文档视界 最新最全的文档下载
当前位置:文档视界 › 三相电压型逆变器

三相电压型逆变器

三相电压型逆变器
三相电压型逆变器

一个新的全桥零电压开关移相DC-DC转换器的工作周期和ZVS范围扩大

摘要:

本文提出了完整的理论分析, 有LCC辅助电路的全桥零电压移相开关(fb-zvs-ps)DC-DC转换器的模拟和的优化设计,在250kHz的频率下工作,输出功率1kW。该变换器采用电容分压器在辅助电感一端创建一半的输入电压。因此在电感两端的电压会在–VI / 2 到+ VI / 2之间摆动,并在被动-主动转换的过程中产生一个额外的增强的初级电流,并增加适合产生ZVS的能量。用这种方法是可能在不使用换向电感的条件下在一系列电力变压器中设计出fb-ps-zvs直流/直流变换器从而避免减少有效占空比的相关问题。更进一步,通过适当的LCC的电路设计,我们发现在整体没有明显损害的前提下ZVS范围和有效工作周期可以优化。

1.介绍:

由于其优越的特性,采用全桥零电压开关移相器已成为首选的拓扑结构的DC-DC转换,用于几百瓦的功率与高输入电压的应用。fb-zvs-ps转换器的主要优点是由于零电压开关和恒定频率操作效率高,允许一个简单的控制,类似于硬开关PWM全桥变换器。

传统的fb-zvs-ps转换器的主要缺点是对负载的依赖,当负载过轻时ZVS 的条件便会不满足。因此,在一系列的电力变压器中,几乎每一个应用程序为了使ZVS的负载范围加宽都需要一个大的换向电感。这个大的电感,当负载很大时不仅会产生高的不可接受的导通损耗,并且会防止初级电流极慢的变化,这将会对有效占空比的降低负责。所以,必须要有一个折衷的设计,考虑到输入电压规格、负载范围、工作周期和效率。

为了解决这个问题,一些新的技术已经开始被提出和开发。引用[5]定义的fb-zvs-ps转换器和采用饱和电抗器与初级绕组和次级整流二极管系列具有局限性。这个过程可以使运行下的零电压开关范围更大,没有显著的导通损耗增加,但始终存在消除多余能量时发生饱和的问题。

参考[ 6 ]描述了一种方法,用一个主换向电感器与终端连接在一个转换被动与主动的腿的中点,其他通过两个钳位二极管连接到输入电压源。通过这种方法,ZVS将会因为桥管获得一个较宽的负载范围。然而,为P-A腿提供正的连续电流钳位二极管,会遭受硬开关,因此将会带来换向损失和召回缓冲。

一种减少上述问题的方法是采用一二绕组电感箝位到输出,如[7–9]所描述:

初级绕组的电感与变压器初级和次级系列是通过两个整流二极管连接到输出电容器。该方法可以使回收的多余能源直接流向负载。当一个被动变为主动的转变过程发生时,其中的一个二极管导通和钳制电感,其次是输出电压。这种行为相当于一个具有可变自感系数的电感。然而,这种解决方案意味着更大、更重、更复杂和更高成本的转换器。

本文提出的新的解决方案,包括一个更简单的解决方法可以使fb-zvsps转换器问题减小,就是通过加一个连接到电源电路P-A腿的LCC辅助电路。这种辅助电路由一个电容分压器和一个连接在电容分压器中点和P-A腿中点的电感器组成。这样,初级电流将会在被动与主动过程转换期间增强,从而增加了实现ZVS的可用能量。这个过程使的fb-zvsps转换器的设计不使用在变压器系列中的辅助电感器,减少占空比损失问题。

本文的目的是提出建议转换器的理论研究(图1),使LCC电路的设计优化,以获得最佳效率。本研究可以找到一种效率最高的转化器,可以获得希望范围的负载而不使ZVS松动。工作周期的增加也可以用这种方法得到,这也是一个特点。

2.提出的转换器:

A.工作原理:

所提出的转换器如图1. 该转换器是一个传统的fb-zvs-ps DC-DC变换器,为了提高ZVS的范围而包括一个LCC电路,没有工作周期的固有损耗。

转换器的被动-主动转换腿由由晶体管S2和S4组成,主动-被动转换腿由晶体管S1和S3组成. 电容C1,C2,C3,C4和二极管D1,D2,D3,D4是各自的输出电容和晶体管的管桥。TR表示N匝数比的变压器,LF是滤波电感,输出电容用CF表示。二极管Da和Db是变频器的整流二极管。

图1 fb-ps-zvs直流/直流LCC电路的功率变换器

辅助LCC电路由电容分压器(CPal,CPa2)和连接在电容分压器中间点和P-A腿中间点的电感(LS)组成,如图1所示。当开关S2导通时,辅助电感Ls 在其终端表现出一个VI / 2正电压。另外,当S4导通时,LS表现出一个等于

VI / 2负电压。将显示出,这一事实迫使电流为了平衡在辅助电感两端的电压,当P-A相变时其达到最大值。这在被动-主动转变过程中加强了初级电流,从而增加了可用的能量来实现ZVS。

B.转换器分析:

在图1的变换器有十种工作模式,在一段时期有初级电流IP。由于循环对称只有当前正桥将在下面的分析中考虑。因此,研究仅限于五种不同的操作模式:模式I或叫主动模式,模式II或叫主动-被动振动转变模式,模式III或叫被动模式,模式IV或叫被动-主动振动转变模式,模式V或叫初级电流线性过渡模式。为了阐明的分析,考虑图2中变量随时间变化的波形。

