文档视界 最新最全的文档下载
当前位置:文档视界 › 生化简答题

生化简答题

生化简答题
生化简答题

生化问答题

1.简述糖酵解的途径。

答案:1.迅速供能,这对肌肉收缩更为重要,当机体缺氧或剧烈运动肌肉局部血流不足时,能量主要通过糖酵解途径获得。2.是某些组织获能的必要途径。如:

神经白细胞骨髓组织等。即使再有氧时也进行强烈的酵解而获能3 成熟的红细胞

无线粒体仅靠无氧酵解供能。

2.简述三羧酸循环的特点及生理意义。

答案:TAC 反应的特点:从草酰乙酸和乙酰辅酶A结合成柠檬酸开始,每次循环消耗一分子乙酰基。反应过程中有4次脱氢,2.。TAC 在线粒体中进行,有三个

催化不可逆反应的关键酶,分别是柠檬酸合酶异柠檬酸脱氢酶,a-酮戊2酸脱氢酶

复合体 3 的中间产物包括草酰乙酸再循环中起催化作用不会因参与循环而被消耗

掉。

生理意义:1是三大营养物质代谢的最终通路 2是三大营养物质互相转变的枢纽。3为其他物质合成提供小分子前提物质为氧化磷酸化提供还原当量。

3.试述磷酸戊糖途径的生理意义

答案 1 提供5-磷酸核糖作为体内合成各种核苷酸及核酸的原料。 2 提供代谢所需要的还原型辅酶2 NADPH

4 试述酮体的生理意义

酮体是脂肪酸在肝脏氧化分解的特有产物,包括乙酰乙酸Β-羟丁酸和丙酮。

1酮体分子小极性大易溶于水能通过血脑屏障及肌肉的毛细血管壁是脑心肌和骨骼肌等组织的重要能源2 长期饥饿或糖供给不足时酮体利用的增加可

减少糖的利用利于维持血糖节省蛋白质的消耗 3 严重饥饿或糖尿病时可作为脑

组织的主要能源。

5 试述脂肪酸β氧化的过程

1 脂肪酸在胞液中活化为脂酰辅酶A

2 脂酰辅酶A 进入线粒体

3 脂酰辅酶A

进行Β氧化包括4步连续反应:脱氢加水脱氢和硫解 4 产生的乙酰辅酶A彻底

氧化分解为co2 h2o 和能量。

影响酶促反应速率的因素有哪些答:1)温度:温度对酶促反应速率的影响曲线一般呈钟罩型,每种酶都有最适温度,在最适温度下反应速率最大。2)PH:PH对酶促反应速率的影响一般呈钟罩型,每种酶都有最适PH,在最适PH下反应速率最大。3)底物浓度:底物浓度对酶促反应速率影响符合米氏方程。4)抑制剂:可抑制酶反应速率。分为可逆抑制剂和不可逆抑制剂,其中前者包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂等。5)其他因素:如激活剂、酶浓度、产物浓度等。什么是操纵子以乳糖操纵子为例说明原核细胞基因表达调控机制。一群功能相关的结构基因、操纵基因和启动子组成的原核细胞基因表达的协调单位。乳糖操纵子属可逆诱导操纵子。操纵基因处于启动子和结构基因之间,操纵子处于阻遏状态,调节基因编码的阻遏蛋白质与操纵基因结合,阻碍了其下游结构基因的表达,不转录乳糖代谢所需的三种酶。乳糖诱导物存在时,诱导物与阻遏蛋白质结合使之变构失去活性,不能与存在基因结合,则其下游结构基因表达,合成乳糖代谢所需的三种酶。常见的蛋白质的二级结构有哪些各有何特点主要包括α-螺旋,β-折叠,β-转角等。α-螺旋特征:肽链主链形成了从N端到C端为顺时针方向的右手螺旋;β-折叠:是肽链中比较伸展的空间结构,其中肽键平面接近平行,但略呈锯齿状。由肽段

