文档视界 最新最全的文档下载
当前位置:文档视界 › 直流三相逆变器设计

直流三相逆变器设计

直流三相逆变器设计
直流三相逆变器设计

1 设计任务与要求

条件:输入直流电压:110V。

要求完成的主要任务:

(1)开关元器件的选择

(2)各模块方案选择

(3)各模块方案设计

(4)总电路的设计

(5)各模块的器件选型

(6)参数计算

设计容量为3KVA的三相逆变器,要求达到:

(1)输出380V,频率50Hz三相交流电

(2)完成总电路设计

(3)完成电路中各元件的参数计算

1.1 设计任务分析

由于输入直流电压只有110V,而输出交流电压要求有效值为380V,所以必须通过升压电路将直流电压升到到一定值才能作为逆变器的输入电压。逆变器的核心是半导体开关器件,不同拓扑的逆变电路有不同的优缺点和应用领域。半导体开关器件需要触发信号才能导通,要使逆变器输出正弦波形,则需要特殊的触发电路对开关器件进行调制。逆变器输出带有高次谐波,需要滤波电路对谐波进行。在进行仿真前,需对上述电路模块进行比较论证和选择。

1.2 设计思路

首先,考虑输入直流电压为110V而输出380V、频率50Hz三相交流电,要采用斩波电路升压到大于380以上,可以用直流斩波升压电路、直流斩波升降压电路等。其次要求由直流变为三相交流电,可采用电压型逆变电路、电流型逆变电路。逆变电路得到的是三相矩形波,再用PWM或者SPWM开关采用规则采样法将矩形波变为三相波,最后用滤波器滤波得到最终的所要的三相电,设计流程图如图1.1所示

图1.1设计流程图

2 设计意义及原理

2.1 设计意义

逆变电源技术的核心部分是逆变器和其控制部分。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但其含有较大成分低次谐波等缺点,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用众所周知。

逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器BJT,IGBT,GTO等的发展和PWM的控制技术的日趋完善,使SPWM逆变器得以迅速发展并广泛使用。

PWM控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:

(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。

(2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。

(3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。

在后备式供电中,蓄电池作为一种非常重要的储能介质,在各个行业都得到了广泛的应用。由于单个电池的参数存在着差别,不能通过将蓄电池并联的方法来提高直流供电系统的容量,因此在电池的容量不能满足实际需求时,最直接的办法就是多个蓄电池串联共同提供能量。所串的蓄电池越多,蓄电池组能够提供的能量就越多,但输出端电压就越高,此时,逆变器输入直流电压的上限就直接决定了蓄电池组的容量

大小。

另外,高压变频器广泛的应用于轧钢、造纸、水泥制造、矿井提升、轮船推进器等传统工业的改造和高速列车、城市地铁轻轨、电动汽车中,其核心部分也是高压逆变器。

2.2 开关元器件的选择

IGBT 主要是以M(模块)P(脉波)W(宽度)M(调变)方式制作,用主动元件IGBT模块设计,使本机容量可达300KVA,以隔离变压器输入及输出,来增加整机稳定性,特别感性、容性级特殊负载,负载测试和寿命实验可靠性高。

IGBT优点:

高频MPWM设计,IGBT功率推动,体积小、可靠性能高、噪音低。

效率达85%以上。

反应快速,对100%除载/加载,稳压反应时间在2ms以内。

超载能力强,瞬间电流能承受额定电流的300%。

波峰因素比(CREST FACTOR RATIO)高于3:1。

具过压、过流、超温等多重保证级报警装置。

Power MOSFET全称功率场效应晶体管。它的三个极分别是源极(S)、漏极(D)和栅极(G)。主要优点:热稳定性好、安全工作区大。缺点:击穿电压低,工作电流小。

GTR(功率晶管)由于二次击穿和驱动功率大等缺点,目前被IGBT和MOSFET 所代替。

IGBT全称绝缘栅双极晶体管,是MOSFET和GTR(功率晶管)相结合的产物。它的三个极分别是集电极(C)、发射极(E)和栅极(G)。特点:击穿电压可达1200V,集电极最大饱和电流已超过1500A。由IGBT作为逆变器件的变频器的容量达250kVA以上,工作频率可达20kHz。

所以这里选择IGBT作为此次设计的开关元件。

2.3 逆变电路原理

逆变电路在电力电子电路中占很重要的地位,他可分为电压型逆变电路和电流型逆变电路,在实际生产生活中三相逆变应用较为广泛,其中电压型的直流侧通常是并一个电容器,而电流型通常是在直流侧串一个电感。

电压型逆变:直流侧为电压源,采用并联大电容器来缓冲无功功率,则构成电压型逆变器。电压型逆变电路输出电压波形为矩形波,输出电流波形近似正弦波。直流侧电压基本无脉动,直流回路呈现低阻抗;交流侧输出电压为矩形波;当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用等特点。

电压型逆变电路有以下主要特点:

(1)直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。

(2)由于支路电压源的箝位作用,交流侧输出电压波形位矩形波,并且与负

载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。

(3)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

图中Vl—V6是逆变器的六个IGBT开关器件,各由一个续流二极管反并联,整个逆变器由恒值直流电压供电。电路中的直流侧通常只有一个电容器就可以了,但为了方便分析,画作串联的两个电容器并标出假想中点。和单相半桥,全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是导电方式,即每个桥臂的导电角度为,同一相上、下桥臂交替导通。因为每次换流都是在上、下桥臂之间进行,因此也被称为纵向换流。

采用IGBT作为开关器件的三相电压型桥式逆变电路如图2.1所示:

图2.1 三相电压型桥式逆变电路

3 各模块方案选择

3.1 升压电路选择

方案1:采用变压器直接对直流电压进行升压。

方案2:采用boost直流斩波升压电路通过改变占空比对直流电压进行调节升压。

考虑到实际变压器变比不可调或者调节范围很小,不利于逆变器输出的调节,而boost电路通过调节开关器件的导通占空比可以灵活方便的调节输出电压的大小,从实际出发和从方便性出发,最终选择了boost电路作为升压电路。

如图2.2升压斩波电路主电路图

图3.1升压斩波电路主电路图

3.2 逆变电路选择

逆变器按照输出的相数分,有单相、三相两种;按电路拓扑分,有半桥式、全桥式和推挽式。鉴于全桥结构的控制方式比较灵活,所以选择三相全桥电路作为逆变器主电路。

3.3 逆变器触发电路选择

目前,逆变器广泛采用PWM脉宽调制技术实现对输出电压的控制。PWM技术主要体现在两个方面,一是控制策略,二是实现的手段。调制方式主要有直流脉宽调制和正弦波脉宽调制两种方式。直流脉宽输出的是方波,波形畸变严重,所以不适合;正弦波脉宽调制输出波形只含高次谐波,可以大大减小滤波器的体积。所以最终选择正弦波脉宽调制,即SPWM技术。

