文档视界 最新最全的文档下载
当前位置:文档视界 › 三相电压型逆变器的仿真设计之令狐文艳创作

三相电压型逆变器的仿真设计之令狐文艳创作

三相电压型逆变器的仿真设计之令狐文艳创作
三相电压型逆变器的仿真设计之令狐文艳创作

1 引言

令狐文艳

1.1 课题由来和探究的意义

在近几十年的发展中,逆变电路的应用变的越来越广泛。但是现实中如蓄电池、太阳能电池等都是直流电,而在工厂、家庭、交通等领域所用的电中交流电占据了很大的比例,为了能够给这些负载提供所需电源,就需要使用逆变电路[1]。

随着电力电子学以及微电子技术的不断创新,相对于传统的电压型逆变电路,采用了脉冲调制技术不仅可以把直流变成交流,同时还能够进行调压、调频。作为一个不断创新的革命力量,凭借着可靠性、成本性能和高效节能等优势,逆变电路拥有广阔的市场和发展前景[2]。可以说正是由于逆变电路的不断发展,脉冲宽度调制技术才有了长足的发展,并在电力电子技术领域中取得了至关重要的地位。

又由于大功率电子设备结构比较复杂,如果直接对装置进行逆变实验,费用是相当昂贵而且很费时间,因此在发展的过程中,我们需要利用计算机仿真技术,对设备的运行机制和特点进行有效性的试验,以达到预测问题并解决问题的同时缩短研制时间的目

的。而Matlab软件拥有强大的数值计算功能以及直观的Simulink仿真平台,使得复杂电力电子装置在建模仿真方面成为可能。

1.2 研究方法和内容

本课题将针对现今社会对逆变式电源的需求,按照设计思路对逆变过程进行剖析,然后利用Matlab仿真软件对逆变系统进行了设计、建模、 Matlab 的仿真与谐波分析等。在此之前还会对设计过程所需要的原理进行一定的分析,以及对所要用的元器件的也会简要介绍一下。

1.3 本章小结

本次设计根据选题表中的要求,对系统和最终成果进行大体的描述。阐述了本课题的由来与研究意义以及所要实现的目的和要求。

2 SPWM逆变器原理与分析

2.1 SPWM原理

在逆变电力系统中尤其是在中、小型的逆变电力系统中,PWM调制技术的使用是非常广泛的。然所谓的PWM控制技术就是脉宽调制控制技术,其原理就是利用全控型电力电子器件(本课题选用的是IGBT)的通断,把直流电压逆变成具有一定形状的能够满足输出需求的电压脉冲序列,从而在惯性电路中实现输出电压的

变压、变频控制的目的,同时还会在一定程度上消除谐波,这种技术简称为PWM控制技术。其中面积等效原则是脉冲控制技术最为基本的理论依据。当冲量相等但是形状却不相同的窄脉冲如果加在了相同且具有惯性环节的电路上时,其效果即输出波形基本相似。其中冲量是指窄脉冲的面积。如若用傅立叶变换对各冲量所对应的输出波形进行相关分析,我们会发现它们是非常的接近,仅仅在高频段有略微的差异。

所谓的SPWM仅仅是在脉冲宽度调制技术的基础上以正弦波作为调制波,从而在经过适当的滤波之后便能够得到类似于正弦波的输出波形。其中用来控制开关通断的正弦矩形脉冲波时往往使用的是正弦波与三角波相交的方式,以此来确定每个矩形脉冲的宽度。一般我们会使用等腰三角波作为载波,这是因为在等腰三角波上的任意一个点的水平宽度是与其所对应的高度成线性相关的,并且能保证波形的左右对称。当它与任意一个幅值变化不是很大的调制波相交时,在交叉口开关电路对其进行导通和关断,所得到的脉冲宽度与信号的振幅是成正比例关系的,这种方法称为自然采样法[3]。如果使用正弦波进行调制时,其所输出的波也就是SPWM波了。如果改变调制信号波的频率或者幅值其电路中所要输出电压的频率或者幅值也会发生相应的改变。

2.2 SPWM逆变电路控制方法

目前电源电压型SPWM逆变器使用是最广泛的,脉冲宽度的控制方法也很多,但主要的有计算方法和调制方法两种,但计算法在计算过程相当复杂,当所要输出的电压波的频率、幅值或者相位只要有一个因素发生了变化时,其计算结果就会都相应发生改变。而调制法就很好的克服了这个缺点,并且还拥有设计简单等无可比拟的优势。因此,现今调制法应用的最为广泛。

