算机上直接输出结果和精美的图形拷贝,所以它的确为一高效的科研助手。 二、设计内容 1.设计流程图

相关文档
相关文档 最新文档