3.4 滤波电路选择

由于设计任务对波形畸变率没有特殊的要求,可以采用最普通的LC滤波电路作为逆变输出的滤波电路。

3.5 保护电路选择

过压保护器件(OVP)用于保护后续电路免受甩负载或瞬间高压的破坏,常用的过压保护器件有压敏电阻、瞬态电压抑制器、静电抑制器和放电管等。过压保护器件选型应注意以下四个要点:

1)关断电压Vrwm的选择。一般关断电压至少要比线路最高工作电压高10%

2)箝位电压VC的选择。VC是指在ESD冲击状态时通过TVS的电压,它必须小于被保护电路的能承受的最大瞬态电压 3)浪涌功率Pppm的选择。不同功率,保护的时间不同,如600w(10/1000us);300W(8/20us) 4)极间电容的选择。被保护元器件的工作频率越高,要求TVS的电容要越小

过流保护器件主要有一次性熔断器、自恢复熔断器、熔断电阻和断路器等,其中,最重要的过流保护器件是熔断器,也叫保险丝。它一般串联在电路中,要求其电阻要小(功耗小),当电路正常工作时,它只相当于一根导线,能够长时间稳定的导通电路;由于电源或外部干扰而发生电流波动时,也应能承受一定范围的过载;只有当电路中出现较大的过载电流(故障或短路)时,熔断器才会动作,通过断开电流来保护电路的安全,以避免产品烧毁的危险。

在熔断器分断电路的过程中,由于电路电压的存在,在熔体断开的瞬间会发生电弧,高质量的熔断器应该尽量避免这种飞弧;在分断电路后,熔断器应能耐受加在两端的电路电压。熔断器受脉冲损伤会逐步降低承受脉冲的能力,选用时需要考虑必要的安全余量;这个安全余量是指熔断器的总熔断(动作)时间,它是预飞弧时间和飞弧时间之和。所以在选择的时候需要留意它的熔断特性和额定电流这个基本条件;另外安装时要考虑熔断器周边的环境,熔断器只有达到本身的熔化热能值的时候才会熔断,如果是在环境较冷的状况下,它的熔断时间会变化,这是使用时必须留意的。

3.6 总电路的控制方式

为了使输出电压波形稳定且可调,采用闭环控制方式,检查输出电压反馈到输入作为比较控制。

4 各模块方案设计

4.1 升压斩波电路

升压斩波电路如下图3.1所示。假设L值、C值很大,V通时,E向L充电,充

电电流恒为I

1,同时C的电压向负载供电,因C值很大,输出电压u

o

为恒值,记

为U

o 。设V通的时间为t

on

,此阶段L上积蓄的能量为EI

1

t

on

。V断时,E和L共

同向C充电并向负载R供电。设V断的时间为t

off

,则此期间电感L释放能量为

(U

0-E)I

1

t

off

,稳态时,一个周期T中L积蓄能量与释放能量相等,即

EI

1

t

on

=(U

-E)I

1

t

off

化简得 U

0=T·E/t

off

输出电压高于电源电压,故称升压斩波电路,也称之为boost变换器。

T与t

off

的比值为升压比,将升压比的倒数记作β,则

α+β=1

故 U

=E/(1-α)

升压斩波电路能使输出电压高于电源电压的原因:L储能之后具有使电压泵升的作用,并且电容C可将输出电压保持住。

图4.1 升压斩波电路原理图

4.2逆变电路

逆变电路原理

逆变电路在电力电子电路中占很重要的地位,他可分为电压型逆变电路和电流型逆变电路,在实际生产生活中三相逆变应用较为广泛,其中电压型的直流侧通常是并一个电容器,而电流型通常是在直流侧串一个电感。

电压型逆变:直流侧为电压源,采用并联大电容器来缓冲无功功率,则构成电压型逆变器。电压型逆变电路输出电压波形为矩形波,输出电流波形近似正弦波。直流侧电压基本无脉动,直流回路呈现低阻抗;交流侧输出电压为矩形波;当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用等特点。

电压型逆变电路有以下主要特点:

(1)直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无

脉动,直流回路呈现低阻抗。

(2)由于支路电压源的箝位作用,交流侧输出电压波形位矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。

(3)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

采用IGBT作为开关器件的三相电压型桥式逆变电路如图3.2所示:

图4.2 三相电压型桥式逆变电路

图中Vl—V6是逆变器的六个IGBT开关器件,各由一个续流二极管反并联,整个逆变器由恒值直流电压供电。电路中的直流侧通常只有一个电容器就可以了,但为了方便分析,画作串联的两个电容器并标出假想中点。和单相半桥,全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是导电方式,即每个桥臂的导电角度为,同一相上、下桥臂交替导通。因为每次换流都是在上、下桥臂之间进行,因此也被称为纵向换流。

逆变电源采用图3.3所示主电路。首先采用升压斩波电路将110KV直流电压升高到400KV,因为对输出波形的要求不是很高,与负载并联的电容C取很大就可以达到滤波的目的。开关管T1~T6是IGBT,构成三相逆变桥。关断缓冲由电

阻R、电容C和二极管D并联网络组成;C

0折算到变压器T

M

的原边后与L

2

一起构

成交流输出滤波电路;变压器用作电路隔离和升压。

图4.3三相逆变器主电路原理图

4.3 SPWM控制系统

图4.4 三相SPWM控制系统框图

三相脉冲形成可采用上述介绍的SPWM控制方法,控制系统框图如3.3所示。下面介绍SPWM生成的各电路部分。

数字分频电路

图3.5是数字分频电路,Y是石英晶体振荡器,它有稳定的震荡频率,频率稳定度可以达到万分之一。该电路选用震荡频率1.8432MHz的晶振,它和R1、C1、C2组成频率信号产生的电路,得到1.8432MHz频率信号,再经过数字电路CD4017、CD4040处理,输出两路频率信号。CD4017是十进制计数器,第7脚的Q3计数端引至第15脚的复位端可以实现3分频。CD4040是串行二进制计数器,9脚Q1可以得到2分频,2脚的Q6可以得到2的6次方既64分频。1.8432MHz 的频率,分频后三角波频率为9.6kHz,标准正弦的扫描频率为102.3kHz。

图4.5 数字分频电路

标准正弦波形成电路

标准正弦波的长生是利用数字电路实现的。在EPROM中存放的数据(十六进制)是这样得到的;将一个周期的单位正弦波分成N等份,每一点的数据在计算机上事先离散计算好在存放进去。由于写入的数据只能是正值,单位正弦波是和图中Uref的波形一致,幅值为1的正弦波。本例中将一个周期的正弦波分成N=2048份。