在调制方法中,一个周期内的载波与正弦波会相交两次,在交点处控制电路会控制逆变系统中与之相应开关元件各通断一次。而为了精确的输出SPWM波,就必须计算出这两个交汇点的确切时间。当正弦波大于载波时开关导通,其脉冲宽度则为开关元件的导通时间,相对应的,关断时间则称为脉冲间隙。当载波的频率和幅值发生变化时,脉冲宽度和脉冲间隙时间也会相应的发生变化。如果使用计算机的话,当处理好调制算法之后,时间的控制再由定时软件来完成时就会变得很方便,一般的调制方法往往采取自然采样法或者规则采样法。

自然采样法是最为基本的一种采样方法,所得到的波也是非常接近正弦波的,但是在其求解的过程中,依然要解决复杂的超越方程,这在采用微机控制

时需要花费很多的计算时间,因此在工程中应用的不是很广泛。而规则采样法是一种比较容易实现并很实用的一种方法,其方法与自然采样法相似,但计算量却大大的减少了。与自然采样法不同之处就是规则采样法的每一个脉冲的中点都被要求与相应的三角波的中点相对称。而对于三相桥式逆变器电路来说,就应该要形成三相的SPWM波形,一般来说三相的三角波载波是同一个载波,只是其相位依次相差120°。

在PWM调制电路中,载波为接受调制的信号波,设其频率为f c,而把想要得到的输出波形视为调制信号,设其频率为f r,两者之比称为载波比,用N来表示。在PWM调制方式中,往往跟据载波比N的数值是否不变即载波与调制信号波同步与否,我们将其分为异步调制和同步调制两种。

2.2.1 同步调制

同步调节f r和f c,但是载波比N始终为一个常数,即为同步调制。采用同步调制有很多优点,其中不但可以保证在输出的电压半个周期内的矩形脉冲个数是固定不变的,还可以保证每个周期内信号波输出的脉冲个数以及脉冲相位也基本不发生改变。在三相PWM逆变系统中,人们通常只会采用一个载波,此时我们一般会取数值为3的整数倍作为三相PWM逆变系统的载波比,目的是为了保证三相PWM逆变器输出的波

形是三相对称的。如果载波比为奇数时,则经过同步调制后,系统输出的波形的正半波与负半波将会始终保持对称,且使输出的三相波形之间保持120°的对称关系。但是当调制信号为低频率时,相邻的两个脉冲之间的间距就会变大,谐波相应的也会变大。若逆变器输出频率很高时,相应的载波频率又会变得过高,开关器件就会无法正常工作,从而无法得到所要输出的波形。

2.2.2 异步调制

如果采用异步调制方式就可以弥补同步调制的不足之处。与同步调制相反,在异步调制中,在变频系统的变频范围内,载波和调制信号相异步。一般在调节调制波频率f r时我们会保持载波频率f c为一个常数,这样在低频段时就会提高载波比。从而在输出电压半个周期波内,脉冲个数随着调制信号的降低反而有所增加,相应地还会减少负载转矩的脉动及噪音,有利于改善系统的工作性能。但异步调制方式在低频工作时,却失去了同步调制的优点。当调制信号频率变大时,即载波比N反而变小,半个周期内的脉冲个数就会减少,这样SPWM脉冲反而会更加不对称,这时信号波的一个很小的变化都会引起SPWM脉冲的波动,使得输出的SPWM波与想要输出的正弦波相差甚远。如果是三相SPWM型逆变器,三相输出的波形对称性也会

变的更糟,因此异步调制方式一般都工作在较高的载波频率段中。

2.3 单相电压型SPWM逆变器原理分析

主电路为单相全桥逆变电路如图 2.1所示。它有四个桥臂,我们把桥臂T1和桥臂T4视为一对,剩下的桥臂T2和T3视为一对,每一对上的两个桥臂同时导通或者同时关断,不为一对的桥臂是相互交替导通的,其导通宽度为180°。其输出的电压与电流波形图如图2.2所示。

当负载如果为阻感性负载时,我们可以使用移相调压的方式来改变所希望输出电压的幅值。单相全桥逆变电路如图 2.1所示。绝缘栅双极型晶体管的触发信号仍然是180°正偏、180°反偏。T1与T2的栅极交替触发,但是T3的基极触发信号比T1落后θ。也就是说T3、T4的栅极信号与T2、T1的栅极触发信号相位是不同的,T3或者T4导通时,T2或者T1的导通时间向前移动了180°-θ。这样输出的电压的正负脉冲宽度变为θ。只要改变θ便可以改变输出的电压数值。在纯电阻的负载时,这种移相调压方式依然适用[4]。

