文档视界 最新最全的文档下载
当前位置:文档视界 › 三相逆变器仿真电路设计

三相逆变器仿真电路设计

三相逆变器仿真电路设计
三相逆变器仿真电路设计

摘要

本次课程设计题目要求为三相电压源型SPWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。

本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个部分电路以及元器件的取舍,比如驱动电路、抗干扰电路、正弦信号产生电路等,其中部分电路的绘制采用了Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。

关键词:三相电压源型逆变电路Matlab 仿真

目录

摘要........................................................................................................................... - 1 - 1 设计原理............................................................................................................... - 3 -

1.1 SPWM控制原理分析................................................................................. - 3 -

1.1.1 PWM的基本原理............................................................................. - 3 -

1.1.2 SPWM逆变电路及其控制方法....................................................... - 3 -

1.2 IGB T简介.................................................................................................... - 4 -

1.3 逆变电路..................................................................................................... - 5 -

1.4 三相电压型桥式逆变电路......................................................................... - 6 -

2 设计方案............................................................................................................... - 9 -

2.1 逆变器主电路设计..................................................................................... - 9 -

2.2 脉宽控制电路的设计............................................................................... - 10 -

2.2.1 SG3524芯片 ................................................................................... - 10 -

2.2.2 利用SG3524生成SPWM信号.................................................... - 11 -

2.3 驱动电路的设计....................................................................................... - 13 -

2.3.1 IR2110芯片..................................................................................... - 13 -

2.3.2 驱动电路......................................................................................... - 14 -

3 软件仿真............................................................................................................. - 1

4 -

3.1 Matlab软件 ............................................................................................... - 14 -

3.2 建模仿真................................................................................................... - 15 -

4 心得体会............................................................................................................. - 19 - 参考文献................................................................................................................. - 20 -

三相电压源型SPWM逆变器的设计1 设计原理

1.1 SPWM控制原理分析

1.1.1 PWM的基本原理

PWM(Pulse Width Modulation)控就是对脉冲的宽度进行调制的技术,即通过一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术最重要的理论基础是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

SPWM控制技术是PWM控制技术的主要应用,即输出脉冲的宽度按正弦规律变化而和正弦波等效。

1.1.2 SPWM逆变电路及其控制方法

SPWM逆变电路属于电力电子器件的应用系统,因此,一个完整的SPWM 逆变电路应该由控制电路、驱动电路和以电力电子器件为核心的主电路组成。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断,来完成整个系统的功能。

目前应用最为广泛的是电压型PWM逆变电路,脉宽控制方法主要有计算机法和调制法两种,但因为计算机法过程繁琐,当需要输出的正弦波的频率、幅值或相位发生变化时,结果都要变化,而调制法在这些方面有着无可比拟的优势,因此,调制法应用最为广泛。

所为调制法,就是把希望输出的波形作为调制信号t u,把接收调制的信号作为载波c u,通过信号波的调制得到所期望的PWM波形。本次课程设计任务要求

设计三相电压源型SPWM 逆变电路,输出PWM 电压波形等效为正弦波,因而信号波采用正弦波,载波采用最常用的等腰三角形。

单相桥式电路既可以采取单极性调制,也可以采用双极性调制,而三相桥式PWM 逆变电路,一般采用双极性控制方式。所为单极性控制方式,就是在信号波t u 的半个周期内三角波载波c u 只在正极性或负极性一种极性范围内变化,所得到的PWM 波形也只在单个极性范围变化的控制方式,和单极性PWM 控制方式相对应的是双极性控制方式。

采用双极性方式时,在

t

u 的半个周期内,三角波载波不再是单极性的,而是有正有负,

所得到的PWM 波也是有正有负。在

t

u 的一个周期内,输出的PWM 波只有d U 两种电平,

而不像单极性控制时还有零电平。仍然在调制信号t

u 和载波信号

c

u 的交点时刻控制各开关

器件的通断。在

t

u 的正负半周,对各个开关器件的控制规律相同。

1.2 IGB T 简介

绝缘栅双极晶体管(IGBT )本质上是一个场效应晶体管,只是在漏极和漏区之间多了一个 P 型层。根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。

IGBT 的结构剖面图如图1所示。它在结构上类似于MOSFET ,其不同点在于IGBT 是在N 沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN 结j1 ,并由此引出漏极、栅极和源极则完全与MOSFET 相似。

图1 IGBT 结构剖面图

由图可以看出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。图中Rdr是厚基区GTR的扩展电阻。IGBT是以GTR 为主导件、MOSFET 为驱动件的复合结构。

IGBT的特性和参数特点可以总结为:

1)IGBT开关速度高,开关损耗小;

2)在相同电压和电流定额的情况下,IGBT的安全工作区比GTR大,而且具有耐脉冲电流冲击的能力;

3)IGBT的通态压降比VDMOSFET低,特别是在电流较大的区域;

4) 与电力MOSFET和GTR相比,IGBT的耐压和通流能力还可以进一步提高,同时可以保持开关频率高。

1.3 逆变电路

逆变电路的作用是将直流电压转换成梯形脉冲波,经低通滤波器滤波后,从而使负载上得到的实际电压为正弦波,逆变电路是由4个IGBT管(VT1、VT2、VT3、VT4)组成的全桥式逆变电路组成,如图2所示。

图2 逆变电路

当交流侧接在电网上,即交流侧接有电源时,称为有源逆变;当交流侧直接和负载连接时,称为无源逆变。此外,逆变电路根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路,直流侧是电流源的称为电流型

逆变电路。本次课程设计任务要求为电压型逆变电路的设计。

电压型逆变电路有以下主要特点:

1)直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻态。

2)由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因负载阻抗角情况不

同而不同。

3)当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥

各臂都并联了反馈二极管。

1.4 三相电压型桥式逆变电路

用三个单相逆变电路可以组合成一个三相逆变电路。但在三相逆变电路中,应用最为广泛的还是三相桥式逆变电路。采用IGBT作为开关器件的三相电压型桥式逆变电路如图3所示,可以看成是由三个半桥逆变电路组成。

图3 三相电压型桥式逆变电路

电路的直流侧通常只有一个电容器就可以了,但为了方便分析,画作串联的两个电容器并标出假想中点N'。和单相半桥、全桥逆变电路相同,三相电压型桥式逆变电路的基本工作方式也是180?导电方式,即每个桥臂的导电角度为180?,同一相(即同一半桥)上下两个臂交替导电,各相开始导电的角度以此相差120?。这样,在任一瞬间,将有三个桥臂同时导通。可能是上面一个臂下面两个臂,也可能是上面两个臂下面一个臂同时导通。因为每次换流都是在同一相上

下两个桥臂之间进行,因此也被称为纵向换流。

以下分析三相电压型桥式逆变电路的工作波形。对于U 相输出来说,当桥臂1导通时,2U N d u U '=,当桥臂4导通时,2U N d u U '=-。因此,U N u '的波形是幅值为/2d U 的矩形波。V 、W 两相的情况和U 相类似,VN u '、W N u '的波形形状和U N u '相同,只是相位依次差120°。负载线电压可由下式求出:

??