正弦扫描频率引入数字电路CD4040,CD4040的输出是一组地址扫描信号送到EPROM的地址线上,EPROM2732中存放的数据便依次送到D/A转换器DAC0832,DAC0832将这些数据转换成断续的模拟信号,经过一个小电容C1(0.1uf以内)滤波,得到连续模拟信号Uref,峰峰值由IO1端引入的给定电压Uc决定,电路中Uc来自调节器的输出。经运放LF365处理,可以获得正负对称、幅值为Uc的标准正弦波SINE。

要产生的标准正弦波的频率f1=50Hz,和前面分频电路得到的频率一致,那么扫描频率应该为: fh=f1*N=50*2048=102.4kHz。正弦波的频率由稳定度相当高的晶振分频得到,故正弦波的波形畸变率很低;正弦波的幅值受控于给定电压。因此,该电路是一个高精度的正弦发生器。

上述电路具有通用性,对一个已经写好数据的EPROM,若改变正弦扫描频率,可以改变标准正弦波频率;若改变EPROM中的数据,可实现不同的PWM调制策略,如梯形波调制,注入特定次谐波;若再增加两套电路,在3个EPROM中存放相位互差120°的数据,就可实现三相SPWM控制。

三角波形成电路

分频电路提供了三角波频率信号,即为9.6kHz的脉冲信号,应用隔直、比例和积分电路即可得到幅值适当,正负对称的三角波,其频率为9.6kHz。SPWM形成电路

本装置SPWM形成正弦波信号SINE和三角载波信号TR来自前级电路;TL084是运算放大器,一TR由它接成的反向器得到。电路中大量使用了芯片LM311,它是DIP8封装的快速电压比较器,不仅可以作为比较器,还可以利用他的特点做脉冲封锁。下面介绍它的应用:8脚、4脚分别接芯片电源的正、负端;2脚、3脚分别是同向、反向输入;1脚是低电平设定(可接电源负或地),它的电压值决定了LM311输出的低电平值;7脚为输出端,逻辑判断为“高电平”时,集电极开路(OC门特性),因此,7脚必须有上拉电阻同正电源连接,否则,没有高电平输出, R1、R2、R3、R4等都是上拉电阻;5、6脚用来调节输入平衡(可不用),6脚还可以用作选通,如果LM311的6脚接低电平。其输出恒为高电平,这个特点往往用来设置脉冲封锁。

该系统设置PWM信号低电平有效,即PWM信号为低电平时,驱动电路产生驱动脉冲,IGBT导通。Lock为保护电路输出的脉冲封锁信号;在电路出现故障时,lock的低电平送到后级各个LM311的6脚,使所有PWM为高电平封锁驱动脉冲。如果不利用LM311封锁驱动,也可以设置PWM高电平有效,取消后级的LM311。

R1~R4,C1~C4和Rp还组成了死区形成电路,参数大小决定死区时间,Rp可以调节死区大小;IGBT的开关时间为2us左右,死区时间设为4us。

该装置采用了一种数模结合的SPWM控制电路,它由数字分频电路、三角波

形成电路、调节器、标准正弦波控制电路及PWM形成电路等组成。系统的电压调节是为了稳定电压,电流调节是为了限制输出电流。电源的正弦输出畸变率小于5%,要求不是太高,逆变器的输出功率1kW也不大。因此,系统仅采用电压平均值闭环控制,稳定输出电压,对输出波形采用开环控制,即直接将幅值受控的标准正弦波和三角波比较。

在3片EPROM内写入3个相差120°的正弦波数据,经过数模转换后,形成3个互差120°的正弦波。它们同一三角载波比较,便可得到三相SPWM控制脉冲分别驱动3个桥臂。

4.4驱动电路

IR2130是MOS、IGBT功率器件专用栅极驱动芯片,通过自举电路工作原理,使其既能驱动桥式电路中低压侧的功率器件,又能驱动高压侧的功率元件,因而在电机控制、伺服驱动、UPS电源等方面得到广泛应用。这些器件集成了特有的负电压免疫电路,提高了系统耐用性和可靠性,有些器件不仅有过流、过温检测输入等功能,还具有欠压锁定保护、集成死区时间保护、击穿保护、关断输入、错误诊断输出等功能。

IGBT的驱动电路型号很多,IR21系列是国际整流器公司退出的高压驱动器,一片IR2013课直接驱动中小容量的6支场控开关管,并且只需要一路控制电源。IR2013是28引脚双列直插式集成电路,应用方法如图3.6 HIN1、HIN2、HIN3为3个高侧输入端,LIN1、LIN2、LIN3为3路低侧输入端,HO1、VS1、HO2、VS2、HO3、VS3为3路高侧输出端,LO1、LO2、LO3为3路低侧输出端,Vss为电源地,VSD为驱动地,VB1、VB2、VB3为3路高侧电源端,FALUT为故障输出端,ITRIP 为电流比较器输入端,CAO为电流放大器输出端,CA为电流放大器反向输入端。

当IR2130驱动上桥臂功率管的自举电源工作电压不足时,则该路的驱动信号检测器迅速动作,封锁该路的输出,避免功率器件因驱动信号不足而损坏。当逆变器同一桥臂上2个功率器件的输入信号同时为高电平,则IR2130输出的2路门极驱动信号全为低电平,从而可靠地避免桥臂直通现象发生。

图4.6 IR2130结构及应用电路

采用IR2130作为驱动电路时,外围元件少,性价比明显提高。它的高压侧的3路驱动电源有Ucc采用自举电路得到。3支快速二极管的阴极电位是浮动的,因此,它的反向耐压值必须大于主电路的母线电压峰值。IR2130最大正向驱动电流 250mA,反向峰值驱动电流 500mA;内部设有过流、过呀、欠压、逻辑识别保护;它的浮动电压做大不超过400V。

4.5控制器设计

当采用瞬时值内环反馈双环控制时,内环为瞬时值环,用来控制输出电压波形的正弦波,外环采用平均值控制,以保证电压的平均值与参考值一致。如果波形正弦度好,平均值和有效值一一对应关系。

平均值外环的PI调节器输出控制正弦波幅值,幅值乘以单位正弦波后的信号为内环给定,与输出电压瞬时值比较经内环PI调节器输出正弦波调制信号,与三角载波比较后产生的PWM信号经过驱动电路控制逆变器的开关器件。在不允许供电中断的重要用电场合,大量使用着UPS系统。而逆变器是UPS系统的核心部件,要求它具有高质量的输出电压波形。尤其是在带非线性负载情况下仍然要有接近正弦的输出波形。因此,发展了多种多样的逆变器波形控制技术。本文的主要内容是PWM逆变电源瞬时值反馈控制技术,瞬时值反馈控制是根据当前误差对逆变器的输出波形进行有效的实时控制,如果控制器设计合理,既可以保证系统具有很好的稳态性能,同时也可以保证系统有快速的响应速度。全文围绕电压单环瞬时值控制技术及电容电流内环和电压外环双环瞬时值控制技术这两种控制方法,进行了理论分析,同时结合仿真和实验来探讨如何提高PWM逆变电源的静、动态性能,改善输出波形质量。