图2 fb-ps-zvs直流/直流转换器电路:LCC电气量波形

模式I(主动)- T0<t<T1:

考虑一下当时间t = t0时二极管DB切断,晶体管S1和S2导通,DA二极管正在整流。输入电压VI被施加到变压器的初级线圈,初级电流将与电路中的总电感成比例的增加。这种模式的等效电路如图3所示,LTRf 和LF分别是变压器的泄露电感和滤波电感。在这一模式中的辅助电感的B终端连接到地面,因此LS的电压是VI / 2。

图3等效电路在模式I

在LS中的电流线性增加直到晶体管S2停止导电。辅助电路作为一个独立的电路不影响初级电流。考虑到转换器的等效电路,初级电流和LS的电流是由下式给出:

其中I0和ILs0是电流IP和ILs在t=0时刻的初始值,Leq1=LTRf+n2LF

模式II(主动-被动的振动变换)- T1<T<T2

这种模式电容C1、C3充电/放电的相应时间持续很短。当晶体管S1在时间t1关闭时,这种主动-被动振动转换过程开始。晶体管S2仍然导通,初级电流流经S2,C = C1 | | C3。二极管DA也开始导通。在分析中使用的转换器的等效电路如图4。

图4 模式II等效电路

在这一模式中,电容C两端的电压将会在VI和0之间振荡,初级电流由下式给出:

Ir和θr下式给出:

在t1时刻,I1是初级电流的初始条件。

一旦管S2仍存在,在LS中的电流将会如例2中给出那样。这种模式将会在电容器电压达到零时结束,ZVS中的二极管D3在T = T2时刻开始导通。

模式III型(被动)–T2<t<T3

充电后的电容器C = C1 | | C3,二极管D3开启导通,开始阶段输出电流的反映是随机的。Vab的电压为0。整流二极管DA保持导通状态。该电路进入被动模式持续到S2的门脉冲在时间t = T3移除。考虑到这种模式的等效电路呈现在图5,初级电流是由下式给出的:

I2是初级电流的初始值。

图5 模式III的等效电路

电力变压器的次级电压在模式III中用下式给出:

因为S2一直闭合,在LS中的电流继续增加,仍然是由(2)式给出。

模式四(被动-主动振动转变过程)–T3 <T<T4

在时间T3时,晶体管S2的栅极信号去除,模式四开始。二极管D3保持导

通,初级电流流经C2 | | C4。在这种模式下,和模式II所发生的恰好相反,

两个整流二极管Da和Db都是导通的。因此,在电路中不存在输出滤波电感,并

且对电容C2、C4充电/放电没有贡献。因为这个原因,在传统的转换器中ZVS

的条件对于轻负载来说是非常难获得的。然而,在这种情况下,对LCC的辅助电

路的使用将提供额外的能量(在模式I、II和III时,存储在LS中),将被用来

实现ZVS。

图6 模式IV的等效电路

考虑图6中提出的等效电路,可以看出,当晶体管S2切断,在LS中的电流

(在这里代表一个电流源)将被添加到初级电流,为了电容C2、C4的充电/放电。

在这一模式电容C两端的电压会产生从零到六的振荡,初级电流由下式给出:

其中,i3和ils3在辅助电感中分别为初级电流和电流的初始值。由于模式IV持续时间短,在LS的电流将约为常数,其值等于当S2的门脉冲移除时的ILS3的值。

时间t4时刻,电容器电压达到VI,这种模式将结束。

模式V(线性过渡)–T4 <T <T5

二极管D4在时间T4导通。模式V的基本特征是初级电流的极性反向。当初级电流达到零,晶体管S2和S4开始导通,直到整流二极管DA切断。考虑图7所示的等效电路,初级电流是由下式给出的:

图7 模式V的等效电路

电感LS的B终端(图7)现在连接到Vi,在辅助电感的电压为–VI / 2。LS的电流就会减少并且由下式给出:

对应于模式V的持续时间的间隔(t5-t4)代表一个损失的工作周期。因此,在极性改变时,理想的初级电流的斜率将尽可能高,以减少此时间间隔。

和传统的转换器所发生的相反,在建议的转换器中的电流仅仅是由电源变压器的泄漏电感限制的。因此,对工作周期的损失仅依赖于变压器的结构性缺陷。虽然,重要的是要注意到,为了支持电流有轻微的增加,P-A腿的晶体管大小要合适。在这些晶体管中的电流是初级电流与LS中电流的和。然而,进一步看到,LS优化设计会导致晶体管电流少量增加。

3.能量平衡:

本研究的目标之一是获得ZVS特性在LCC的电路参数的作用,为了建立正确的电感,导致较高的效率。

通过必要的电容器充电的能量评价得到的ZVS条件, WC和储存在辅助电感WL中的能量:

I0是平均输出电流,T是运行周期。ZVS条件考虑到WL > WC时的计算。同时考虑到(11)和(12)和使用的ZVS条件:

图8给出了LS值不同时,换向能量WL与负载电流的变化。它也提出了获得ZVS的必要能量(Wc= 125μJ)。由此可以看出, WL曲线与WC的交叉点表示了ZVS的边界条件(13)。检查图8也表明,对于LS<140μH,所有负载范围都可以获得零电压切换。

输出电流[A]

图8 在整流能量WL与负载电流与LS作为一个参数的变化

4.仿真结果

为了验证理论分析,所提出的变换器利用Pspice ICAPs 4进行了模拟。下面的电路参数已被用于模拟:VI = 380V,F = 250KHz,VO = 50V,LS = 140μH。图9显示初级电流、电压和二次电压。

图9:该变换器的仿真结果:(1)变压器二次电压(伏/格);(2)变压器初级电压(伏/格);(3)一次电流(2A / DIV)