?

??

-=-=-= UN'WN'WU WN'VN'VW VN'UN'UV u u u u u u u u u 设负载中点N 与直流电源假想中点N '之间的电压为N N u ',则负载各相的相电压分别为:

??

?

??

-=-=-=' NN WN'WN NN' VN'VN NN' UN'UN u u u u u u u u u

O

O O

O

O O

O

O

VN u '

W N u '

U V

u N N u 'U N u U i d

i U N u '

下面对三相桥式逆变电路的输出电压进行定量分析。把输出线电压 展开成傅里叶级数得:

111(sin sin 5sin 7sin 11......)5

7

11

d

U V u t t t t ωωωωπ

=

-

-

+

1

sin (1)

sin k

n

t n t n ωωπ?

=

+-??

?

式中,61n k =±,k 为自然数。 输出线电压有效值U V U 为

0.816U V d U U =

=

基波幅值

1U V m

U 和基波有效值1U V U 分别为

1 1.1d

U V m d U U π=

=

;10.78U V d d U U U π

=

=

=

接下来,我们再对负载相电压

U N

u 进行分析。把

U N

u 展开成傅里叶级数得

2111(sin sin 5sin 7sin 11......)5

7

11

d

U N U u t t t t ωωωωπ

=

+

+

++

21

=

sin sinn d

n

U t t n ωωπ

+

∑()

式中,61n k =±,k 为自然数。 负载相电压有效值

U N

U 为

0.471U N d U U =

=

基波幅值

1U N m

U 和基波有效值

1

U N U 分别为

120.637d

U N m d U U U π

=

=

;10.45UN d U U =

=

2 设计方案

2.1 逆变器主电路设计

图5是SPWM 逆变器的主电路设计图。图中Vl —V6是逆变器的六个功率开关器件,各由一个续流二极管反并联,整个逆变器由恒值直流电压U 供电。一组三相对称的正弦参考电压信号由参

出的基波频率,应在所要求的输出频率范围内可调。参考信号的幅值也可在一定范围内变化,决定输出电压的大小。三角载波信号c U 是共用的,分别与每相参考电压比较后,给出“正”或“零”的饱和输出,产生SPWM 脉冲序列波。da U ,

db

U ,

dc

U 作为逆变器功率开关器件的驱动控制信号。

当ru 2un d U U U <=-时,给V4导通信号,给V1关断信号un 2d U U =-,给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通。d U

wn U '

的PWM 波形只有/2d U ±两种电平。当c ru U U >时,给V1导通信号,给V4关

断信号,/2un d U U '=-。uv U

的波形可由vn un U U ''-得出,当1和6通时,d uv U U =,当3和4通时,d uv U U =-,当1和3或4和6通时,uv U

=0。输出线电压PWM

波由d U ±和0三种电平构成负载相电压PWM 波由(±2/3) d U ,(±1/3) d U 和0共5

种电平组成。

图5 SPWM 逆变器的主电路设计图

防直通的死区时间同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间。死区时间的长短主要由开关器件的关断时间决定。死区时间会给输出的PWM波带来影响,使其稍稍偏离正弦波。

2.2 脉宽控制电路的设计

2.2.1 SG3524芯片

SG3524芯片是集成PWM控制器,其引脚图和内部框图分别如图6、图7所示。

图6 SG3524引脚图

图7 SH3524内部框图

SG3524工作过程是这样的:

直流电源Vs 从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5V 基准电压。+5V 再送到内部(或外部)电路的其他元器件作为电源。

振荡器脚7须外接电容CT ,脚6须外接电阻RT 。振荡器频率f 由外接电阻RT 和电容CT 决定,f=1.18/RTCT 。振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相端,比较器的反向端接正弦波调制信号,通过芯片内置的比较器完成载波和调制波的比较,产生SPWM 信号。

2.2.2 利用SG3524生成SPWM 信号

2.2.2.1 调制波及载波的产生

正弦波信号

t

u 由函数发生器ICL8038产生。

图8 ICL8038用于正弦波信号发生

正弦波的频率由1R 、2R 和C 来决定,120.15

f=

+R R ()C

,为了调试方便,将1R 、

2R 都用可调电阻,2R 和

R 是用来调整正弦波失真度用的。

通过查询资料得知,当f=50z H 时,取12+=9.7R R K Ω,其中=0.22F C μ。 正弦波信号产生后,一路经过精密全波整流,得到正弦波r

u ,另外两路得到

与正弦波同频率、同相位的方波和三角波。

ICL8038的引脚图如图9所示。

图9 ICL8038引脚图

载波可以是等腰三角波或者锯齿波,由于SH3524可以直接产生锯齿波,所以,直接用SG3524本身产生的锯齿波作为载波即可。

2.2.2.2 SPWM信号的产生

ICL8038产生的正弦波r u与1V基准经过加法器后得到d u,d u输入到SG3524的脚1,脚2与脚9相连,这样d u和锯齿波将在SG3524内部的比较器进行比较产生SPWM信号。

左电桥的控制信号可以由正弦信号与直流电压通过电压比较器产生,本次课程设计采用LM339芯片,其引脚图如图10所示。

图10 LM339引脚图

LM339集成块内部装有四个独立的电压比较器,可以任意选用,该电压比较器主要有以下几个特点:

1)失调电压小,典型值为2mV;

2)电源电压范围宽,单电源为2-36V,双电源电压为±1V—±18V;

3)对比较信号源的内阻限制较宽;