图4.7瞬时值内环反馈双环控制

4.6辅助电源

在桥式逆变电路中,一个桥臂上下两管驱动电路的电源应各自独立,两个桥臂上的管无共地点下管可以共地。因此,驱动6管时,至少要有3路独立电源。采用单端反激式开关电源作为辅助电源提供3组20V电源和±12V电源。3组20V 电源分别作为6个IGBT的驱动模块电源,±12V电源给控制系统的芯片供电。

只要有直流输入,辅助电源就供电,控制系统就具备控制和保护能力。

4.7保护电路

保护复位电路的电路拓扑结构如图5所示,它的主要功能是当驱动信号发生电路中的电流较大时,产生复位保护信号,即图中的STOP信号。下面简要介绍保护复位电路的基本工作原理:保护复位电路的输入信号来自驱动信号发生电路的电流检测器ISENSOR。当流过ISENSOR的电流较大时,此时电阻R83两端的压降增大,运算放大器U18D的输出为高电平。由于双D型触发器4013的时钟和D 信号引脚接地,则该触发器具有R-S触发器的功能。当运算放大器的输出为高电平时,即R引脚的信号为高电平,此时触发器被复位,触发器的输出端Q为低电平,即STOP信号为低电平。当STOP信号为低电平时,三输入与门U10A 4073(如图5所示)的输出被强制限定为低电平。而4013触发器的另一输出通过RC回路(如图中R98和E15)充电,当充电到一定时候,S引脚为高电平,根据触发器的功能表可见,STOP信号重新变成高电平,这时STOP信号对三输入与门的工作没有影响,实现了保护复位功能。通过选择合适的电阻、电容值,可以确定保护复位的时间,在本文中,选择电阻为750kΩ,电容为4.7μF使复位时间为1.5s。保护复位电路如图3.8

图4.8 保护复位电路

过电压的保护

过电压的幅度一般都很大,但是其作用时间一般却都很短暂,即过电压的能量并不是很大的。利用电容两端的电压不能突变这一特点,将电容器并联在保护对象的两端,可以达到过电压保护的目的,这种保护方式叫做阻容保护。起保护作用的电容一般都与电阻串联,这样可以在过电压给电容充电的过程中,让电阻消耗过电压的能量,还可以限制过电压时产生的瞬间电流。并且R 的接入还能起到阻尼作用,防止保护电容和电路的电感所形成的寄生振荡。图3.9为电源侧阻容保护原理图。图3.9(a)为单相阻容保护电路,图3.9(b)、(c)为三相阻容保护电路,RC网络接成星型,如图3.9(b);也可以接

成三角形,如图3.9(c)。电容越大,对过电压的吸收作用越明显。在图3.9中,图3.9(a)为单相阻容保护,阻容网络直接跨接在电源端,吸收电源过电压。图3.9(b)为接线形式为星型的三相阻容保护电路,平时电容承受电源相电压,图3.9(c)为接线形式为三角型的三相阻容保护电路,平时电容承受电源相电压。显然,三角型接线方式电容的耐压要为星型接线的3倍。但是无论哪种接线,对于同一电路,过电压的能量是一样的,电容的储能也应该相同,所以星型接线的电容容量应为三角形的3倍。也就是说两种接线方式电容容量和耐压的乘积是相同的。

图4.9 阻容保护

过电流的保护

电力电子电路中的电流瞬时值超过设计的最大允许值,即为过电流。过电流有过载和短路两种情况。常用的过电流保护措施如图3.10所示。一台电力电子设备可选用其中的几种保护措施。针对某种电力电子器件,可能有些保护措施是有效的而另一些是无效的或不合适的,在选用时应特别注意。

图4.10 过电流保护

交流断路器保护是通过电流互感器获取交流回路的电流值,然后来控制交流电流继电器,当交流电流超过整定值时,过流继电器动作使得与交流电源连接的交流断路器断开,切除故障电流。应当注意过流继电器的整定值一般要小于电力电子器件所允许的最大电流瞬时值,否则如果电流达到了器件的最大电流过流继电器才动作,由于器件耐受过电流的时间极短,在继电器和断路器动作期间电力电子器件可能就已经损坏。来自电流互感器的信号还可作用于驱动电路,当电流超过整定值时,将所有驱动信号的输出封锁,全控型器件会由于得不到驱动信号而立即阻断,过电流随之消失;半控型器件晶闸管在封锁住触

发脉冲后,未导通的晶闸管不再导通,而已导通的晶闸管由于电感的储能器件不会立即关断,但经一定的时间后,电流衰减到0,器件关断。这种保护方式由电子电路来实现,又叫做电子保护。与断路器保护类似,电子保护的电流整定值也一般应该小于器件所能承受的电流最大值。

快速熔断器保护一般作为最后一级保护措施,与其它保护措施配合使用。根据电路的不同要求,快速熔断器可以接在交流电源侧(三相电源的每一相串接一个快速熔断器),也可以接在负载侧,还可电路中每一个电力电子器件都与一个快速熔断器串联。接法不同,保护效果也有差异。熔断器保护有可以对过载和短路过电流进行“全保护”和仅对短路电流起作用的短路保护两种类型。

4.8总电路

由此得到电路图如3.8。

图4.11 总电路图

5 系统元件有关参数的计算

在电路中输入为110KV DC ,输出为380V AC 50 Hz,输出功率为P=3000W,

功率因数设为cosφ=1。调节升压电路的占空比δ=1-E/U=1-110/380=0.71使输出为400V,调制比为1,求得逆变器输出的基波电压有效值为U

b

=400/√2=282.84V。初步计算变压器的变压比为k=380/400=0.95。则电路各元件选取如下:

5.1 开关管和二极管的选择

(1)开关管的选择

最大输出情况下,电流有效值为

I

max

=P/(V*cosφ)=3000/380=7.895A式(5.1)

开关管额定电流I

CE

I

CE >2*I

max

=2*7.895=15.79A 式(5.2)

开关管额定电压V

CER

V

CER =2*V

M

=2*.80=760V 式(5.3)

(2)二极管的选择

额定电压V

RR

V

RRM

>380V 式(5.4)最大允许的均方根正向电流

I

frms =πI

FR

/2=1.57I

FR

式(5.5)

二极管的额定电流为

I

FR >I

max

/1.57=7.895/1.57=5.03A 式(5.6)

5.2 LC 滤波器的计算

输出滤波器的作用是减小输出电压中的谐波,并保证基波电压输出。因滤波电容和负载并联,它可以补偿感性电流,但是,滤波电容过大,反而会增加变压器的负担。因此,在设计滤波电路的时候,首先确定滤波电容的值。设计基本原则就是在额定负载时,使容性电流补偿一半的感性电流。