图10:显示初级电流图,在开关S2的电流,LS的电流。它可以看出晶体管电流峰值仅仅是由于辅助电路而少量增加(小于10%)。

图10:该变换器的仿真结果:(1)一次电流(2A / DIV);(2)在开关S2 B 电流(2A / DIV);(3)目前在LS(2A / DIV)。

为了强调此转换器的优点,图11显示用这种解决方法获得的模拟初级电流和电感LS的电流,模拟的初级电流在一个传统的fb-zvs-ps转换器得到的(两

线)。为了实现ZVS与传统的fb-zvs-ps具有相同的负载,由于串联整流电感,初级电流的斜率较小,因此,工作周期损失增加。一个换向电感器在13μH在传统的转换器和转换器140μH辅助电感变压器系列图11中给出的结果。对于这些参数,常规转换器损失工作周期大约是两倍,40%的额定负载电流,即ZVS获得时的最小负载电流。在所提出的转换器中,所有负载范围内都可以获得ZVS。

图11:该变换器:(1)模拟的初级电流(5A / DIV);(2)LS中的电流(1A / DIV);(3)变压器二次电压(220V/div)。

5。实验结果

为了验证电路的可行性,初步的实验结果在实验室样机得到的。VI = 100V,F = 250KHz,VO = 24V和LS = 1mH。

图12:建议转换器的实验结果:(4)初级电流IP(2A / DIV);(3)初级电压Vab(50V / DIV);(1)在晶体管(S2和S3电压50V / DIV)。

图13:建议转换器的实验结果:(1)在辅助电感电流,离子液体(0,1a / DIV);(2)电压在LS,VLS(50V / DIV)。

图14:建议转换器的实验结果:(3)变压器初级电压,VAB(50V / DIV);(4)变压器二次电压–VS,(50V / DIV);(1),(2)在晶体管(S2和S3电压50V / DIV)。

图15显示了变压器的初级和次级电压的细节。这两个电压进行比较来验证对工作周期的损失是可以忽略的(~ 100ns)

图15:建议转换器的实验结果:(3)变压器初级电压,VAB(50V / DIV);(4)变压器二次电压–VS,(50V / DIV);(1),(2)在晶体管(S2和S3电压50V / DIV)。

6.结论:

理论分析,LCC的辅助电路下的全桥零电压开关移相(FBZVS- PS) DC-DC变换器的仿真与优化设计进行了评价。由于运用了辅助电路,转换器的性能和有效工作周期在所关注的ZVS范围内有所改进。唯一被验证的缺点是在P-A腿的开关中峰值电流有一点增加。初步的实验结果证实了所提出的理论进行了分析。

7.致谢:

本文已被PRAXIS XXI /98/P/EEI/12026/1998的项目支持:高频软开关变换器。

8.参考文献:

[ 1 ] r.雷德尔,N.索卡尔,L.格洛‘一种新的软开关全桥DC/DC 转换器分析,设计考虑,并在1.5千瓦,100kkz的实验结果’出版PESC 90,162-172页。

[ 2 ] D.西博,F.李‘全桥零电压开关PWM变换器的运行,’出版VPEC 89,92-97页。

[ 3 ] J.赛博特等。‘高电压,高功率,ZVS,全桥PWM变换器采用有源开关’,出版APEC’91,92-97页。

[ 4 ] J.赛博特等。‘高电压,高功率的设计考虑,全桥零电压开关PWM 变换器’,出版APEC’92,73-80页。

[ 5 ] G.华,F.李,约万诺维奇,‘一种改进的零电压开关PWM转换器采用饱和电抗器’IEEE电力电子学,卷8,no4,10 / 93。

[ 6 ] R.拉尔,L.巴洛格,D.爱德华兹-‘软开关全桥PWM移相DCDC转换器的开关转换:分析和改进’,出版INTELEC 93,350-357页。

[ 7 ] S. valtchev,B.博尔赫斯-‘1kW/250KHz全桥零电压开关移相DC-DC 变换器的效率改善的’出版INTELEC 95。

[ 8 ] S.valtchev,B.博尔赫斯‘改进的全桥零电压开关移相直流/直流转换器使用二次夹感应器’,IEEE工业电子会议,IECON95页,258-264,奥兰多,美国。

[ 9 ] J. beirante;B.博尔赫斯;S.valtchev‘设计的改进和实验特性的全桥ZVS变换器二次夹感应器’–EPE99年。

电压型逆变器

电压型逆变电路[浏览次数:约247次] ?电压型逆变电路是指由电压型直流电源供电的逆变电路。它的直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗。电压型 逆变电路主要应用于各种直流电源。 目录 ?电压型逆变电路种类 ?电压型逆变电路原理 ?电压型逆变电路特点 电压型逆变电路种类 ?1、单相电压型逆变电路 (1)单相半桥电压型逆变电路 优点:简单,使用器件少 缺点:交流电压幅值Ud/2,直流侧需两电容器串联,要控制两者电压均衡 (2)单相全桥电压型逆变电路,由两个半桥电路的组合,是单相逆变电路中应用最多的。 (3)带中心抽头变压器的逆变电路 2、三相电压型逆变电路 三个单相逆变电路可组合成一个三相逆变电路,应用最广的是三相桥式逆变电路。 电压型逆变电路原理 ?以三相电压型逆变电路为例:图1是一个三相电压型逆变电路的主电路。直流电源采用相控整流电路,由普通晶闸管组成。逆变电路由6个导电臂组成,每个导电臂均由具有自关断能力的全控型器件及反并联二极管组成,所以实际上也是一种全控型逆变电路。负载为感性,星形接法,在整流电路和逆变电路之间并联大电容Cd。由于Cd的作用,逆变入端电压平滑连续,直流电源具有电压源性质。