4)共模范围很大,为0~(Ucc-1.5V)V;

5)差动输入电压范围较大,大到可以等于电源电压;

6)输出端电位可灵活方便地选用。

2.3 驱动电路的设计

2.3.1 IR2110芯片

由于LM3S1138产生的SPWM信号不能直接驱动IGBT,故逆变桥的驱动采用专用芯片IR2110。

IR2110是一种双通道、栅极驱动、高压高速、单片式集成功率驱动模块,具有体积小(DIP14)、集成度高(可驱动同一桥臂两路)、响应快(典型ton/toff=120/94ns)、偏置电压高(<600 V)、驱动能力强等特点,同时还具有外部保护封锁端口,常用于驱动MOSFET和IGBT等电压驱动型功率开关器件。

IR2110包括逻辑输入、电平转换、保护、上桥臂输出和下桥臂输出。逻辑输入采用施密特触发电路,以提高抗干扰能力。由IR2110构成的驱动电路如图11所示。

图11 IR2110构成的驱动电路

2.3.2 驱动电路

IR2110自身的保护功能非常完善:对于低压侧通道,利用2片IR2110驱动全桥逆变电路的电路图如图12所示。

图12 全桥驱动电路

为改善PWM控制脉冲的前后沿陡度并防止振荡,减小IGBT集电极的电压尖脉冲,一般应在栅极串联十几欧到几百欧的限流电阻。IR2110的最大不足是不能产生负偏压,由于密勒效应的作用,在开通与关断时,集电极与栅极间电容上的充放电电流很容易在栅极上产生干扰。针对这一点,本次课设在驱动电路中的功率管栅极限流电阻R1、R2上反向并联了二极管D4、D5。

3 软件仿真

3.1 Matlab软件

Matlab软件提供的仿真工具箱Simulink是一个功能十分强大的仿真软件,它可以根据用户的需要方便的为系统建立模型,并且十分直观,仿真精度高,结果准确。特别是其电力系统模块库PSB中包含了大量的电力电子功能模块,为我们仿真提供了极大的便利。

Matlab提供了系统模型图形输入工具——Simulink工具箱。在Matlab中的电力系统模块库PSB以Simulink为运算环境,涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本原件和系统仿真模型。它由以下6个子模块组成:电源模块库、连接模块库、测量模块库、电力电子模块库、电机模块库、基本件模块库。在这6个基本模块库的基础上,根据需要还可以组合出常用的、复杂的其他模块添加到所需的模块库中,为电力系统的研究和仿真带来更多的方便。

3.2 建模仿真

SPWM控制方式下的三相逆变电路主电路如图13所示:

图13 三相逆变电路主电路

图14 Discreat PWM Generator参数设置

设置参数,即将调制度m设置为1.2,调制波频率设为40Hz,如图14所示。载波频率设为基波的30倍(载波比N=30),即1500Hz,仿真时间设为0.04s,在powergui中设置为离散仿真模式,采样时间设为1e-006s。

根据设计任务要求,直流电源电压为400V,要求输出三相180V、40Hz的交流电,带对称RL负载(星形接法),其中R的值为2Ω、L 的值为1 0mH,其参数设置图如图15所示。

图15 直流电压、三相负载参数设置

运行仿真图形,并点击示波器可得输出交流电压,交流电流波形如图16、图17所示:

图16 SPWM方式下三相交流电压输出波形

图16 SPWM方式下三相电流输出波形

从仿真结果可以得出,本次课程设计基本达到任务要求,三相输出电压约为180V,40HZ,交流电为正弦波满足条件。

4 心得体会

经过这次的电力电子课程设计后,我从中学到了很多东西。在我们学了《电路》、《电力电子技术基础》之后,对专业课程基础知识已经有了最基本的掌握和接触。在经过独立设计,我成功的完成了本次设计。对于我个人而言,我熟练的掌握了设计三相电压型逆变电路的一般方法,还进一步熟悉了其原理。开始拿到课题难免会感到陌生,不过经过自己亲手实践后才发现,只有经过实践运用得来的知识,才是真正属于自己的东西。

这其中还尤为深刻的就是要养成科学严谨的实验习惯,这样做起来才会更有条理性。要把所学的知识灵活运用,必须要翻阅大量的资料并且要多多请教同学和老师,有很多的知识是平时不会注意的,但到了实际操作时就会因为那么一点小欠缺而不能完成。

我们需要有扎实的知识基础,要熟练地掌握课本上的知识,这样才能对试验中出现的问题进行分析解决。要有耐心和毅力。理论只有与实践结合才能把所学知识灵活运用,本次课程设计我收获很大,既把课本上的理论知识给巩固了,也在实际操作中把所学知识与实际的电路很好的联系起来,并且从客观上理解所学知识。

这次设计中不但对以前的知识进行了巩固,而且还学会了更多的新知识,比如仿真软件Matlab软件、protues软件,提高了思维、强化了动手能力,能够更好的适应独立自主完成任务的挑战,为以后的就业打下了基础。

本论文基本是按照实际工作而作的,也记录了我在这期间进行探索的每一步。从开始的稚嫩到现在的自信,这都是经过本次课设之后带给我的最大的改变。这很大程度上提高了我对专业的兴趣和掌握能力,也为以后的专业学习夯实了基础。

参考文献

【1】王兆安刘进军电力电子技术北京:机械工业出版社2009

【2】康华光电子技术基础数字部分北京:高等教育出版社2005 【3】刘凤君现代逆变技术及应用北京:电子工业出版社2006

【4】李宏王崇武现代电力电子技术基础北京:机械工业出版社2009 【5】陈国呈PWM逆变技术及应用北京:中国电力出版社2007

【6】陈国呈PWM电力电子变换技术北京:中国电力出版社2007 【7】洪乃刚电力电子技术基础北京:清华大学出版社2008

三相PWM逆变器的设计_毕业设计

湖南文理学院 课程设计报告 三相PWM逆变器的设计 课程名称:专业综合课程设计 专业班级:自动化10102班

摘要 本次课程设计题目要求为三相PWM逆变器的设计。设计过程从原理分析、元器件的选取,到方案的确定以及Matlab仿真等,巩固了理论知识,基本达到设计要求。 本文将按照设计思路对过程进行剖析,并进行相应的原理讲解,包括逆变电路的理论基础以及Matlab仿真软件的简介、运用等,此外,还会清晰的介绍各个环节的设计,比如触发电路、控制电路、主电路等,其中部分电路的绘制采用Proteus软件,最后结合Matlab Simulink仿真,建立了三相全控桥式电压源型逆变电路的仿真模型,进而通过软件得到较为理想的实验结果。 关键词:三相PWM 逆变电路Matlab 仿真