片层之间经C=O与N—H侧向形成氢键,分为平行式β-折叠和反平行式β-折叠;β-转角:指肽链出现180°左右转向回折时的“U”型有规律的二级结构单元,其中第1(n)个氨基酸残基上的C=O隔两个氨基酸残基与第4(n+3)个氨基酸残基上的N—H形成的氢键。写出糖酵解途径的三个调控酶及其催化生化反应。 1)己糖激酶:葡萄糖+ATP→葡萄糖-6-磷酸+ADP 2)果糖磷酸激酶:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP 3)丙酮酸激酶:烯醇式丙酮酸磷酸+A DP→丙酮酸+ATP 简述B-DNA经典结构模型 1)DNA

分子是由两条反向平行的脱氧核苷酸链组成 2)DNA分子中的嘌呤碱基总数等于嘧啶碱基总数简述生物体内的尿素形成机理 1)CO2 NH3和鸟氨酸作用合成瓜氨酸 2)瓜氨酸与天冬氨酸作用生成精氨酸 3)精氨酸被精氨酸水解酶水解后放出尿素形成鸟氨酸,成一循环试述tRNA的二级结构 tRNA的结构一般由4臂4环组成的 1)上臂是由tRNA3‵末端和5‵末端的7对碱基组成称氨基酸接受臂 2)下臂是与反密码子环相连,环的顶端有I-G-C3个核苷酸组成的反密码子这个臂称反密码子臂 3)左臂与含二氢尿嘧啶的环相连4)右臂与一个含有T¢C顺序的环和一个可变环相连。简述SDS-聚丙酰氨凝胶电泳测定蛋白质亚基分子量的基本原理 SDS是一种去污剂,可使蛋白质变性并解离成亚基。当蛋白质样品中加入SDS后SDS与蛋白质结合使蛋白质分子带上大量的强负电荷,并使蛋白质分子的形状成为短棒状,从而消除了蛋白质分子之间原子带电荷量和分子形状的差异,这种电泳速度只取决于蛋白质的相对分子量。蛋白质分子在电泳中的迁移率的大小和相对分子量的对数成正比。相对迁移率和相对分子量的对数作标准曲线即可由样品的相对迁移率求出M 生物体内RNA主要有哪几类是比较其结构和功能 tRNA:三叶草,有4臂4环组成,将mRNA的遗传密码翻译成蛋白质,是蛋白质生物合成过程中氨基酸的转运工具。 mRNA:有很多种类,每一种的相对分子质量和碱基序列都不同,DNA的转录本并合成新蛋白质的模板。 rRNA:单链螺旋在代谢上稳定,原核生物有

23S16S5S三种,真核生物有四种,核糖体的主要成分是翻译工作的场所。简述原核生物蛋白质合成过程。氨基酸的活化和转移,肽链合成的起始肽链的延伸,肽链的终止和释放,肽链合成后的加工比较逆转录酶与原核生物DNA聚合酶性质异同点同:都有外切酶功用异:模板,单链RNA DNA 活性,依赖于RNA的DNA聚合酶活性依赖于DNA 的DNA聚合酶活性产物,与模板互补的DNA单链新的DNA 功能,催化反转录作用外切酶的作用催化DNA的合成引物,Mg2+或Mm2+ 3′-OH末游离的小RNA片段丙酮酸脱氢酶复合物主要包括哪些酶和辅酶因子,写出该酶催化的总反应式酶;依赖TPP-丙酮酸脱氢酶,二氢硫辛酸转乙酰基酶,二氢硫辛酸脱氢酶辅助因子:NAD+,FAD,TPP,氧化型硫辛酸,辅酶A,Mg2+ 丙酮酸+CoASH------乙酰CoA+CO2+NADH+H+ 横线上面,丙酮酸脱氢酶横线下面,TPP LS/S FAD Mg2+ 何为糖异生糖异生式和酵解途径是如何协调控制的由简单的非糖前体转变为糖的过程。它们主要通过ATP系统的能荷和呼吸燃料的水平来调节,当细胞内的ATP水平较高即能荷较高呼吸燃料较高时,抑制了糖酵解促进了糖异生,反之当能荷低时呼吸燃料少加速了糖酵解抑制糖异生。真核生物mRNA与原核生物mRNA有何异同同:在细胞和线粒体内产生,然后进入细胞质及核糖体。mRNA