逆变电路中各全控器件控制极电压信号的时序如图2b所示。信号脉宽为180°,每隔60°有一次脉冲电平的变化,任何时刻有3个脉冲处于高电平。相应地在主电路中也有3个导电臂处于导通状态。 依此类推,可得uAO波形如图2c所示。其他两相uBO和uCO波形分别滞后于uAO120°和240°。根据uAB=uAO-uBO,可得uAB波形如图2e所示。由图可见,逆变电路输出电压uAB、uBC和uCA是分别互差120°的交变四阶梯波。该波形不随负载而

电源逆变器工作原理

电源逆变器工作原理直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。图1 直流至直流切换式转换器典型直流至直流转换器系统的构造1.降压式(step-downbuck)转换器。2.升压式(step-upboost)转换器。3.升降压式(step-down/step-u 电源逆变器工作原理 直流至直流切换式转换器典型直流至直流转换器系统的构造如图1所示,其输入通常为由线电压整流而得到非调节直流电压,然后再利用切换式直流至直流转换器将此变动的直流电压转换成一调节的直流电压。 图1 直流至直流切换式转换器典型直流至直流转换器系统的构造 1.降压式(step-downbuck)转换器。 2.升压式(step-upboost)转换器。 3.升降压式(step-down/step-upbuck-boost)转换器。 4.全桥式转换器。 上述四种转换器中,只有降压式及升压式是最基本的转换器电路结构,升降压式转换器是此二基本转换器的结合,而全桥式转换器则是由降压式转换器衍生而来。

直流至直流转换器的控制直流至直流转换器的作用即是在输入电压与输出负载变动的情况下能够调节输出电压为所设定的位准。电压位准转换之原理可以图2(a)所示之简单电路来说明,由开关导通与截止可得图2(b)之波形,其中输出电压Vo平均值大小Vo与开关之导通及截止时间(ton及toff)有关。平均输出电压大小调整之最典型的方式是采用脉波宽度调变法(Pulse-WidthModulation,PWM),其切换周期Ts(=ton+toff)为固定,由调整导通时间之大小来改变平均输出电压之大小Vo。 A B 图2 脉波宽度调变切换控制的方块图如图3(a)所示,开关之切换控制信号由控制讯号Vcontrol与周期为Ts之锯齿波Vst比较而得,控制信号则由Vo之实际值与设定值之误差放大而得。Vcontrol与Vst比较所得之切换控制信号的波形如图3(b)所示。当控制讯号Vst 较大时,则为高准位信号,即使开关导通,反之为低准位信号即使开关截止,故开关之切换周期亦为Ts,由以上的原理可知,开关切换之责任周期(DutyRatio)为

500W修正方波逆变器制作过程

500W修正方波逆变器制作过程 修正方波逆变器的做法有很多,但各有各的特定。针对我这款逆变器我主要想和大家分享两点,这也是逆变器制作过程中最重要的两点。 一、稳压 看过大多数设计是采用反馈有效值稳压,这种稳压方式缺点是相应性不是太好,针对这种情况我设计一种线性比例稳压方式,整个电源就像一个线性电源,响应性很好。基本原理如下: 理论依据: 为了输出稳定电压必须使调整占空比k=220/峰值电压(C列),图1为占空和峰值电压的曲线,反比例曲线(蓝色线),由于占空比变化很小,有效值电压就变化很大,可以近似看做一条直线,图1 AB绿色直线,有AB两点做直线方程得出峰值电压——占空比的线性方程: y(峰值电压)=-381.8x(占空比)+584.5 计算出占空比(O列)从0.65到0.9的所有输出峰值电压值(P列),如图2 Q列为 O列与P列的乘积即输出的有效值电压,N列为P列/变比(12)得到的蓄电池输入电压,R列为输出电压的变化范围【=abs(220-Q列)*100/220】,有R列可以看出,将反比例关系的曲线近似成线性后得到的输出有效值电压变化范围最大为1.6799%<5%,完全能够满足工程需求。 图3 为占空比输出有效值电压曲线。 如果用图一中红色直线做线性方程得出的数据效果会更好。这里就不在赘述那。 至此用线性的方法进行稳压理论上已经通过,这样就可以用变压的采样线圈整理得到一个峰值反馈电压,在用这个峰值反馈电压通过反比例线性放大器得出一个占空比调制电压,生成对应线性的占空比,从而实现稳压,这里线性反相比例放大器的增益不能太大,具体调试的时候最好用可调电阻调试。图4是工作电路,(Protel暂时不能用先将就一下那,后面在补上) 图中C1和R3一定不能少,否则当电路功率输出加大时尖峰电压的影响,稳压就不准哦,还有R1的阻值不能太小否则就得不到平缓的峰值电压。以上整个电路我是用3525里的运放实现的,实验板电路如下图。 上图用两个2104做自举驱动的的H桥,具体电路就不在赘述那,10个2W电阻为电流采样电阻,后面的过流保护会用到。

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆

变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8.按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9.按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10.按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的基本结构 逆变器的直接功能是将直流电能变换成为交流电能 逆变装置的核心,是逆变开关电路,简称为逆变电路。 该电路通过电力电子开关的导通与关断,来完成逆变的功能。电力电子开关器件的通断,需要一定的驱动脉冲,这些脉冲可能通过改变一个电压信号来调节。产生和调节脉冲的电路。通常称为控制电路或控制回路。逆变装置的基本结构,除上述的逆变电路和控制电路外,还有保护电路、输出电路、输入电路、输出电路等,如图2所示。 逆变器的工作原理。