Abstract The curriculum design subject requirements for the design of the three-phase PWM inverter. Design process from the principle of analysis, selection of components, to scheme and the Mat-lab simulation, etc., to consolidate the theoretical knowledge, basic meet the design requirements. This article will be carried out in accordance with the design of process analysis, and the corresponding principles, including the theoretical foundation of the inverter circuit and introduction, using Matlab simulation software, etc., in addition, will also clearly introduces the design of every link, such as trigger circuit, control circuit, main circuit, etc., some of the drawing of the circuit using Proteus software, finally combined with Matlab Simulink, established a three-phase fully-controlled bridge voltage source type inverter circuit simulation model, and then through the software to get the ideal results. Keywords: Matlab simulation, three-phase ,PWM, inverter circuit

基于Matlab_Simulink的三相光伏发电并网系统的仿真

题目:基于Matlab/ Simulink的三相光伏发电并网系 统的仿真 院系: 姓名: 学号: 导师:

目录 一、背景与目的 (3) 二、实验原理 (3) 1.并网逆变器的状态空间及数学模型 (3) 1.1主电路拓扑 (4) 1.2三相并网逆变器dq坐标系下数学模型 (4) 1.3基于电流双环控制的原理分析 (5) 2.LCL型滤波器的原理 (6) 三、实验设计 (8) 1.LCL型滤波器设计 (8) 1.1LCL滤波器参数设计的约束条件 (8) 1.2LCL滤波器参数计算 (8) 1.3LCL滤波器参数设计实例 (9) 2.双闭环控制系统的设计 (10) 2.1网侧电感电流外环控制器的设计 (10) 2.2电容电流内环控制器的设计 (11) 2.3控制器参数计算 (12) 四、实验仿真及分析 (12) 五、实验结论 (16)

一、背景与目的 伴随着传统化石能源的紧缺,石油价格的飞涨以及生态环境的不断恶化,这些问题促使了可再生能源的开发利用。而太阳能光伏发电的诸多优点,使其研究开发、产业化制造技术以及市场开拓已经成为令世界各国,特别是发达国家激烈竞争的主要热点。近年来世界太阳能发电一直保持着快速发展,九十年代后期世界光伏电池市场更是出现供不应求的局面,进一步促进了发展速度。 目前太阳能利用主要有光热利用,光伏利用和光化学利用等三种主要形式,而光伏发电具有以下明显的优点: 1. 无污染:绝对零排放-没有任何物质及声、光、电、磁、机械噪音等“排放”; 2. 可再生:资源无限,可直接输出高质量电能,具有理想的可持续发展属性; 3. 资源的普遍性:基本上不受地域限制,只是地区之间是否丰富之分; 4. 通用性、可存储性:电能可以方便地通过输电线路传输、使用和存储; 5. 分布式电力系统:将提高整个能源系统的安全性和可靠性,特别是从抗御自然灾害和战备的角度看,它更具有明显的意义; 6. 资源、发电、用电同一地域:可望大幅度节省远程输变电设备的投资费用; 7. 灵活、简单化:发电系统可按需要以模块化集成,容量可大可小,扩容方便,保持系统运转仅需要很少的维护,系统为组件,安装快速化,没有磨损、损坏的活动部件; 8. 光伏建筑集成(BIPV-Building Integrated Photovoltaic):节省发电基地使用的土地面积和费用,是目前国际上研究及发展的前沿,也是相关领域科技界最热门的话题之一。 我国是世界上主要的能源生产和消费大国之一,也是少数几个以煤炭为主要能源的国家之一,提高能源利用效率,调整能源结构,开发新能源和可再生能源是实现我国经济和社会可持续发展在能源方面的重要选择。随着我国能源需求的不断增长,以及化石能源消耗带来的环境污染的压力不断加剧,新能源和可再生能源的开发利用越来越受到国家的重视和社会的关注。 二、实验原理 1.并网逆变器的状态空间及数学模型

(完整版)三相逆变器matlab仿真

三相无源逆变器的构建及其MATLAB仿真1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)……………. 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路

日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。 4MATLAB仿真 Matlab软件作为教学、科研和工程设计的重要方针工具,已成为首屈一指的计算机仿真平台。该软件的应用可以解决电机电器自动化领域的诸多问题。利用其中的Simulink模块可以完成对三相无源电压型SPWM逆变器的仿真,并通过仿真获取逆变器的一些特性图等数据。 图 2 系统Simulink 仿真 所示为一套利用三相逆变器进行供电的系统的Matlab仿真。系统由一个380v的直流电源供电,经过三相整流桥整流为三相交流电,并进行SPWM正弦脉宽调制。输出经过一个三相变压器隔离后通入一个三相的RLC负载模块(Three phase parallel RLC)。加入了两个电压测量单元voltage measurement和voltage measurement1,并将结果输出到示波器模块Scope1.

三相SVPWM逆变电路MATLAB仿真

基于电压空间矢量控制的三相逆变器的研究 1、SVPWM逆变电路的基本原理及控制算法 图1.1中所示的三相逆变器有6个开关,其中每个桥臂上的开关工作在互补状态,三相桥臂的上下开关模式得到八个电压矢量,包括6个非零矢量(001)、()、(011)、(100)、(101)、(110)和两个零矢量(000)、(111). 图1.-1 三相桥式电压型有源逆变器拓扑结构 在平面上绘出不同的开关状态对应的电压矢量,如图1.2所示。由于逆变器能够产生的电压矢量只有8个,对与任意给定的参考电压矢量,都可以运用这8个已知的参考电压矢量来控制逆变器开关来合成。 图1.2 空间电压矢量分区 图1.2中,当参考电压矢量在1扇区时,用1扇区对应的三个空间矢量U sv1 、U sv2 、U sv3来等效参考电压矢量。若1.2 合成矢量 ref U所处扇区N的判断 三相坐标变换到两相β α-坐标: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ) ( ) ( ) ( 2 3 - 2 3 2 1 - 2 1 - 1 3 2 ) ( ) ( t t t t t u u u u u co bo ao β α (1.1) 根据u α 、u β 的正负及大小关系就很容易判断参考电压矢量所处的扇区位