图2.1 逆变器主电路

图2.2输出波形

单相电压型逆变电路的特点是:

(1)直流侧为电压源或大电容,这样直流侧电压基本

上就没有波动。

(2)输出电压为等幅但不等宽的矩形波,负载的阻抗大小决定输出的电流值。

(3)当负载为阻性或感性时需提供无用功。为了给交流侧向直流侧反馈的无功功率提供通道,逆变桥各桥臂应并联反馈二极管。在Simulink的元件模块中IGBT各有一个续流二极管反向与之并联。在主电路后加了一个滤波电路,其目的是用于滤除高次谐波,消除谐波对输出电压波形、幅值的影响[5]。

2.4 三相SPWM逆变器的原理分析

作为应用最为广泛的三相逆变电路。三相SPWM桥式逆变电路一般可以认作为是由三个单相的逆变电路所组成如图2.3所示。

图2.3 三相电压型桥式逆变电路

三相电压型桥式逆变电路一般采用180°导通的工作方式,即同一相上的两个桥臂的导通宽度都为180°,同一相位的两个桥臂为交替导通,非同一相的桥臂导通的角度相互依次相差120°,这样在不管何时都将会有三个桥臂同时导通。三个桥臂的导通情况比较复杂,有可能是上面一个桥臂与下面两个桥臂同时导通,也有可能是上面两个桥臂与下面一个桥臂同时导通。由于都是在同一相的上下两个桥臂之间进行换流的,因此有时也被称为纵向换流。

在三相桥式逆变电路中,各晶闸管的导通次序是T1、T2、T3、T4、T5、T6、T1……每个桥臂依次相距60°触发导通。根据桥臂的导通时间,我们将三相桥式逆变系统分为180°和120°两种导通型。当逆变电路为180°导通型时,在任意时间点都将有三个桥臂同时导通,导通时间宽度为180°,同一相的两个桥臂是相互交替导通的。而在120°导通型逆变电路中,桥臂导通时间变为120°,且每个瞬间只有两个不同相的桥臂导通,同一相上的上下两个桥臂不再是互补导通,而是之间有60°的时间间隔,当某一相上下两个桥臂都没导通时,其感性电流将从该桥臂中与晶闸管反并联的二极管中续流导通。

在三相导通的SPWM桥式逆变电路中,其调制方法往往使用的是双极性调制方法。U、V、W三相同时公用一个载波U c用来对SPWM进行控制,三相调制信号波正弦电压波依次设为U ru、U rv和U rw,它们的相位分别为0°、120°、240°。由于U、V、W各个相的元件的控制规律是完全相同的,现以U相为例进行简要诠释。当U ru>U c时,导通T1,由于T4与其同相,是互补导通的,所以T4是不,则以U相为基准相对于直流电源假设的中点N’的电压U UN就为U d/2。当U ru

时的变化是不同的,因此在控制过程中,当给T 1一个导通信号时,可能是T 4导通,也有可能是续流二极管VD 1导通。线电压U UV 的输出波形是由U UN'-U UN'决定的,当臂T 1和T 6导通时,U UV 正向加在电源上,U UV =U d ;当T 3和T 4导通时,U UV 反向加在电源上,U UV =-U d ;当臂T 1和T 3或臂T 4和T 6导通时,两相之间形成环流,电流不经过电源,U UV =0V 。因此SPWM 线电压的输出波形幅值分别有U d 、-U d 和0三种。

负载相电压U UV 、U UW 、U VW 可由下面的公式得到:

????

?-=-=-='WN 'VN VW 'WN 'UN UW 'VN 'UN UV U U U U U U U U U (2.1)

设负载的中点为N ,其与直流电源的设想中点N'之间的电压设为U UN',则负载每一相的相电压分别为 ????

?-=-=-=' NN WN'WN NN' VN'VN NN' UN'UN U U U U U U U U U (2.2)

把上面的公式进行整理后,又由于三相电路三相是对称的,U UV +U UW +U VW =0,我们可以得到U UN =U UN'-

(U UN'+U VN'+U WN')/3。负载所输出的SPWM 相电压波由(2/3)U d 、(-2/3)U d 、(1/3)U d 、(-1/3)U d 和0五种电平所构成如图2.4所示。