逆变器的分类和主要技术性能评价

逆变器的分类和主要技术性能评价 逆变器的种类很多,可按照不同的方法进行分类。 1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为 50~60Hz的逆变器;中频逆变器的频率一般为 400Hz到十几KHz;高频逆变器的频率一般为十几KHz到MHz。 2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为"半控型"逆变器和"全控制"逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为"半控型"普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为"全控型",电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。 8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。 9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。 10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。 逆变器的主要技术性能及评价选用 一、技术性能 1、额定输出电压 在规定的输入直流电压允许的波动范围内,它表示逆变器应能输出的额定电压值。对输出额定电压值的稳定准确度一般有如下规定: (1)在稳态运行时,电压波动范围应有一个限定,例如其偏差不超过额定值的±3%或±5%。 (2)在负载突变(额定负载 0%→50%→100%)或有其他干扰因素影响的动态情况下,其输出电压偏差不应超过额定值的± 8%或±10%。 2、输出电压的不平衡度 在正常工作条件下,逆变器输出的三相电压不平衡度(逆序分量对正序分量之比)应不超过一个规定值,一般以%表示,如 5%或 8%。 3、输出电压的波形失真度 当逆变器输出电压为正弦度时,应规定允许的最大波形失真度(或谐波含量)。通常以输出电压的总波形失真度表示,其值不应超过 5%(单相输出允许 10%)。 4、额定输出频率 逆变器输出交流电压的频率应是一个相对稳定的值,通常为工频 50Hz。正常工作条件下其偏差应在±1%以内。

单相电压源型逆变器控制系统设计

单相电压源型逆变器控制系统设计 摘要:大量UPS系统在为许多不允许供电中断的重要用电设备提供不间断供电,研发UPS的关键便是电压源型逆变器,控制输出高质量电压波形,且带非线性负载和负载突变的情况下,仍能保持电压的稳定和高质量。本文的主要内容是研究单相电压源型逆变器,采用电压电流双环瞬时值反馈控制技术,并详细讨论了基于极点配置的双环PI控制参数的整定。同时提出单环超前滞后电压瞬时值反馈控制,并做了大量仿真研究,显示这两种控制方式都具有优越的控制性能。 关键词:双环控制;极点配置;超前滞后;电压源型逆变器 The control system design of single-phase voltage source inverter Abstract:Uninterruptible Power Supply (UPS) systems are widely used for supplying critical equipment which can’t afford utility power failure. The core of a UPS system is a inverter which Control the output voltage waveform with high quality. Even connected with nonlinear load and mutational load, it still can maintain the stability of voltage and the quality. this paper is to study the single-phase voltage source inverter, adopting the instantaneous values of voltage and current double-loop feedback control technology. The dual-loop PI control parameters setting based on pole assignment is discussed in detail. At the same time single-loop instantaneous voltage value with the lead-lag control strategy. And lots of simulation have been achieved. A inverter is the core of a UPS system. To achieve nearly sinusoidal output voltage even with nonlinear loads, many waveform correction techniques have been proposed. This dissertation focuses on the research of the instantaneous feedback technology of PWM inverters. Both control methods show excellent performance. Keywords: dual-loop control;PWM inverter;CVCF;lead-lag control strategy 1 引言 能源的紧张,让人们越来越重视能源利用的高效性。电能成为生产生活使用最直接最重要的能源,在电能的生产、传输和利用过程中,高效利用电能离不开电能变换;同时高精密设备对电能稳定性和高质量的要求,也迫切需要电力电子电能变化的迅速发展。 对于逆变电源的控制策略,可以采用重复控制、无差拍控制、滑模变结构控制或者PID控制。但是现实实际应用中,现今普遍采用的电压电流双环控制,分为电感电流内环电压外环和电容电流内环电压外环两类,由于电感电流闭环没有把负载电流包括在内,导致系统对扰动敏感,所以本文重点研究了单相逆变器电容电流内环电压外环双环控制系统特性。 2 单相全桥PWM逆变器数学模型 单相全桥PWM逆变器主电路原理图如图1所示,交流输出侧由滤波电感L与滤波电容C构成低通滤波器,r 为考虑滤波电感L 的等效串联电阻、死区效应、开关管导通压降、线路电阻等逆变器中各种阻尼因素的综合等效电阻,直流母线电压Udc,逆变器输出电压ur,流过滤波电感的电流il, 负载电压电流为u0、i0. L 图1 单相全桥PWM逆变器主电路原理图 2.1 单相逆变器连续域数学模型 将输出电压uo和电感电流il作为状态变量,ur 和i0分别为输入量和扰动量,输出电压uo为输出量,可以得到逆变器输出滤波器线性双输入、单输出状态空间模型,其在连续域下的状态方程可以表示为: 00 1 1 1 1r l l u u C u i C i r i L L L ?? ?? ?? ?? ???- ?? ??? ?? =++ ?? ??????? ?? ??? ?? ?? ?--???? ?? ?? (1)根据单相全桥PWM逆变器数学模型做出系统框