置。如表1.1所示。 表1.1 参考电压矢量扇区位置的判断条件 可以发现,扇区的位置是与u β、 u u βα-3及u u βα--3的正负有关。为 判断方便,我们设空间电压矢量所在的扇区N N=A+2B+3C (1.2) 其中,如果u β >0,那么A=1,否则A=0 如果u u βα-3 >0,那么B=1,否则B=0 如果u u βα--3 >0,那么C=1,否则C=0 1.3 每个扇区中基本矢量作用时间的计算 在确定参考电压矢量的扇区位置后,根据伏秒特性等效原理,采用该扇区三个顶点所对应的三个电压空间矢量来逼近参考电压矢量。以参考电压矢量位于3扇区为例,如图1.3所示,参考电压U ref 与U 4的夹角为γ。

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

3KVA三相逆变器的设计

3KVA三相逆变器设计 1概述 随着各行各业自动化水平及控制技术的发展和其对操作性能要求的提高,许多行业的用电设备(如通信电源、电弧焊电源、电动机变频调速器等)都不是直接使用交流电网作为电源,而是通过形式对其进行变换而得到各自所需的电能形式,它们所使用的电能大都是通过整流和逆变组合电路对原始电能进行变换后得到的。 当今世界逆变器应用非常广泛。逆变器是将直流变为定频定压或调频调压交流电的变换器,传统方法是利用晶闸管组成的方波逆变电路实现,但由于其含有较大成分低次谐波等缺点,近十余年来,由于电力电子技术的迅速发展,全控型快速半导体器件BJT,IGBT,GTO 等的发展和PWM 的控制技术的日趋完善,使SPWM 逆变器得以迅速发展并广泛使用。PWM 控制技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度和周期以达到变压目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术,SPWM 控制技术又有许多种,并且还在不断发展中,但从控制思想上可分为四类,即等脉宽PWM 法,正弦波PWM 法(SPWM 法),磁链追踪型PWM 法和电流跟踪型PWM 法,其中利用SPWM 控制技术做成的SPWM 逆变器具有以下主要特点:(1)逆变器同时实现调频调压,系统的动态响应不受中间直流环节滤波器参数的影响。 (2)可获得比常规六拍阶梯波更接近正弦波的输出电压波形,低次谐波减少,在电气传动中,可使传动系统转矩脉冲的大大减少,扩大调速范围,提高系统性能。 (3)组成变频器时,主电路只有一组可控的功率环节,简化了结构,由于采用不可控整流器,使电网功率因数接近于1,且与输出电压大小无关。 本次课程设计要完成的是设计容量为3KVA的三相逆变器。初始条件为:输入直流电压220V。要求输出220V三相交流电,完成总电路的设计,并计算电路中各元件的参数。

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉 宽调制(SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM)。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。 下图就是三相电压源型PWM逆变器主电路结构图: 图—1 上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容C串 联接地,中点O’可以认为与三相Y接负载中点O等电位。逆变器输出A、B、C三 相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。 假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。当u RA

基于SIMULINK的并网逆变器的仿真研究

计算机辅助工程设计 课程设计与报告 题目:基于SIMULINK的并网逆变器的仿真研究

基于SIMULINK的并网逆变器的仿真研究 第一章绪论 1.1课题背景及研究意义 当今社会,资源、环境和能源问题仍困扰着世界的发展。对此,各国对开发利用新型能源、使用清洁能源的需求日益迫切,尤其是中国,地广人多,是能源消耗大国。目前,国内更多的依靠火电、水电和核聚变发电来供电。然而火电生产排放大量的硫化物、粉尘等严重污染空气,影响气候变迁,其来源化石能源也将消耗殆尽;水电建设成本高,资源有限,还会给江河系统造成不可逆的破坏;核电在安全方面有缺陷,一旦核泄漏,将给环境造成毁灭性的破坏,日本福岛核泄漏事故就是一个活生生的例子。 因此,人类不得不寻求更加清洁、安全的替代能源。进入21世纪后,各国政府都在大力鼓励研究清洁可再生能源,太阳能、风能、地热能、潮汐能等环境能量开发技术获得快速发展,其中尤以风能和太阳能应用最多。由于我国资源分布不均衡,有些地方如内蒙古、沿海,有的地方太阳能蕴藏量大,如西藏,但这些地方发出的电当地并不能完全消纳,而其他一些地区则因负荷过重而缺电,因此将电资源丰富的地方发出的电并入电网是明智之举。 然而,分布型电能并入电网需要做到与电网同频同相同幅值,目前并网技术成为了新能源发电的瓶颈技术。因此,本文通过从并网逆变器的设计着手研究新能源并网技术,具有一定实际意义。 1.2 并网标准 新能源发电并入电网的电能必须满足以下3个条件[5]: (1)电压幅值:纹波幅值≤10%。 (2)频率:频差≤0.3Hz[1]。 (3)相位相同,相序相同,且相位差≤20°。 表1-1 并网标准化指标

最新三相逆变器Matlab仿真精编版

2020年三相逆变器M a t l a b仿真精编版

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术 MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word: Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。 [1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理

器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。 2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管 逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆 变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。

PWM逆变器Matlab仿真设计

PWM逆变器MATLAB仿真 1设计方案的选择与论证 从题目的要求可知,输入电压为110V直流电,而输出是有效值为220V的交流电,所以这里涉及到一个升压的问题,基于此有两种设计思路第一种是进行DC-DC升压变换再进行逆变,另一种是先进行逆变再进行升压。除此之外,要得到正弦交流电压还要考虑滤波等问题,所以这两种方案的设计框图分别如下图所示: 图1-1方案一:先升压再逆变 图1-2方案二:先逆变,再升压 方案选择: 方案一:采用DC-DC升压斩波电路其可靠性高、响应速度、噪声性能好,效率高,但不适用于升压倍率较高的场合,另外升压斩波电路在初期会产生超调趋势(这一点将在后文予以讨论),在与后面的逆变电路相连时必须予以考虑,我们可以采用附加控制策略的办法来减小超调量同时达到较短的调节时间,但这将增加逆变器的复杂度和设计成本。 方案二:采用变压器对逆变电路输出的交流电进行升压,这种方法效率一般可达90%以上、可靠性较高、抗输出短路的能力较强,但响应速度较慢,体积大,波形畸变较重。 从以上的分析可以看出两种方案有各自的优缺点,但由于方案二设计较为简便,因此本论文选择方案二作为最终的设计方案,但对于方案一的相关容也会在后文予以讨论。 2逆变主电路设计 2.1逆变电路原理及相关概念