图2.4三相电压型桥式逆变电路的工作波形

2.5 逆变器的谐波分析

2.5.1 谐波分析

伴随着电力电子技术的迅猛发展,电力电子装置日益在各个用电领域中得到了广泛的应用,与此同时谐波所造成的危害也随之变得更加明显,各国对谐波问题都非常的关注。谐波不仅会降低电能在生产、传输和使用过程中的利用率,还会使电气设备过热,减少设备的使用寿命,严重的还会导致设备的烧毁。同样的也会使得电气设备产生振动与噪音,导致控制器件的自启动,因此消除谐波迫在眉睫。

而消除谐波的前提是要掌握谐波的特性,因此就要对其进行分析。在电力系统的谐波分析中,人们主要采用各种谐波分析仪对谐波进行分析。但是当而所需分析的谐波次数与基波频率是相互联系的,当输出为低基波频率时,分析的谐波次数会变的很高。一般应当采用频带较宽,运算能力强、存储量大的谐波分析仪表,但是在选择谐波分析仪表时,还要考虑选择合适的传感器,而传感器的带宽也会使得输入到仪表的信号的有效带宽与理想的有效宽带有偏差。而Matlab软件中FFT Analysis不仅能够提供谐波分析的平台,而且很好的避免了此类偏差[6]。

2.5.2 Powergui FFT使用方法

现在利用Simulink中的FFT Analysis对逆变系统的输出波形进行谐波分析[7]。Powergui的功能较为丰

富,但是它只能对已经保存在工作界面(Workspace)里的数据进行分析,该格式是一种时间结构体,所以要使用到Scope模块。按格式要求将想要进行分析的数据保存在工作空间,保存完毕后,打开Powergui FFT Analysis Tool,然后在Available Signals选项上选择将要分析的相关量。再对Fundamental frequency、Max frequency的参数进行设置,点击“Display”后便可以得到想要的输出频谱分析图。如果想要保存频谱分析图,只需要使用“Save as”,并且可以按照你所要的图片格式进行保存,可以看到Powergui FFT Analysis Tool是一个非常方便的工具。

2.6 本章小结

本章中简要的介绍了SPWM的原理,以及单相、三相逆变器的原理,并描述了谐波分析的意义与Matlab 中的FFT工具的使用方法。为第4章的仿真提供了可靠的理论依据。

3 Matlab/Simulink与元件简介

3.1 Matlab/Simulink简介

Matlab所用的是第四代计算机语言系统,其编程运算方式与进行科学运算方式是完全一致的[8]。由于它在科学计算、数据分析、系统建模与仿真等拥有很强的优势,因此目前Matlab受到各研究领域的关注,并

广泛的应用于各个领域。而Simulink仅仅是Matlab 的一个小部件,是一个对系统进行建模、仿真与分析的软件工具包。由于它的许多功能都是基于Matlab软件平台,而且又必须要在Matlab平台上才能运行,因此有时也将Simulink称为Matlab的一个工具箱[9]。它能够实现动态系统建模和仿真环境的有机结合,同时还可以根据设计及要求,对系统进行修改与优化,从而提高系统工作的性能,实现系统的高效开发。

Simulink的中文含义是仿真与链接,是simulation与link两个单词的组合缩写[10]。Simulink 具有如下特点:

(1)它是按照设计功能的层次性对系统进行模型分割的,能够对复杂设计进行分割并进行有效的管理。以框图表示的系统包含输入、输出,框图中以调用的模块作为程序,以连成的模块模拟系统[11]。

(2)只要搭建系统模型,设置好仿真参数,便可启动仿真。这时Simulink会自动初始化,并将系统模型转换为数学方程进行仿真。

(3)系统运行后的结果可以直接通过仿真波形进行观察,其效果与在实验室中利用示波器进行观察的结果是等效的。

(4)系统仿真数据可以以*.Mat格式的文件保存,这样其它相关软件也能处理。

(5)模型分析和诊断工具能够保证模型与电路系统的一致性,并指出模型中的错误所在[12]。

3.2 绝缘栅双极晶体管IGBT简介及分析

绝缘栅双极晶体管IGBT是现今发展最为迅速、应用最为广泛的第三代电压驱动型电力电子器件。晶闸管GTR由于电导调制效应使得其拥有很好的通流能力,但是它也有着双极型电流驱动器件的相应缺陷,比如开关速度却比较慢,且所需驱动功率也很大,电路比较复杂。而电力MOSFET与晶闸管GTR的特性是相互互补。绝缘栅双极型晶体管IGBT就是将晶闸管GTR 与电力MOSFET两者的优秀特性综合在了一起,因此其拥有简易的驱动方式、较大的峰值电流容量、能够自行关断、开关频率比较高等特性[13]。