I

C =Psinφ/(2U

cosφ)=3000*0.6/(2*380*0.8)式(5.7)

C=I

C /(U

ω)=2.96/(380*2π*50)=24.79μF式(5.8)

取C=25μF,选择500Hz、500V的交流电容。

开关管的工作频率取7.2kHz

逆变桥输出电压除基波外,还含有高次谐波,最低次谐波为2p-1次,而p=f

s

/f=7200/50=144,

得到 f=(2*200-1)*50=19950Hz 式(5.9)考虑到死区的影响,一般选取输出滤波器的谐振频率为最低谐振频率的

1/5~1/10。取谐振频率为2kHz,算出

L=(1/2π*2000)2/C=0.256mH 式(5.10)折算到原边, L

1

=(1/k)2L=0.284mH 式(5.11)5.3 输出变压器选择

方案一:三个单相变压器参数计算:

单个变压器输出功率为:

P

2

=1000W 式(5.12)单个变压器输入功率:

P 1=U

1

*I

1

=P

2

/η=3000/0.95=1052.6W式(5.13)

式中η为变压器的效率,这里取0.95 变压器的额定功率为:

P=(P

1+P

2

)/2=(1000+1052.6)/2=1026.3W 式(5.14)

一次侧电流为:

I 1=KP

1

/U

1

=1.2*1052.6/77.8=13.5A 式(5.15)

式中K是变压器空载电流大小决定的经验系数,容量越小的变压器,K越大,一般选1.1~1.2。

二次侧电流为:

I 2=P

2

/U

2

=1000/380=2.6A 式(5.16)

故选用三个初级电压为77.8V、电流为13.5A,功率为1052.6W,次级电压为380V、电流为2.6A,功率为1000W的单相变压器。

方案二:三相变压器

变压器输出功率:

P 1=U

1

*I

1

=P

2

/η=3000/0.95=3157.9W 式(5.17)

式中η为变压器的效率,这里取0.95

已知直流输入为110V,其基波最大的峰峰值为110V

峰值有效值为:

U=110/√2=77.8V 式(5.18)逆变线电压额定值为380V,

相电压峰值为:

U

WN

=380/√3=219.4V式(5.19)由于变压器连接方式为△Y-11连接,变压器变比为:

N 1/N

2

=77.8/219.4=0.35 式(5.20)

故选择变比为0.35,功率3200W的三相变压器。

考虑到成本以及方便在本次设计中采用方案二级三相变压器。

电源的输出功率为3KVA,cosφ=1,频率f=50Hz。根据变压器选择手册可选

择SD40*80*220mm的50Hz铁芯,查得变压器视在功率为3529VA 。本设计采用SD型铁芯,用冷轧取向硅钢薄板 DQ151-35材料,占空系数K

C

=0.92。求得磁芯

截面积S

C =K√P/K

C

=1.2*√3529/0.92=77.49cm2,若选取最大磁密B

m

=12000G

s

(1)副边绕组

逆变桥输出的SPWM波经过电感滤波后还是有一定的高频分量,一般取

B r =80%B

m

=0.8*12000G

S

=9600G

S

。根据变压器电压关系式U

=4.44fN

2

B

r

S

C

=380V可求

得N

2

≈230。取230匝。

(2)原边绕组

逆变器输出的基波电压理想值为282.84V。两只开关管的压降为4V左右,开关

频率f

S =7.2kHz,死区设为t

d

=4μs,则死区引起的最大电压损失为

ΔU=f

s

t

d

U

b

=7.2*103*4*10-6*282.84=8.12V 式(5.21)

基波电流在滤波电感上的压降为

U

L =2πfLI

1

=2*3.15*50*0.284*10-3=0.724V 式(5.22)

漏感的阻抗压降一般为3%~5%的基波电压,按12V估算,则变压器的原边电压

U

1

=(400-8.12-0.724-12)=379.2V 式(5.23)

变压器变比为 k=U

2/U

1

=380/379.2=1.00 式(5.24)

N

1

=N

2

/k=229.5 式(5.25)

取300匝。

总结

通过本次设计,了解当前先进的电力电子技术和电力电子装置技术,加深了课本逆变部分理论知识的理解,掌握了逆变电路的基本设计以及PWM技术。在最初的学习中我们复习巩固了一些相关的基础知识,对诸如电力电子等课程进行了一些总结回顾,进行了对已知基础知识的再综合应用,提高了实际应用能力,也找到我在某些方面的不足,在本次设计前,在本次设计中,查阅许多逆变器方面的资料,有感先进的功率器件及逆变控制器件对电力电子技术进步的推动作用,大大简化设计,极大提高系统的可靠性,达到以往设计无法达到的技术指标。

平时我们只学习了理论知识,没有将理论知识运用于实践中,当然在实验课上,也锻炼了自己的动手能力。可是,毕竟课上时间有限,不能深入的完成实验。课程设计为我们提供了这样的机会。课设过程中,大家自己独立思考,完成老师布置的题目,学习了很多东西,把自己所学用于实际,课设期间,遇到问题,独立解决或同学在一起讨论,还锻炼了自己独立分析、归纳、解决问题的能力。当然,光靠平时所学的知识完成本次课程设计还是有一定难度的,因此,课设中存在许多障碍,这些阻碍都是我知识点的漏洞,为我敲响了警钟。通过翻阅课本以及查阅资料,我都一一的解决了问题,受益良多。

致谢

通过这次课程设计使我明白了光在课本上看懂了是不够的,更应该把在书本上学来的知识应用于实践中,把理论知识与实践相结合起来,从理论中得出结论,才能真正的学到东西,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中遇到问题,可以说得是困难重重,这毕竟第一次做电力电子的课程设计,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计之后,对所学的知识又巩固了一次。

这次课程设计终于完成了,在设计中遇到了很多问题,在查阅资料和同学帮忙、解答下度过重重难关终于做成!在此,对给过我帮助的所有同学和石老师表示忠心的感谢,通过这两周的电力电子课程设计,我对电压型逆变电路既有了进一步的了解,又对PWM控制技术也有的更深入的认知。刚开始,对很多电路的设计思路都不清楚,但通过不断的查阅资料和同学的帮助,总算学会了如何更好的设计电路选择正确的元器件。