逆变与整流是相对应的,把直流电变为交流电的过程称为逆变。根据交流侧是否与交流电网相连可将逆变电路分为有源逆变和无源逆变,在不加说明时,逆变一般指无源逆变,本论文针对的就是无源逆变的情况;根据直流侧是恒流源还是恒压源又将逆变电路分为电压型逆变电路和电流型逆变电路,电压型逆变电路输出电压的波形为方波而电流型逆变电路输出电流波形为方波,由于题目要求对输出电压进行调节,所以本论文只讨论电压型逆变电路;根据输出电压电流的相数又将逆变电路分为单相逆变电路和三相逆变电路,由于题目要求输出单相交流电,所以本论文将只讨论单相逆变电路。 2.2逆变电路的方案论证及选择 从上面的讨论可以看出本论文主要讨论单相电压型无源逆变电路,电压型逆变电路的特点除了前文所提及的之外,还有一个特点即开关器件普遍选择全控型器件如IGBT,电力MOSFET等,有三种方案可供选择,下面分别予以讨论: 方案一:半桥逆变电路,如下图所示,其特点是有两个桥臂,每个桥臂有一个可控器件和一个反并联二极管组成。在直流侧接有两个相互串联的足够大的电容,两个电容的连接点为直流电源的中点。反并联二极管为反馈电感中储存的无功能量提供通路,直流侧电容正起着缓冲无功能量的作用。其优点为简单,使用器件少,缺点为输出交流电压的幅值仅为直流电源电压的一半,且直流侧需要两个电容器串联,工作时还要控制两个电容器电压的均衡,因此它只适用于几千瓦以下的小功率逆变电路。 VD2 图2-1 半桥逆变电路 方案二:全桥逆变电路,如下图所示:其特点是有四个桥臂,相当于两个半桥电路的组合,其中桥臂1和4作为一对,桥臂2和3作为一对,成对的两个桥臂同时导通,两对

3KVA三相逆变电源设计

课程设计 题目3KVA三相逆变电源设计学院自动化学院 专业自动化 班级 姓名 指导教师朱国荣 2014 年 1 月 2 日

课程设计任务书 学生姓名:专业班级:自动化1102 指导教师:朱国荣工作单位:自动化学院 题目: 3KVA三相逆变电源设计 初始条件: 输入直流电压110V。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 设计容量为3KVA的三相逆变器,要求达到: 1、输出380V,频率50Hz三相交流电。 2、完成总电路设计。 3、完成电路中各元件的参数计算。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1 设计要求、意义及思路 (2) 1.1 设计意义 (2) 1.2 设计要求 (2) 1.3 设计思路 (3) 2 方案设计及原理 (3) 2.1逆变电路 (3) 2.2 SPWM采样方法选择 (4) 2.3 LC滤波 (5) 2.4 升压变压器 (6) 3 主电路设计及参数设计 (7) 3.1 IGBT三相桥式逆变电路 (7) 3.2 脉宽控制电路的设计 (9) 3.2.1 SG3524芯片 (9) 3.2.2 调制波及载波的产生 (10) 3.3 触发电路的设计 (11) 3.3.1 IR2110芯片构成的触发 (11) 3.3.2 M57962L芯片构成的触发电路 (12) 3.4其他部分的参数设计 (13) 结束语 (15) 参考文献 (16) 附录一: (17) 附录二:主电路图 (18)

基于MATLAB的三相桥式PWM逆变电路资料

交流调速系统课程设计题目:三相桥式SPWM逆变器的仿真设计 班级:0 姓名: 学号: 指导老师:

目录 摘要 (2) 关键词 (2) 绪论 (2) 三相桥式SPWM逆变器的设计内容及要求 (3) SPWM逆变器的工作原理 (3) 1 工作原理 (5) 2 控制方式 (6) 3 正弦脉宽调制的算法 (9) MATlAB仿真设计 (12) 硬件实验 (19) 实验总结 (23) 附录 Matab简介 (24) 参考文献 (24)

三相桥式SPWM逆变电路设计 摘要: 随着电力电子技术的飞速发展,正弦波输出变压变频电源已被广泛应用在各个领域中,与此同时对变压变频电源的输出电压波形质量也提出了越来越高的要求。对逆变器输出波形质量的要求主要包括两个方面:一是稳态精度高;二是动态性能好。因此,研究开发既简单又具有优良动、静态性能的逆变器控制策略,已成为电力电子领域的研究热点之一。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率(载波频率),从而产生了较大的开关损耗,开关频率越高,损耗越大。本实验针对正弦波输出变压变频电源SPWM调制方式及数字化控制策略进行了研究,以SG3525为主控芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。 关键词:逆变器SPWM逆变器的工作原理正弦脉宽调制的调制算法单极性正弦脉宽调制双极性正弦脉宽调制自然采样法规则采样法双极性正弦波等面积法 一、绪论 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply) ;针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply) ;针对船舶工业用电的岸电电源SPS(Shore Power Supply) ;还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制. 电力电子器件的发展经历了晶闸管(SCR)、可关断晶闸管(GTO)、晶体管(BJT)、绝缘栅晶体管(IGBT)等阶段。目前正向着大容量、高频率、易驱动、低损耗、模块化、复合化方向发展,与其他电力电子器件相比,IGBT具有高可靠性、驱动简单、保护容易、不用缓冲电路和开关频率高等特点,为了达到这些高性能,采用了许多用于集成电路的工艺技术,如外延技术、离子注入、精细光刻等。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它