IGBT有如下几个特性:

(1) IGBT开关速度快,开关损耗小,且无二次击穿现象。

(2)在电压以及电流为相同额定值的情况下,IGBT 拥有比较大的安全工作区,且抗脉冲电流冲击的能力也很大。

(3) IGBT在通态时的电压压降往往要比电力MOSFET 要低,尤其是在电流较大的情况下。

(4) IGBT的耐压和通流能力高,开关频率也很高。

(5)高输入阻抗,类似于MOSFET的输入特性。

3.3 整流桥模型

整流桥是交流-直流变换的核心部件,在Simulink 中有Universal Bridge元件模块[14],该模块有4个输入端子和2个输出端子。

双击后会出现一个对话框,其各个参数如下:

(1)Number of bridge arms:桥臂的数量。

(2) Port configuration:端口形式,即输入与输出端口的设置。

(3) Snubber resistance Rs (Ohms):缓冲电阻Rs,如若消除缓冲电阻,可将其值设为inf。

(4) Snubber capacitance Cs (F):缓冲电容Cs,单位F,以消除缓冲电容,设为0;若设为纯电阻,则设置为inf。

(5) Resistance Ron (Ohms):用来设置晶闸管单元的内阻值,单位为Ω。

(6) Inductance Lon (H):用来设置晶闸管单元的内电感值,单位为H。

(7) Forward voltage Vf (V):用来设置晶闸管单元的正向管压降,单位为V。

3.4 PWM发生器

PWM发生器是采用PWM技术的控制电路的核心部件。PWM发生器有一个输入端和一个输出端,其功能如下:

(1) Signal (s):当调制信号作为内部产生模式时,此端子不需要连接;当作为外部产生模式时,此端子则需连接由用户定义的调制信号。

(2) Pulses:主要根据主电路桥臂的结构进行选择,定向的产生2、4、6、12路的PWM脉冲。

双击PWM发生器模块会出现一个对话框,各参数定义如下:

(1)Generator Mode:根据仿真系统的主电路构成选择所对应的桥式电路。

(2) Carrier frequency (Hz):载波频率,单位Hz。

(3) Internal generation of modulating signal (s):用来选择调制信号产生方式,分为内产生方式和外产生方式。

(4) Modulation index (0

(5) Frequency of output voltage (Hz):输出的频率,单位Hz,只有在调制信号为内产生的方式时才可以选择。

(6) Phase of output voltage (degrees):输出电压的初始相位。

3.5 本章小结

在本章中简要的介绍了仿真所需的关键元件的相关设置,并对Matlab进行了描述,为第4章的Matlab 的建模提供理论依据,从而便于相关参数的设置。

4 SPWM逆变电路的仿真与分析

4.1 单相SPWM逆变电路的仿真与分析

单相SPWM逆变电路的仿真模型如图4.1所示。

图4.1 单相SPWM逆变电路的仿真模型相关参数的设定:电路的输入直流电压为100V,输出交流电的频率为50Hz,电阻R=1Ω,电感为1e-

6H。使直流电压为100V,调制信号频率为50Hz,载波比N=30,其仿真波形如图4.2所示。

图4.2 仿真波形图

当频率为50Hz时,其一个周期的时间为0.02s,本文中为了方便观察对比,取时间为0.06s,也就是三个周期,由仿真图我们可以看出,其电压电流输出波形正好为三个周期,仿真与理论相符。

直流电压为100V,调制信号频率设为50Hz,载波比N=60,其仿真波形图如图4.3所示。

图4.3 仿真波形图

直流电压为200V,调制信号频率为50Hz,载波比N=30,其仿真波形图如图4.4所示。

图4.4 仿真波形图

直流电压为100V,调制信号频率为100Hz,载波比N=30,其仿真波形图如图4.5所示。

时间(s)

图4.5 仿真波形图

从上面的波形图的对比我们不难发现,输出的交流电压的幅值与输入的直流电压的值成正相关,而与载波比无关。输出的交流频率由调制信号的频率决定,输出的交流电流与输入的电压、电感、电阻有关。而载波比决定输出交流电的精度,载波比越大交流电的精度越好。

一方面,由于LC滤波电路的电阻上存在压降,开关管也有一定的电压降,所以得出的电压幅值要小于期望值。另一方面,又由于采用SPWM电压型逆变电路中的晶闸管的导通时间一般都会小于关断时间,于是为避免同一桥臂上的两管子发生同时导通的事故,通常会将理想SPWM驱动信号过零点时的上升沿延迟一段