电压型逆变器与电流型逆变电路的定义及特点

比较电压型逆变器和电流型逆变器的特点 先两者都属于交-直-交变频器,由整流器和逆变器两部分组成。 由于负载一般都是感性的,它和电源之间必有无功功率传送,因此在中间的直流环节中,需要有缓冲无功功率的元件。 如果采用大电容器来缓冲无功功率,则构成电压源型变频器;如采用大电抗器来缓冲无功功率,则构成电流源型变频器。 电压型变频器和电流型变频器的区别仅在于中间直流环节滤波器的形式不同,但是这样一来,却造成两类变频器在性能上相当大的差异,主要表现列表比较如下: 电压型变频器与电流型变频器的性能比较 1、储能元件:电压型变频器——电容器;电流型——电抗器。 2、输出波形的特点:电压形电压波形为矩形波电流波形近似正弦波;电流型变频器则为电流波形为矩形波电压波形为近似正弦波 3、回路构成上的特点,电压型有反馈二极管直流电源并联大容量电容(低阻抗电压源);电流型无反馈二极管直流电源串联大电感(高阻抗电流源)电动机四象限运转容易。

4、特性上的特点,电压型为负载短路时产生过电流,开环电动机也可能稳定运转;电流型为负载短路时能抑制过电流,电动机运转不稳定需要反馈控制 电流型逆变器采用自然换流的晶闸管作为功率开关,其直流侧电感比较昂贵,而且应用于双馈调速中,在过同步速时需要换流电路,在低转差频率的条件下性能也比较差; 高压变频器的结构特征 1.1电流型变频器变频器的直流环节采用了电感元件而得名,其优点是具有四象限运行能力,能很方便地实现电机的制动功能。缺点是需要对逆变桥进行强迫换流,装置结构复杂,调整较为困难。另外,由于电网侧采用可控硅移相整流,故输入电流谐波较大,容量大时对电网会有一定的影响。 1.2电压型变频器由于在变频器的直流环节采用了电容元件而得名,其特点是不能进行四象限运行,当负载电动机需要制动时,需要另行安装制动电路。功率较大时,输出还需要增设正弦波滤波器。 1.3高低高变频器;采用升降压的办法,将低压或通用变频器应用在中、高压环境中而得名。原理是通过降压变压器,将电网

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

电压型逆变器电流型逆变器的区别

论文摘要:在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求,为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。 下述问题涉及电流型逆变器内部结构,以串联二极管式电流型逆变器为讨论对象。对异步电动机的从逆变器元件的选择对电机参数的要求。 串联二极管式电流型逆变器的品闸管和隔离二极管可以确定耐压值。可以看到,在电机漏感上减小的情况下,可以相应地降低功率半导体器件的耐压要求。另外,二极管换流阶段的持续时间可确定。为了减小换流时间以提高逆变器的运行频率,也要求降低电动机的总漏感上。因而,电流型逆变器要求异步电动机有尽可能小的漏感上。这一点正好与电压型逆变器对异步电动机的要求相反。在功率半导体器件耐压已知的情况下,应合理地选择电动机,以减小换流电容器的电容量。 从电动机运行的安全可靠性对电动机材料的要求,电动机在电流型逆变器供电的运行过程中,由干每次换流在电压波形中产生尖峰。这个尖峰在数值上等于I,差加千正线电势波形之上。因此,电动机在运行过程中实际承受的最高电压,于电动机额定线电压的峰值。为了电动机安全地运行,应适当加强其绝缘。由于电流矩形波对电动机供电在电动机内造成谐波损耗,逆变器在高于50赫的情况下运行时,电动机的损坏也有所增加。为了不致因电机效率过低和温升过高造电动机过热而损坏,应适当降低电动机铜铁材料的电负荷。在运行频率较高的情况下,应注意降低电动机的机械损耗和铁耗。 起动转矩和避免机振对电动机结构的要求。电动机低频起动时,起动转矩的平均值和转矩的波动率。起动转矩在某频率时具有最大值。它取决于电动机参数。当频率低于出现最大起动转矩的数值时,转矩的波动率急剧增加。因此,应根据运行要求和特性等决定最佳起动频率或电动机参数。此外,即使在逆变器对电动机供电的正常运行情况下,转矩波形中也含有六倍于逆变器输出频率的脉动转矩。为了避免这种脉动转矩造成的机械系统谐振,应使机械系统的谐振频率与逆变器运行频率范围的六倍相互错开。 对于功率半导体器件的要求。在串联二极管式电流型逆变器中,在触发一个晶闸管,用电容电压关断另一晶闸管以后争由恒流对电容器反向充电。由于电容电压过零需要一段时间,这就保证被关断晶闸管有较长的承受反压的时间。如果说,电压型逆变器对于晶闸管元件的关断时间有较高的要求(郎要求使用快速晶闸管),那末电流型逆变器由于承受反压的时间较长,因而可以使用普通晶闸管元件。在换流过程中以谐振造成了电压尖峰,因此要求晶闸管元件和隔离二雌有较高的耐压值。 换流浪涌电压吸收回路。在正弦电势波形上迭加的尖峰电压,是由于换流过程中电动机释放漏感贮能所产生的。特别是在运行频率较高的场合,在为了缩短换流时间而选择较小的换流电容值的情况下,换流浪涌过电压就更加严重。浪涌电压将直接威胁功率半导体器件和电动机的安全运行。为了减小这种影响,可以在逆变器输出端,与负载电动机并联一个换流浪涌电压吸收回路(也称为电压箝位器),如采用电压箝位器以后,逆变器的输出电压和输出电流波形如逆变器输出电压的尖峰可以限制在正弦电势峰值的(11~12)倍以内。有源逆变器型式,可以使箝位电压保持一定。 逆变器运行的可靠性问题。在逆变器的直流侧设有乎波大电感上,在电流闭环的作用下,可以有效地限制故障电流,即使在逆变器换流失败或短路的情况下,也不会造成大电流而损坏元件,因此,电流型逆变器的卫作是可靠的。 能够实现电能再生。在电动机降频减速时,系统能自动地运行于再生状态,可把机械能有效地转变为电能,并缩短电动机的减速时间。此时,逆变器与整流器直流侧电压的极性反号,而电流的流向保持不变,功率由电动机经逆变器和整流器流向交流电源,实现再生制动。因此,电流型逆变器能够方便地实现四象限运行,其动态特性好,容易满足快速及可逆系统的要求。 使用电流型逆变器除了用于要求电变频调速的系统以外,近年来在下述两个方面受到较大的关注。(1)用于泵、风机、增压机等机械的节能。过去这些机械常用恒频的交流电机拖动,在流量、压力要求变化时,用调节阀门的蘐芸方法以满足要求。这样,就白白地浪费了大量的电能。电流型逆变器因有许