三电平光伏并网逆变器和仿真

三电平光伏并网逆变器共模电压SVPWM抑制策略研究 发布:2018-09-07 | 作者: | 来源: mahuaxiao | 查看:436次 | 用户关注: 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进,调整了有效矢量的选择范围,并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。1引言目前,多电平变流器以其突出的优点在高压大 摘要:本文提出了一种优化空间矢量脉宽调制方法来抑制光伏并网逆变器中产生的共模电压。在分析共模电压产生机理的基础上,对通常SVPWM调制技术进行改进, 调整了有效矢量的选择范围, 并对开关次序进行优化。该空间矢量合成算法克服了SPWM调制存在的母线电压利用率低,线性调制区小的问题。仿真结果表明,该算法可以将共模电压幅值抑制到普通SVPWM算法的1/2,具有良好的有效性和实用性。 1 引言 目前, 多电平变流器以其突出的优点在高压大功率变流器中得到了日益广泛的应用,它不仅能减少输出波形的谐波,也易于进行模块化设计[1, 2]。二极管中点箝位式(NPC>三电平拓扑结构即是高压大功率变频器的主流拓扑结构之一[3] 。然而在三电平变流器的应用中, 也出现了一些问题,特别是共模电压问题。目前,变频器共模电压的抑制方法主要有两种:一是外加无源滤波器等,或有源滤波器[4-6],这类方法会导致体积和成本显著增加,且不易应用于高压大容量场合;二是通过控制策略从源头减小共模电压,文献[7]、[8]提出一种SPWM消除共模电压的调制方法。该方式是通过异相调制来消除开关共模电压,但是存在直流电压利用率低、线性调制区过小的问题。 针对SPWM调制的电压利用率低、不利于运用于各种调制比工况下的缺点,本文从三电平逆变器共模电压形成机理出发,提出了一种基于优化电压空间矢量(SVPWM>方法, 可有效抑制三电平逆变器输出共模电压。并通过 Matlab/Simulink软件对该方法进行了仿真验证, 结果表明效果良好。 2 光伏三电平逆变器及其共模电压 本文研究的三电平光伏逆变器系统如图1所示。其输入为光伏阵列的直流电压,逆变器主拓扑为NPC三电平结构。设直流母线电压的幅值为Vdc,用开关状态字“1”,“0”和“-1”分别表示逆变器每相输出为+Vdc/2、0和-Vdc/2的三种状态,则三相三电平逆变器总共有27种不同的开关状态。根据幅值和相位可以画出三电平逆变器的电压空间矢量图,具体如图2所示。

(整理)三相逆变器Matlab仿真.

三相无源电压型SPWM逆变器的构建及其MATLAB仿真 09 电气工程及其自动化邱迪 摘要:本文简要介绍了三相无源电压型SPWM输出的逆变器的构建和工作方式及其MATLAB 仿真。 关键词:三相逆变器正弦脉宽调制(SPWM)技术MATLAB仿真 Abstract: This paper introduces briefly the construction of 3-phase inverter which output SPWM wave and the MATLAB-based simulation. Key word:Three-phase inverter Sinusoidal Pulse Width Modulation Power electronic technology 1逆变器 1.1逆变器的概念 逆变器也称逆变电源,是一种可将直流电变换为一定频率下交流电的装置。相对于整流器将交流电转换为固定电压下的直流电而言,逆变器可把直流电变换成频率、电压固定或可调的交流电,称为DC-AC变换。这是与整流相反的变换,因而称为逆变。[1] 1.2逆变器涉及的技术 逆变器的构建应用了电力电子学科中的很多关键技术。电路中电流的可控流通断开的过程中应用了多种可控硅类型的电力电子器件;开关的控制过程应用了基于微处理器的现代控制技术;对于正弦波形的仿制过程应用了正弦波脉宽调制(SPWM)技术等等。 1.3逆变器的分类 现代逆变技术的种类很多,可以按照不同的形式进行分类。其主要的分类方式如下: 1)按逆变器输出的相数,可分为单相逆变、三相逆变和多相逆变。

2)按逆变器输出能量的去向,可分为有源逆变和无源逆变。 3)按逆变主电路的形式,可分为单端式、推挽式、半桥式和全桥式逆变。 4)按逆变主开关器件的类型,可分为晶闸管逆变、晶体管逆变、场效应管逆变等等。 5)按输出稳定的参量,可分为电压型逆变和电流型逆变。 6)按输出电压或电流的波形,可分为正弦波输出逆变和非正弦波输出逆变。 7)按控制方式,可分为调频式(PFM)逆变和调脉宽式(PWM)逆变。[2] 2 三相逆变电路 三相逆变电路,是将直流电转换为频率相同、振幅相等、相位依次互差为120°交流电的一种逆变网络。 图 1 三相逆变电路 日常生活中使用的电源大都为单相交流电,而在工业生产中,由于诸多电力能量特殊要求的电气设备均需要使用三相交流电,例如三相电动机。随着科技的日新月异,很多设备业已小型化,许多原来工厂中使用的大型三相电气设备都被改进为体积小、耗能低且便于携带的小型设备。尽管这些设备外形发生了很大的变化,其使用的电源类型——三相交流电却始终无法被取代。在一些条件苛刻的环境下,电力的储能形式可能只有直流电,如若在这样的环境下使用三相交流电设备,就要求将直流电转变为特定要求的三相交流电以供使用。这就催生了三相逆变器的产生。

三相电压型逆变器课程设计

三相电压型逆变器 一.电力电子器件的发展: 1.概述: 1957年可控硅(晶闸管)的问世,为半导体器件应用于强电领域的自动控制迈出了重要的一步,电力电子开始登上现代电气传动技术舞台,这标志着电力电子技术的诞生。20世纪60年代初已开始使用电力电子这个名词,进入70年代晶闸管开始派生各种系列产品,普通晶闸管由于其不能自关断的特点,属于半控型器件,被称作第一代电力电子器件。随着理论研究和工艺水平的不断提高,以门极可关断晶闸管(GTO)、电力双极性晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展,被称作第二代电力电子器件。80年代后期,以绝缘栅极双极型晶体管(IGBT)为代表的复合型第三代电力电子器件异军突起,而进入90年代电力电子器件开始朝着智能化、功率集成化发展,这代表了电力电子技术发展的一个重要方向 电子技术被认为是现代科技发展的主力军,电力电子就是电力电子学,又称功率电子学,是利用电子技术对电力机械或电力装置进行系统控制的一门技术性学科,主要研究电力的处理和变换,服务于电能的产生、输送、变换和控制。(电力电子的发展动向)电力电子技术包括功率半导体器件与IC 技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控创电路中