时间,但是这样又会产生死区效应[15]。因此逆变器的实际输出电压波形与理论上的电压波形相比会有一定的偏差。

当调制索引值即m=0.7,载波比N=30时的谐波如图4.6所示。我们可以看到,基次谐波的的幅值最大,谐波随着次数的变大幅值越来越小,在15次谐波的幅值会突然变大,对系统中的元器件会有很大的干扰,THD(谐波失真)值为94.84%。

图4.6 谐波分析图

当调制索引值即m=1,载波比N=60时如图4.7所示。

图4.7 谐波分析图

我们可以看见奇次谐波变大了,其他规律没有发生太大的变化。但是其THD(谐波失真)变为92.31%,可见随着载波比的变大,谐波失真越来越小,即输出的交流波形精度越来越好,与之前的波形图分析的结论相一致。

当调制索引值即m=1,载波比N=30时其谐波分析图4.8所示。

图4.8 谐波分析图

我们就会发现其中的THD变成53.48%,谐波失真变小了。所以调制索引值、载波比对SPWM逆变器的谐波特性有很大的影响。提高调制深度和载波比都可以很

好的改善逆变器的输出的波形。但是由于载波比的提高的前提是要开关器件的开关速度能够承受的住,当载波比太高时,系统将会无法正常工作。另外再加上开关的损耗等因素,开关频率不会太高。

4.2 三相SPWM逆变器的仿真与分析

三相SPWM逆变电路的仿真模型如图4.9所示。

图4.9 三相逆变电路主电路

在仿真电路图中,双击元件,可以对相关元件的特性进行设置。改变相关的数值,运行并通过Scope 模块来显示各个量的波形变化,以便比较和研究。相关参数的设定如图4.10、图4.11所示。

图4.10 LC滤波器

图4.11 PWM IGBT Inverter参数设置三相SPWM逆变器的分析方法与单相逆变器的分析方法相似。当直流电源电压为200V,载波比N=30,调制索引值m=0.7,电阻R=1Ω,电感L=1e-3H,调制信号的频率为50Hz。运行Matlab仿真软件,并双击Scope即可得到实际输出的交流电压波形和交流电流的波形如图4.12所示。

图4.12 三相输出波形

频率为50Hz时,一个时间周期为0.02s,由此可以看出三相中的每一相的仿真图与理论相符合。再由三相依次相差120°,即一个周期的三分之一时间,约

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

逆变器制作全过程

逆变器制作全过程 制作600W的正弦波逆变器, 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。 如果PCB没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。

1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程 修正方波逆变器的做法有很多,但各有各的特定。针对我这款逆变器我主要想和大家分享两点,这也是逆变器制作过程中最重要的两点。 一、稳压 看过大多数设计是采用反馈有效值稳压,这种稳压方式缺点是相应性不是太好,针对这种情况我设计一种线性比例稳压方式,整个电源就像一个线性电源,响应性很好。基本原理如下: 理论依据: 为了输出稳定电压必须使调整占空比k=220/峰值电压(C列),图1为占空和峰值电压的曲线,反比例曲线(蓝色线),由于占空比变化很小,有效值电压就变化很大,可以近似看做一条直线,图1 AB绿色直线,有AB两点做直线方程得出峰值电压——占空比的线性方程: y(峰值电压)=-381.8x(占空比)+584.5 计算出占空比(O列)从0.65到0.9的所有输出峰值电压值(P列),如图2 Q列为 O列与P列的乘积即输出的有效值电压,N列为P列/变比(12)得到的蓄电池输入电压,R列为输出电压的变化范围【=abs(220-Q列)*100/220】,有R列可以看出,将反比例关系的曲线近似成线性后得到的输出有效值电压变化范围最大为1.6799%<5%,完全能够满足工程需求。 图3 为占空比输出有效值电压曲线。 如果用图一中红色直线做线性方程得出的数据效果会更好。这里就不在赘述那。 至此用线性的方法进行稳压理论上已经通过,这样就可以用变压的采样线圈整理得到一个峰值反馈电压,在用这个峰值反馈电压通过反比例线性放大器得出一个占空比调制电压,生成对应线性的占空比,从而实现稳压,这里线性反相比例放大器的增益不能太大,具体调试的时候最好用可调电阻调试。图4是工作电路,(Protel暂时不能用先将就一下那,后面在补上) 图中C1和R3一定不能少,否则当电路功率输出加大时尖峰电压的影响,稳压就不准哦,还有R1的阻值不能太小否则就得不到平缓的峰值电压。以上整个电路我是用3525里的运放实现的,实验板电路如下图。 上图用两个2104做自举驱动的的H桥,具体电路就不在赘述那,10个2W电阻为电流采样电阻,后面的过流保护会用到。