电压源变流器的高压直流输电教学内容

电压源变流器的高压直流输电(VSC-HVDC ) 1.引言 晶闸管的应用领域主要是在整流(交流-直流)、逆变 (直流-交流)、变频 (交流-交流)、斩波(直流-直流)。传统的高压直流输电采用晶闸管变流器,而新型的直流输电技术(VSC-HVDC )采用IGBT 、IGCT 等全控器件组成电压源变流器(VSC)完成交流-直流-交流的变换。两个VSC 分别作整流器和逆变器,一个工作在定直流电压模式,另一个工作在定有功功率模式。两个变流器的无功功率都可以单独调节。其核心是利用由全控型电力电子器件构成并基于脉宽调制 ( P WM)技术控制的VS C 代替了常规 HVDC 中的可控硅换流器。该输电技术可向无源网络供电.不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等。 如图 1 所示,常用的两端 VSC —HVDC 的主要部件包括:电压源换流器( v s c )、绝缘栅双极晶体管( I G B T )、脉宽调制( P WM)、控制系统。 VSC —HVDC 的基本控制原理: δsin T S C X U U P = Q=)cos (S C T C U U X U —δ 其中:Uc 为换流器输出电压的基波分量,Us 为交流母线电压基波分量,δ为Uc 和 Us 之间的相角差,T X 为换流电抗器的电抗。

2. VSC-HVDC的基本控制方式及特点 定直流电压控制方式,用以控制直流母线电压和输送到交流侧的无功功率,定直流电流( 功率) 控制方式,用以控制直流电流(功率)和输送到交流侧的无功功率,定交流电压 控制方式,仅控制交流侧母线电压,适用于向无源网络供电,通常对于一个两端VSCHVDC系统,必须有一端采用定直流电压控制方式。 3. VSC-HVDC的仿真 将两个230KV,2000MVA的交流系统通过VSC-HVDC相连,进行功率传输。 图为仿真电路图:

两电平电压源逆变器空间矢量调制方案

任务2:两电平电压源逆变器空间矢量调制方案 周乐明 学号:S1******* 电气2班 摘要 提出了三相两电平逆变器的空间矢量调制方法,详细讨论了两 电平逆变器的工作原理及空间矢量调制的基本原理,并给出一个具体的仿真实例,通过仿真 ,可以得出实际运行中的电压、电流的波形,而且在文中给出了实例的电路原理图,使得对 于空间矢量调制的原理得以更加清楚的认识。 1. 两电平电压源逆变器空间矢量调制 1.1 结构试图 三相电压型逆变器电路原理图如图2.1所示。定义开关量a ,b ,c 和a ',b ',c '表示6个功率开关管的开关状态。当a ,b 或c 为1时,逆变桥的上桥臂开关管开通,其下桥臂开关管关断(即a ',b '或c '为0);反之,当a ,b 或c 为0时,上桥臂开关管关断而下桥臂开关管开通(即a ',b '或c '为1)。由于同一桥臂上下开关管不能同时导通,则上述的逆变器三路逆变桥的组态一共有8种。对于不同的开关状态组合(abc ),可以得到8个基本电压空间矢量。各矢量为: 22j j dc 33out 2()3 U U a be ce ππ-=++ (2-1) 则相电压V an 、V bn 、V cn ,线电压V ab 、V bc 、V ca 以及out ()U abc 的值如下表2-1所示(其中U dc 为直流母线电压)。 a c' b' a'b c U dc A B C N Z 图2.1 三相电压型逆变器原理图 表2-1 开关组态与电压的关系 a b c V an V bn V cn V ab V bc V ca out U 0 0 0 0 0 0 0 0 0 0 1 2U dc /3 -U dc /3 -U dc /3 U dc -U dc dc 23 U