的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。广义上电力电子器件可分为电真空器件(Electron Device)和半导体器件(Semiconductor Device)两类。 2.发展: A.整流管: 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV 左右,反向恢复时间为PIN整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。 B.晶闸管: 自1957年美国通用电气公司GE研制出第一个晶闸管开始,其结构的改进和工艺的改革,为新器件开发研制奠定了基础,其后派生出各种系列产品。1964年,GE公司成功开发双向晶闸管,将其应用于调光和马达控制;1965年,小功率光触发晶闸管问世,为其后出现的光耦合器打下了基础;60年代后期,出现了大功率逆变晶闸管,成为当时逆变电路的基本元件;逆导晶闸管和非对称晶闸管于1974年研制完成。 C.门极可关断晶闸管: GTO可达到晶闸管相同水平的电压、电流等级,工作频率也可扩展到

PWM逆变器Matlab仿真解析

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

根据SVPWM三相并网逆变器仿真报告

基于SVPWM三相并网逆变器 仿真报告

目录 1. SVPWM逆变器简介 (1) 2. SVPWM逆变器基本原理 (2) 2.1. SVPWM调制技术原理 (2) 2.2. SVPWM算法实现 (5) 3. SVPWM逆变器开环模型 (11) 3.1. SVPWM逆变器开环模型建立 (11) 3.2. SVPWM逆变器开环模型仿真分析 (14) 4. SVPWM逆变器闭环模型 (16) 4.1. SVPWM逆变器闭环模型建立 (16) 4.2. SVPWM逆变器闭环模型仿真分析 (17)

1.SVPWM逆变器简介 三电平及多电平空间矢量调制(Space Vector Pulse Width Modulation,SVPWM)法是建立在空间矢量合成概念上的PWM方法。它以三相正弦交流参考电压用一个旋转的电压矢量来代替,通过这个矢量所在位置附近三个相邻变换器的开关状态矢量,利用伏秒平衡原理对其拟和形成PWM波形。空间矢量调制方法在大范围调制比内有很好的性能,具有很小的输出谐波含量和较高的电压利用率。而且这种方法对各种目标的控制相对容易实现。 SVPWM技术源于三相电机调速控制系统。随着数字化控制手段的发展,在UPS/EPS、变频器等各类三相PWM逆变电源中得到了广泛的应用。与其他传统PWM技术相比,SVPWM技术有着母线电压利用率高、易于数字化实现、算法灵活便于实现各种优化PWM技术等众多优点。

2. SVPWM 逆变器基本原理 2.1. SVPWM 调制技术原理 SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。在某个时刻,电压矢量旋转到某个区域中,可由组成这个区域的两个相邻的非零矢量和零矢量在时间上的不同组合来得到。两个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加,这样通过控制各个电压矢量的作用时间,使电压空间矢量接近按圆轨迹旋转,就可以使逆变器输出近似正弦波电压。 SVPWM 实际上是对应于交流感应电机或永磁同步电机中的三相电压源逆变器功率器件的一种特殊的开关触发顺序和脉宽大小的组合,这种开关触发顺序和组合将在定子线圈中产生三相互差120°电角度、失真较小的正弦波电流波形。实践和理论证明,与直接的正弦脉宽调制(SPWM)技术相比,SVPWM 的优点主要有: (1) SVPWM 优化谐波程度比较高,消除谐波效果要比SPWM 好,实现容易,并且可以提高电压利用率; (2) SVPWM 比较适合于数字化控制系统。 目前以微控器为核心的数字化控制系统是发展趋势,所以逆变器中采用SVPWM 应是优先的选择。 对称电压三相正弦相电压的瞬时值可以表示为: a m b m c m cos 2cos()32cos()3u U t u U t u U t ωωπωπ? ?=? ? =-?? ? =+?? (2.1)

三相桥式spwm逆变电路的设计及仿真课程设计

院(系):电气工程学院

摘要 根据三相桥式SPWM逆变电路的工作原理以及特点,采用Simulink中的相关模块建立仿真模型,仿真分析其典型电流、电压波形和工作过程,得到了三相桥式SPWM控制波、负载线电压、负载相电压、负载相电流、负载中性点电压、电源电流波形,解决了三相桥式SPWM逆变电路教学中的难点问题。利用该模型辅助三相桥式SPWM逆变电路教学,直观生动,交互性强,动态显示传真波形。论述了单项正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路做了详细介绍,给出了输出电压波形的实验结果。 关键词:三相桥式SPWM逆变;Simulink;仿真;波形;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1三相桥式SPWM逆变电路的设计内容及要求....... 错误!未定义书签。 2.2SPWM逆变器的工作原理 ....................... 错误!未定义书签。第3章 SPWM逆变器的工作原理. (4) 3.1工作原理 (4) 3.2 控制方式 (5) 3.2.1单极性正弦脉宽调制 (5) 3.2.2双极性正弦脉宽调制 (6) 3.3 正弦脉宽调制的调制算法 (7) 3.3.1 自然采样法 (7) 3.3.2规则采样法 (7) 3.3.3 双极性正弦波等面积法 (7) 第四章MATLAB仿真设计 (8) 4.1 主电路 (8) 4.2 控制电路设计 (9) 4.3仿真结果与分析 (10) 第五章课程设计总结 (15) 参考文献 (16)

第1章绪论 电力电子技术是跨越电力技术、电子技术和控制技术理论三个领域的一门新兴交叉学科,它主要研究应用了电路领域的各种电力半导体器件及其装置,以实现对电能的变换和控制。它可以看成是弱电控制强电的技术,是弱电和强电之间的接口。电力电子技术广泛应用于一般工业、交通运输、电力系统、通信系统、计算机系统、新能源系统等。该课程已成为电气工程与自动化、自动化、电力系统自动化等电类专业的重要专业基础课。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply);针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply);针对船舶工业用电的岸电电源 SPS(Shore Power Supply);还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种 PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率,从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源 SPWM调制方式及数字化控制策略进行了研究,以SG3524为主控制芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

相关文档
相关文档 最新文档