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

基于SIMULINK的并网逆变器的仿真研究

计算机辅助工程设计 课程设计与报告 题目:基于SIMULINK的并网逆变器的仿真研究

基于SIMULINK的并网逆变器的仿真研究 第一章绪论 1.1课题背景及研究意义 当今社会,资源、环境和能源问题仍困扰着世界的发展。对此,各国对开发利用新型能源、使用清洁能源的需求日益迫切,尤其是中国,地广人多,是能源消耗大国。目前,国内更多的依靠火电、水电和核聚变发电来供电。然而火电生产排放大量的硫化物、粉尘等严重污染空气,影响气候变迁,其来源化石能源也将消耗殆尽;水电建设成本高,资源有限,还会给江河系统造成不可逆的破坏;核电在安全方面有缺陷,一旦核泄漏,将给环境造成毁灭性的破坏,日本福岛核泄漏事故就是一个活生生的例子。 因此,人类不得不寻求更加清洁、安全的替代能源。进入21世纪后,各国政府都在大力鼓励研究清洁可再生能源,太阳能、风能、地热能、潮汐能等环境能量开发技术获得快速发展,其中尤以风能和太阳能应用最多。由于我国资源分布不均衡,有些地方如内蒙古、沿海,有的地方太阳能蕴藏量大,如西藏,但这些地方发出的电当地并不能完全消纳,而其他一些地区则因负荷过重而缺电,因此将电资源丰富的地方发出的电并入电网是明智之举。 然而,分布型电能并入电网需要做到与电网同频同相同幅值,目前并网技术成为了新能源发电的瓶颈技术。因此,本文通过从并网逆变器的设计着手研究新能源并网技术,具有一定实际意义。 1.2 并网标准 新能源发电并入电网的电能必须满足以下3个条件[5]: (1)电压幅值:纹波幅值≤10%。 (2)频率:频差≤0.3Hz[1]。 (3)相位相同,相序相同,且相位差≤20°。 表1-1 并网标准化指标

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

逆变器的基础知识

逆变器的基础知识 一、逆变器种类的划分 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。 同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。 针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。 总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二、何为感性负载 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。 例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。 三、准正弦波逆变器可以用于哪些电器 准正弦波也分为若干种,从与方波相差无几的方形波到比较接近正弦波的圆角梯形波。 我们这里仅讨论方形波,这也是目前大部分市售高频逆变器能够提供的波形。这类准正弦波逆变器可应用于笔记本电脑、电视机、组合式音响、摄像机、数码相机、打印机、各种充电器、掌电上脑、游戏机、影碟机、移动DVD、家用治疗仪等等,输出功率较大的逆变器还可以应用于小型电热器具如电吹风机、电热杯、厨房电器等等。 但对感性负载类电器如电冰箱、电钻等则不宜长时间使用准正弦波逆变器供电。否则,将可能对逆变器和相关电器产品造成损坏或缩短预期使用寿命。如果一定要使用感性负载,建议选用储备功率较大的准正弦波逆变器。

三电平光伏并网逆变器和仿真

三电平光伏并网逆变器共模电压SVPWM抑制策略研究 发布:2018-09-07 | 作者: | 来源: mahuaxiao | 查看:436次 | 用户关注: 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进,调整了有效矢量的选择范围,并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。1引言目前,多电平变流器以其突出的优点在高压大 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进, 调整了有效矢量的选择范围, 并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。 1 引言 目前, 多电平变流器以其突出的优点在高压大功率变流器中得到了日益广泛的应用,它不仅能减少输出波形的谐波,也易于进行模块化设计[1, 2]。二极管中点箝位式(NPC>三电平拓扑结构即是高压大功率变频器的主流拓扑结构之一[3] 。然而在三电平变流器的应用中, 也出现了一些问题,特别是共模电压问题。目前,变频器共模电压的抑制方法主要有两种:一是外加无源滤波器等,或有源滤波器[4-6],这类方法会导致体积和成本显著增加,且不易应用于高压大容量场合;二是通过控制策略从源头减小共模电压,文献[7]、[8]提出一种SPWM消除共模电压的调制方法。该方式是通过异相调制来消除开关共模电压,但是存在直流电压利用率低、线性调制区过小的问题。 针对SPWM调制的电压利用率低、不利于运用于各种调制比工况下的缺点,本文从三电平逆变器共模电压形成机理出发,提出了一种基于优化电压空间矢量(SVPWM>方法, 可有效抑制三电平逆变器输出共模电压。并通过 Matlab/Simulink软件对该方法进行了仿真验证, 结果表明效果良好。 2 光伏三电平逆变器及其共模电压 本文研究的三电平光伏逆变器系统如图1所示。其输入为光伏阵列的直流电压,逆变器主拓扑为NPC三电平结构。设直流母线电压的幅值为Vdc,用开关状态字“1”,“0”和“-1”分别表示逆变器每相输出为+Vdc/2、0和-Vdc/2的三种状态,则三相三电平逆变器总共有27种不同的开关状态。根据幅值和相位可以画出三电平逆变器的电压空间矢量图,具体如图2所示。