最后,感谢老师的耐心指导和各位同学的大力支持,使我在本次设计中将遇到的问题都解决了,完成了本次课程设计,并从中学习到了更多的知识。

用于三相PWM并网逆变器的改进型幅相控制方法_英文_

J Shanghai Univ(Engl Ed),2008,12(6):560–564 Digital Object Identi?er(DOI):10.1007/s11741-008-0617-1 The improved PAC method for a three-phase PWM grid-connected inverter LI Jie( ),MA Yi-wei( ),CHEN Guo-cheng( ),WANG De-li( ), YU Jun-jie( ) Shanghai Key Laboratory of Power Station Automation Technology,Shanghai University,Shanghai200072,P.R.China Abstract In this paper,a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up,the starting voltage prediction control and the current feed-forward control are proposed and used,which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method. Keywords three-phase pulse width modulation(PWM)grid-connected inverter,phase and amplitude control(PAC),starting voltage prediction control,current feed-forward control Introduction Three-phase pulse width modulation(PWM)grid- connected inverters can realize feeding electric energy to grid with unity power factor without harmonious pollution.Therefore,it can be applied to many situa- tions,such as solar photovoltaic generation,wind power generation and the energy-regeneration application[1?2]. The current control methods of three-phase PWM grid- connected inverters can be divided into two sorts,the direct current control and the indirect current control. The direct current control includes the hysteresis cur-rent control,the space-vector control,etc.[3?4]These methods can obtain faster current response,but the con- trol structure and algorithm are comparatively complex. The indirect current control is also called the phase and amplitude control(PAC).It has advantages that the control is simple without current feedback and its cost is low[5?6].However,comparing with the direct current control,its current dynamic response is not very fast. Recent research about PAC mainly involved in improv-ing the dynamic performance of the system in operation and design of system parameters[2,7].None of them re-fer to improving startup the dynamic performance of the system.However,in some situations(such as eleva-tors and port machines),grid-connected inverters have to start and stop frequently.The dynamic performance of the system in startup makes an important impact on the quality of electric power fed into grid. In this paper,based on the research concerned[7?8], a15kW three-phase PWM grid-connected inverter us-ing PAC is designed.Moreover,to solve the problem of heavy inrush current and slow dynamic response when system starts up,the starting voltage prediction control and the current feed-forward control are presented.The experimental results proved the validity of the proposed methods. 1Structure of main circuit and operat-ing principle 1.1Structure of main circuit The main circuit structure of a three-phase PWM grid-connected inverter consists of a bridge recti?er made up of six IGBTs with anti-parallel diodes,DC link capacitance and series inductances. As shown in Fig.1,The AC output ports of the sys- tem are directly connected to the gird,while the DC in-put ports are connected to E G(E G is a renewable power supply)in series with an isolation diodes V D which en- sure the energy can only?ow into the grid.Before the system runs,all the IGBTs(V1~V6)are blocked.En-ergy can’t be fed into the grid and the supply-side cur- rent is zero.After the system runs,the DC link voltage is held on the set voltage by controller and all the IGBTs are switched on or o?by the given PWM rule.Then en-ergy is fed into the grid. Received Nov.21,2007;Revised Apr.15,2008 Project supported by the Shanghai Education Committee Scienti?c Research Subsidization(Grant No.05AZ30),and the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20060280018) Corresponding author CHEN Guo-cheng,Prof.,E-mail:gchchen@https://www.docsj.com/doc/768582146.html,

逆变器电路DIY(图文详解)

逆变器电路DIY(图文详解) 电子发烧友网:本文的主要介绍了逆变器电路DIY制作过程,并介绍了逆变器工作原理、逆变器电路图及逆变器的性能测试。本文制作的的逆变器(见图1)主要由MOS 场效应管,普通电源变压器构成。其输出功率取决于MOS 场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。 1.逆变器电路图 2.逆变器工作原理 这里我们将详细介绍这个逆变器的工作原理。 2.1.方波信号发生器(见图2)

图2 方波信号发生器 这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率 fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。 #p#场效应管驱动电路#e# 2.2场效应管驱动电路 图3 场效应管驱动电路 由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图3所示。 4. 逆变器的性能测试 测试电路见图4.这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。

三相并网逆变器数学模型

一. 三相线电压到三相相电压的转化 1()31()31() 3 a a b ca b b c ab c ca bc U U U U U U U U U =-=-= - 二. 三相静止坐标到两相静止坐标的转化(恒功率) 2[0.5()]3 2()] 3 2 alf a b c beta b c = -+= - 三. 两相静止坐标到两相旋转坐标的转化(恒功率) cos*sin*sin*cos*d alf beta q alf beta =+=-+ 四. 两相旋转坐标到两相静止坐标的转化(恒功率) cos*sin*sin*cos*alf d q beta d q =-=+ 五. SVPWM 的算法 1. 扇区N 的计算 A=beta U , alf beta U -, C=a lf b eta U -当A>=0,A=1,否则A=0; B>=0,B=1,否则B=0;当C>=0,C=1,否则C=0;那么扇区N=A+2B+4C 。 2.XYZ 的计算 dc X U = ,32alf beta dc U Y T U += ,32alf beta dc U Z T U -+ = 当T1+T2>=T 时,1112 T T T T T =+,2212 T T T T T = +

https://www.docsj.com/doc/768582146.html,R1_Val, CCR2_Val, CCR3_Val 的计算 六. 有功无功解耦控制 * *()()*()()*id d d d pd d q d iq q q q pq q d q k U i i k i R Li E s k U i i k i R Li E s ωω=-++-+=-+ +++

光伏并网逆变器中滤波器的设计与研究

光伏并网逆变器中滤波器的设计与研究 摘要:光伏发电系统中存在着大量的非线性器件和负载,其对电网带来严重的谐波污染。为了有效地抑制谐波污染,本文提出了一种新的无源滤波器的结构设计,并且建立了一个交直交变流器与无源滤波器的Simulink 仿真模型。通过比较接入无源滤波器前后电流和电压的变化,对电流和电压波形进行傅里叶变换,得到它的频谱分析曲线。仿真结果表明:该滤波器的设计方法具有可行性和有效性,能够很好地抑制光伏逆变器DC/AC 变换后谐波分量,并且满足当前电力系统的要求。 关键词:光伏逆变器;无源滤波器;傅立叶变换 0 引言光伏发电系统中存在着大量的非线性器件和负载,其对电网带来严重的谐波污染。为了有效地提高电能质量,洁净电网,电网谐波治理问题已经愈来愈引起国内外学者和专家关注[1]。 滤波器具有消除谐波和提供无功补偿的功能,在治理谐波的问题上处于重要的位置。传统的滤波器分为有源滤波器和无源滤波器。有源滤波器存在着高成本、功能单一等缺点的限制,同时光伏发电系统受阳光、温度等不确定因素的影 响比较大,使得光伏阵列的直流母线利用率较低[2] 。无源滤波