电压型三相PWM逆变器控制的研究

电压型三相PWM逆变器控制的研究 [摘要]电压型三相PWM逆变器作为电力系统的关键设备,对于能源的转换效率和可靠性具有举足轻重的作用,其控制技术更是备受世界各国学者的关注。因此,本文我们重点对电压型三相PWM逆变器的电流控制技术进行了分析,以期为提高电压型三相PWM逆变器的性能提供一些有益的参考。 【关键词】电压型三相PWM逆变器;控制;技术 随着新能源分布式发电系统的发展,当大电网出现电压骤升、骤降、不平衡和谐波等电能质量问题或有计划检修时,系统转入孤岛运行模式,此时的电压(指电压幅值)和频率由内部微电源控制器负责调节。在这种情况下,传统的并网逆变器控制方式难以满足电力系统稳定运行的需要,因此要研究适用于电力系统的电压型三相PWM逆变器控制技术。 1、电压型三相PWM逆变器的概述 电压型逆变器是应用最广的一种DC-AC变换器,其直流侧以电容为能量缓冲元件,从而使其直流侧呈现出电压源特性。根据电压型逆变器的控制方式和结构的不同,电压型逆变器主要可分为方波型、阶梯波型、正弦波型(PWM型)三类。 电压型方波逆变器以及电压型阶梯波逆变器当需要改变输出电压幅值时,一般采用脉冲幅值调制(PAM)或单脉冲调制(SPM),它们应用于大功率场合具有开关损耗低,运行可靠等优点,但也存在动态响应慢、谐波含量大(方波逆变器)、结构复杂(阶梯波逆变器)等一系列不足。为此考虑设计另一类能克服上述不足且性能优越的电压型逆变器,即脉冲宽度调制(Pulse Width Modulation,PWM)电压型逆变器。这种电压型正弦波逆变器一般应具有以下特点:(1)逆变器的直流电压可采用结构简单的不控整流电路。(2)利用单一的功率电路及其控制,可同时调整输出频率和输出电压,动态响应快。(3)由于输出电压的谐波频率主要分布在开关频率及其以上频段,因而输出谐波含量低。 根据输出电流的相数,电压型PWM逆变器又可以分为电压型单相PWM逆变器和电压型三相PWM逆变器。其中,电压型单相PWM逆变器受到电网负载平衡要求、功率器件容量、零线电流和用电负载性质的影响,其容量一般都在100KV A以下,而电压型三相PWM逆变器多应用于大容量的逆变电路。 2、电压型三相PWM逆变器控制方法的分析 2.1电压型三相PWM逆变器控制方法的概述 电压型三相PWM逆变器在独立模式下一般采用双闭环控制,即由电压环控制输出电压,采用电流环提高系统的动态响应速度。根据反馈电流的采样,电流

三相电压源型SPWM逆变器的设计资料

三相电压源型S P W M 逆变器的设计

2011~2012学年第 2 学期 《电力电子技术》 课程设计报告 题目:三相电压源型SPWM逆变器的设计专业:电气工程及其自动化 班级: 09 电气工程及其自动化 姓名: 指导教师: 电气工程系 2012年5月12日

任务书

目录 摘要................................................................................................ 错误!未定义书签。 1 设计原理 (2) 1.1 SPWM控制基本原理 (2) 1.2逆变电路 (2) 1.3三相电压型桥式逆变电路 (3) 2 设计方案 (5) 2.1 逆变器主电路设计 (5) 2.2 脉宽控制电路的设计 (6) 2.2.1 SG3524芯片 (6) 2.2.2 利用SG3524生成SPWM信号 (7) 2.3 驱动电路的设计 (9) 2.3.1 IR2110芯片 (9) 2.3.2 驱动电路 (9) 3 软件仿真 (10) 3.1 Matlab软件 (10) 3.2 建模仿真 (11) 4 心得体会 (12) 参考文献 (15) 附录 (16)

摘要 本次课程设计题目要求为三相电压源型SPWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个部分电路以及元器件的取舍,比如驱动电路、抗干扰电路、正弦信号产生电路等,其中部分电路的绘制采用了Protel软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相电压源型逆变电路 Matlab 仿真

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相方波逆变电路原理说明

1 引言 设计要求 本次课程设计题目要求为三相方波逆变电路的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab 仿真等,巩固了理论知识,基本达到设计要求。完成三相方波逆变电路的仿真,开关管选IGBT,直流电压为530V, 阻感负载,负载有功功率1KV y感性无功功率为100Var。 逆变的概念 逆变即直流电变成交流电,与整流相对应 电力系统中,将电网交流电通过整流技术变成直流电,然后通过逆变技术,将直流变成高频交流,再通过高频变压器降压,就达到缩小变压器体积和提高供电质量的目的了。

三相逆变 三相逆变技术广泛应用于交流传动、无功补偿等领域。在三相PWM交流 伺服系统中,一般采用三个桥臂的结构,即逆变桥主电路有6 个功率开关器件 (功率MOSFE或IGBT)构成,若每个开关器件都用一个单独的驱动电路驱动,则需6 个驱动电路,至少要配备4 个相互独立的直流电源为其供电,使得系统硬件结构复杂,可靠性下降,且调试困难,设计成本偏高。 2三相电压源型SPW逆变器 PWM的基本原理 PWM(Pulse Width Modulation) 控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWh控制技术最重要的理论基础是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。 SPW控制技术是PW M空制技术的主要应用,即输出脉冲的宽度按正弦规律变化而和正弦波等效。 SPWM逆变电路及其控制方法 SPW逆变电路属于电力电子器件的应用系统,因此,一个完整的SPW逆变电路应该由控制电路、驱动电路和以电力电子器件为核心的主电路组成。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。 目前应用最为广泛的是电压型PW逆变电路,脉宽控制方法主要有计算机法和调制法两种,但因为计算机法过程繁琐,当需要输出的正弦波的频率、幅值或相位发生变化时,结果都要变化,而调制法在这些方面有着无可比拟的优势,因此,调制法应用最为广泛。 所谓调制法,就是把希望输出的波形作为调制信号U t,把接收调制的信号作 为载波U c,通过信号波的调制得到所期望的PW波形。 三相方波逆变器 电路结构相同,只是控制方式不同。每一开关元件在输出电压的一个周期中闭合180°

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路

中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展

单相方波逆变

1. 绪论 1.1.电力电子简介 电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。 PWM控制技术是逆变电路中应用最为广泛的技术,现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。为了对PWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和PWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK对电路进行了仿真,给出了仿真波形,并运用MATLAB提供的powergui模块对仿真波形进行了FFT分析(谐波分析)。通过仿真分析表明,运用PWM控制技术可以很好的实现逆变电路的运行要求。 1.2.matlab的简介 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分

相关文档
相关文档 最新文档