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

自制逆变器电路及工作原理及相关部件说明

自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。图2中,R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2*2.2*103*2.2x10-6=93.9Hz,最小频率为fmin=1/2.2*4.2*103*2.2*10-6=49.2Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N 沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

自制逆变器电路及工作原理

自制逆变器电路及工作原理 作者:本站来源:本站整理发布时间:2009-11-20 11:54:11 [收藏] [评论] 自制逆变器电路及工作原理 今天我们来介绍一款逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于M OS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍 该变压器的工作原理及制作过程。 电路图(1) 工作原理: 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2x103x2.2x10—6=62.6Hz,最小频率为fmin=1/2.2x4.3x103x2.2x10—6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的发相器,输入端接地避免影响其它电路。

图2 二、场效应管驱动电路。 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2 将振荡信号电压放大至0~12V。如图3所示。 图3 三、场效应管电源开关电路。 场效应管是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。MOS场效应管也被称为MOS FET,即Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图4。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型通常称P沟道型。由图可看出,对于N沟道型的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称场电压)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入 阻抗,同时这也是我们称之为场效应管的原因。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路

中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展

根据SVPWM三相并网逆变器仿真报告

基于SVPWM三相并网逆变器 仿真报告

目录 1. SVPWM逆变器简介 (1) 2. SVPWM逆变器基本原理 (2) 2.1. SVPWM调制技术原理 (2) 2.2. SVPWM算法实现 (5) 3. SVPWM逆变器开环模型 (11) 3.1. SVPWM逆变器开环模型建立 (11) 3.2. SVPWM逆变器开环模型仿真分析 (14) 4. SVPWM逆变器闭环模型 (16) 4.1. SVPWM逆变器闭环模型建立 (16) 4.2. SVPWM逆变器闭环模型仿真分析 (17)

1.SVPWM逆变器简介 三电平及多电平空间矢量调制(Space Vector Pulse Width Modulation,SVPWM)法是建立在空间矢量合成概念上的PWM方法。它以三相正弦交流参考电压用一个旋转的电压矢量来代替,通过这个矢量所在位置附近三个相邻变换器的开关状态矢量,利用伏秒平衡原理对其拟和形成PWM波形。空间矢量调制方法在大范围调制比内有很好的性能,具有很小的输出谐波含量和较高的电压利用率。而且这种方法对各种目标的控制相对容易实现。 SVPWM技术源于三相电机调速控制系统。随着数字化控制手段的发展,在UPS/EPS、变频器等各类三相PWM逆变电源中得到了广泛的应用。与其他传统PWM技术相比,SVPWM技术有着母线电压利用率高、易于数字化实现、算法灵活便于实现各种优化PWM技术等众多优点。

2. SVPWM 逆变器基本原理 2.1. SVPWM 调制技术原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加,这样通过控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,就可以使逆变器输出近似正弦波电压。 SVPWM 实际上是对应于交流感应电机或永磁同步电机中的三相电压源逆变器功率器件的一种特殊的开关触发顺序和脉宽大小的组合,这种开关触发顺序和组合将在定子线圈中产生三相互差120°电角度、失真较小的正弦波电流波形。实践和理论证明,与直接的正弦脉宽调制(SPWM)技术相比,SVPWM 的优点主要有: (1) SVPWM 优化谐波程度比较高,消除谐波效果要比SPWM 好,实现容易,并且可以提高电压利用率; (2) SVPWM 比较适合于数字化控制系统。 目前以微控器为核心的数字化控制系统是发展趋势,所以逆变器中采用SVPWM 应是优先的选择。 对称电压三相正弦相电压的瞬时值可以表示为: a m b m c m cos 2cos()32cos()3u U t u U t u U t ωωπωπ? ?=? ? =-?? ? =+?? (2.1)

相关文档
相关文档 最新文档