器因其结构简单、设备投资少、运行可靠性高、运行费用低等优点,成为电力系统中最普遍的谐波抑制设备[3] 。在交流系统中,无源滤波器不仅可以起到滤波作用,而且还可以兼顾无功补偿的需求。因此它成为传统的补偿无功和抑制谐波的主要手段。 本文提出了一种新的无源电力滤波器,理论分析了该无源滤波器的可行性。利用Simulink 搭建系统仿真模型,同时采集滤波前和滤波后的电压、电流量,分别对其进行傅立叶变换,得到相应的频谱分析曲线。仿真结果表明,该无源滤波器能够很好地抑制光伏逆变器DC/AC 变换后谐波分量。 1无源滤波器的结构设计 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联[4]。本文中无源滤波器是通过电感、电容和电阻一系列的串并联来达到滤波的效果,其结构简图如图 1 所示。 图 1 中所示的U、V、W 分别代表光伏逆变器输出的三相交流电。由于这其中含有很高的高频分量,因此我们通过必须接入三相无源滤波器,滤去当中的谐波分量来满足电力系统的要求。其中,电感L10和L20是含有电阻性的电感,L1 是纯电感,串联在电网当中的电感L1 主要是滤去电网中 电压的谐波分量。无源滤波器作为低通滤波器,频率高于其谐振

逆变器电路图

逆变器电路图 这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W。本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。 电容器 C1、C2用涤纶电容,三极管 BG1-BG5可以用9013:40V 0.1A 0.5W,BG6-BG7可以用场效应管IRF150:100V 40A 150W 0.055 欧姆。变压器B的绕制请参考逆变器的设计计算方法,业余条件下的调试;先不接功率管,测 A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。 晶体管的选择:考虑到安全因素,要具有一定的安全系素。经验资料如下: 直流电源电压:晶体管集射极耐压BV CEO 6~8V≥20~30V 12~14V≥60~80V 24~28V≥80~100V 计算晶体管集电极电流:I CM(A)=输出功率P(W)÷ 输入电压V(V)× 效率。

式中输入电压即电源电压。效率与选择的电路有关,一般在百分之60~80之间。 铁芯截面积:S(平方厘米)=k×变压器额定功率的平方根,k的选择见下表 P(VA) 5-10 10-50 50-100 100-500 500-1000 k 2-1.75 1.75-1.5 1.5-1.35 1.35-1.25 1.25-1 变压器铁芯的选择:业余制作对变压器铁心要求并不严格。不过硅钢片最好选用薄而质地脆的,或者采用铁氧体磁心。漆包线用高强度的,绕线需用绕线机紧密平绕。 安插硅钢片时要严格平整。初级绕组两端电压与铁心截面积和工作频率等参数的 关系可以用公式表示如下:V=4.44×10-8SKFBN 式中 S --- 铁心截面积(平方厘米); K --- 硅钢片间隙系数(0.9~0.95); F --- 逆变器工作频率(赫兹); B --- 饱和磁通密度(T); N --- 线圈的匝数(圈); V --- 初级绕组的电压(伏特)。 K的数值与硅钢片的厚度及片与片之间的间隙有关,铁心层迭越紧,K值越高 一般K取0.9即可。逆变器的工作频率,主要由所选择的铁心决定。采用硅钢片铁心,逆变器工作频率低于2KH Z。采用不同的铁氧体磁心,工作频率在2KH Z~40KH Z之 间。如果工作频率超出了磁心的固有频率,则高频损耗十分严重。饱和磁通密度

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

三相光伏并网逆变器的设计

三相光伏并网逆变器的设计毕业设计开题报告 1 选题的目的和意义 随着社会生产的曰益发展,对能源的需求量在不断增长,全球范围内的能源危机也日益突出。地球中的化石能源是有限的,总有一天会被消耗尽。随着化石能源的减少,其价格也会提高,这将会严重制约生产的发展和人民生活水平的提高。可再生能源是满足世界能源需求的一种重要资源,特别是对于我们这个人口大国来讲更加重要。其中太阳能资源在我国非常丰富,其应用具有很好的前景。 光伏并网发电系统是通过太阳能电池板将太阳能转化为电能,并通过并网逆变器将直流电变为与市电同频同相的交流电,并回馈电网。存阳光充足时,太阳能发出的电可供使用,而不使用市网电;在阳光不充足或光伏发电量达不到使用量时,由控制部分自动调节,通过市网电给予补充。此系统主要用于输电线路调峰电站以及屋顶光伏系统。 光伏并网发电系统的核心技术是并网逆变器,在本文中对于单相并网逆变器硬件进行了建摸及设计。给出了硬件主回路并对各部分的功能进行了分析,同时选用Tl公司的DSP芯片TMs320F2812作为控制CPU,阐述了芯片特点及选择的原因。并对并网逆变器的控制及软件实现进行了研究。文中对于光伏电池的最大功率跟踪(MPPT)技术作了闸述并提出了针对本设计的实现方法。最后对安全并网的相关问题进行了分析探讨。 2 本选题的国内外动向 太阳能光伏并网发电始于20世纪80年代,由于光伏并网逆变器在并网发电中所起的核心作用,世界上主要的光伏系统生产商都推出了各自商用的并网逆变器产品。这些并网逆变器在电路拓扑、控制方式、功率等级上都有其各自特点,其性能和效率也参差不齐。目前在国内外市场上比较成功的商用光伏并网逆变器主要有以下几种: 1.德国SMA公司的Sunny Boy系列光伏逆变器艾思玛太阳能技术股份公司(SMA SolarTechnology AG)是全球光伏逆变器第一大生产供应商,并引领着全球光伏领域的技术创新和发展。该公司推出的Sunny Boy系列光伏组串逆变器是目前为止并网光伏发电站最成功的逆变器,市场份额高达60%。其在国内的典型工程包括大兴天普“50kWp大型屋顶光伏并网示范电站"、深圳国际园林花卉博览园1MWp光伏并网发电工程等。 2.奥地利Fronius公司的IG系列光伏逆变器Fronius是专业生产光伏并网逆变器和控制器

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

深度干货:三相逆变器并网优势详解

深度干货:三相逆变器并网优势详解 首先,我们需要了解到单相电与三相电的区别,从波形上来看区分如下: 1.定义: 三相电:三相交流电源,是由三个频率相同、振幅相等、相位依次互差120°的交流电势组成的电源,(如图) 单相电:单相电即一根相线(俗称火线)和一根零线构成的电能输送形式(如图) 2.三相电之于单相电的优势 1)从使用角度考虑,三相电的电压更高,可以驱动大功率的电器,例如,三相电可以驱动鼠笼式感应电动机,这种点击结构简单,维修制造方便,耐用,在工业上有重要用途,所以工业用电一般都是三相电。其次,采用三相电就有了更多的电压选择,因为三相电可以接出单相电,而单相电不能接出三相电。 2)从安全角度考虑,三相电可以提供更好的电压等级,相对较安全,假设电压是380V如果是单相的话就是一根线是380V,一根线是0V,但是如果是三相的话,两根线都是220V,电压等级的下降,在绝缘,线径等一系列安全问题上都有优势。 3)从物理学角度考虑,单相瞬时功率曲线是起伏的,不够稳定,而三相电机瞬时功率是一条直线,相当于平均功率,相对稳定。再者,因为三相电势三个相位互相差123度的单相电,由于这个原因,4更显就可以传输3倍的单相电能。

4)从经济角度考虑,对企业而言,使用的电压越高,电费就越便宜。对归家而言,如果是单相发电,全国一样要建输电塔,一样要挖电缆沟,和三相输电成本差不多,但是三相输电效率要高很多,相同成本下,三相电的输电能力比单相的强。 3.三相并网发电与单相并网发电比较 三相并网发电即逆变器连接的三相电网,单相并网发电即逆变器连接的是单相电网。 从上表的比较中可以看出,三相并网发电系统应用场合广,逆变器功率密度高,输出电能质量好,三相平衡对电网影响小,电网负担轻,电能利用率高,将会越来越多的应用于各个场合的发电系统中,为此,欧姆尼克作为户用系统的金牌供应商,推出了全新系列的小功率三相光伏并网逆变器,为户用并网系统提供了新的,智能化的新概念解决方案。 4.三相机 小功率智能光伏并网逆变器,相比于传统的户用单相户用并网逆变器优势如下: 1) 应用范围更广, 不光为户用屋顶提供智能化的解决方案,还可以适用于小型的工商业电站,使用户能有更多的选择。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计 对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。 图1: 欧洲效率计算比重 1、功率器件的选型 在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。因为IGBT 导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。因为欧洲效率主要和逆变器不同轻载情况下效率的有关。在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。 为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。典型的电路是通过一个boost电路来实现。然后再通过逆变器把直流电逆变为可并网的正弦交流电。 2、单相无变压器式光伏逆变器拓扑结构的设计: 拓扑结构的选择和光伏逆变器额定输出功率有关。对于4kw以下的光伏逆变器,通常选用直流母线不超过500V,单相输出的拓扑结构,如图2所示:

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

光伏并网逆变器设计方案讲解

100kW光伏并网逆变器 设计方案 目录 1. 百千瓦级光伏并网特点 (2) 2 光伏并网逆变器原理 (3) 3 光伏并网逆变器硬件设计 (3) 3.1主电路 (6) 3.2 主电路参数 (7) 3.2.1 变压器设计............................................................................. 错误!未定义书签。 3.2.3 电抗器设计 (7) 3.3 硬件框图 (10) 3.3.1 DSP控制单元 (11) 3.3.2 光纤驱动单元 (11) 3.3.2键盘及液晶显示单元 (13) 3 光伏并网逆变器软件 (13)

1. 百千瓦级光伏并网特点 2010年全球太阳能光伏发电系统装机容量将达到10000MWp(我国将达到400MWp),2010年以后还将呈进一步加速发展趋势。百千瓦级大型光伏发电并网用逆变控制功率调节设备,成本低,效率高,容量大,被国内外光伏界公认为是适合大功率光伏发电并网用的最具技术含量、最有发展前景的新一代主流产品,直接影响到未来光伏发电的走向。 百千瓦级大功率光伏并网逆变电源其应用对象主要为大型光伏并网电站,从原理上讲,其并网控制技术与中小功率光伏并网系统的控制技术基本相同,但由于装置容量较大,在技术指标的实现达标和功能设计方面却有较大区别。 在技术指标上,主要会影响: 1.并网电流畸变率 在系统的额定容量达到一定数量级时,一些存在的技术问题将会逐步暴露并影响到系统的性能指标,其最重要的一点就是并网电流波形畸变率的控制和电流滤波方式。该系统中的主变压器一般选择为三相Δ/Y型式,且容量较大,此时变压器的非线性和励磁电流对并网电流波形的影响不容忽视,否则会引起并网电流波形的明显畸变和三相电流不平衡。 2.电磁噪声 由于是三相桥式逆变结构,受IGBT功率模块的开关频率限制及考虑系统的效率指标,系统的电流脉动要远高于中小功率系统,对电流的滤波和噪声控制需要特别注意,此时对系统的滤波电路设计和并网电流PWM控制方式的研究至关重要。由于系统的dv/dt、di/dt和电流幅值较大,其EMI和EMC的指标实现可能存在技术难度,由于系统的噪声可能影响其电流、功率的检测和计算精度,在最大功率跟踪和孤岛效应识别等方面的影响还难以预计。 在技术指标上,主要考虑: 1)主电路工艺结构设计 2)散热工艺结构设计 3)驱动方式设计

根据SVPWM三相并网逆变器仿真报告

基于SVPWM三相并网逆变器 仿真报告

目录 1. SVPWM逆变器简介 (1) 2. SVPWM逆变器基本原理 (2) 2.1. SVPWM调制技术原理 (2) 2.2. SVPWM算法实现 (5) 3. SVPWM逆变器开环模型 (11) 3.1. SVPWM逆变器开环模型建立 (11) 3.2. SVPWM逆变器开环模型仿真分析 (14) 4. SVPWM逆变器闭环模型 (16) 4.1. SVPWM逆变器闭环模型建立 (16) 4.2. SVPWM逆变器闭环模型仿真分析 (17)

1.SVPWM逆变器简介 三电平及多电平空间矢量调制(Space Vector Pulse Width Modulation,SVPWM)法是建立在空间矢量合成概念上的PWM方法。它以三相正弦交流参考电压用一个旋转的电压矢量来代替,通过这个矢量所在位置附近三个相邻变换器的开关状态矢量,利用伏秒平衡原理对其拟和形成PWM波形。空间矢量调制方法在大范围调制比内有很好的性能,具有很小的输出谐波含量和较高的电压利用率。而且这种方法对各种目标的控制相对容易实现。 SVPWM技术源于三相电机调速控制系统。随着数字化控制手段的发展,在UPS/EPS、变频器等各类三相PWM逆变电源中得到了广泛的应用。与其他传统PWM技术相比,SVPWM技术有着母线电压利用率高、易于数字化实现、算法灵活便于实现各种优化PWM技术等众多优点。

2. SVPWM 逆变器基本原理 2.1. SVPWM 调制技术原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加,这样通过控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,就可以使逆变器输出近似正弦波电压。 SVPWM 实际上是对应于交流感应电机或永磁同步电机中的三相电压源逆变器功率器件的一种特殊的开关触发顺序和脉宽大小的组合,这种开关触发顺序和组合将在定子线圈中产生三相互差120°电角度、失真较小的正弦波电流波形。实践和理论证明,与直接的正弦脉宽调制(SPWM)技术相比,SVPWM 的优点主要有: (1) SVPWM 优化谐波程度比较高,消除谐波效果要比SPWM 好,实现容易,并且可以提高电压利用率; (2) SVPWM 比较适合于数字化控制系统。 目前以微控器为核心的数字化控制系统是发展趋势,所以逆变器中采用SVPWM 应是优先的选择。 对称电压三相正弦相电压的瞬时值可以表示为: a m b m c m cos 2cos()32cos()3u U t u U t u U t ωωπωπ? ?=? ? =-?? ? =+?? (2.1)

相关文档
相关文档 最新文档