有很多种类每一种的相对分子量及碱基都不相同。异:原核细胞mRNA的5′端无帽子结构真核细胞5′有帽子结构,帽子结构对mRNA的翻译活性是重要的,原核细胞mRNA3′端异般没有或仅有少于10个聚腺苷酸结构,真核细胞mRNA3′端都有聚腺苷酸有一条大约由200个腺苷酸残基延伸组成的多聚腺苷酸链。酶的可逆抑制作用分为哪几类各对酶的Vmax和Km有何影响竞争性抑制,Vmax不变,Km增加非竞争性抑制,Vmax减小,Km不变反竞争性抑制,Vmax减小,Km减小简述大肠杆菌半保留复制过程。①DNA复制的起始,大肠杆菌染色体DNA复制时,DNA双链首先形成泡状或眼型结构②DNA复制的方向,当DNA复制开始时,其亲代的两条链经解链酶作用形成复形叉复形叉的移动方

向与前导链的延长方向相同③DNA复制的延长,DNA通过上述半连续复制产生的冈崎片段经过连接酶的作用可连接成新的核苷酸链。再经过聚合酶催化即产生新的DNA分子。

④DNA复制的终止,在DNA链延长过程中当长链的引物被切除并代以相应核苷酸时链的延长何为酶的专一性,试以诱导契合学说解释之 1)一种酶只能对一定的底物发生催化作用 2)诱导契合学说认为酶活性部位的构象时柔韧可变的,在同底物结合时,酶活性部位因受结合力影响,或者说受底物的影响,即改变其构象使适合于底物契合进行反应,当酶从Es复合物解离出来后即恢复其原有构象。简述脂肪酸β-氧化的作用每经过一次β氧化脂酸的烃链即失去2个C原子,同时放出一个分子乙酰CoA经过重复β氧化,则一个脂酸分子可能全部变成为乙酰CoA,在正常生理情况下,一部分用来合成新的脂酸,大部分是进入三羧酸循环,完全氧化产生的能量。在动物体内如生理反常,则乙酰CoA可变为酮体。DNA双螺旋结构模型提出的两个主要依据是什么试述DNA双螺旋结构的内容

生化简答题(附答案)

1.简述脂类的消化与吸收。 2.何谓酮体?酮体是如何生成及氧化利用的? 3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么? 4.简述脂肪肝的成因。 5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质? 6.脂蛋白分为几类?各种脂蛋白的主要功用? 7.写出甘油的代谢途径? 8.简述饥饿或糖尿病患者,出现酮症的原因? 9.试比较生物氧化与体外物质氧化的异同。 10.试述影响氧化磷酸化的诸因素及其作用机制。 11.试述体内的能量生成、贮存和利用 12.试从蛋白质营养价值角度分析小儿偏食的害处。 13.参与蛋白质消化的酶有哪些?各自作用? 14.从蛋白质、氨基酸代谢角度分析严重肝功能障碍时肝昏迷的成因。 15.食物蛋白质消化产物是如何吸收的? 16.简述体内氨基酸代谢状况。 17.1分子天冬氨酸在肝脏彻底氧化分解生成水、二氧化碳和尿素可净生成多少分子ATP?简述代谢过程。 18.简述苯丙氨酸和酪氨酸在体内的分解代谢过程及常见的代谢疾病。 19.简述甲硫氨酸的主要代谢过程及意义。 20.简述谷胱甘肽在体内的生理功用。 21.简述维生素B6在氨基酸代谢中的作用。 22.讨论核苷酸在体内的主要生理功能

23.简述物质代谢的特点? 24.试述丙氨酸转变为脂肪的主要途径? 25.核苷、核苷酸、核酸三者在分子结构上的关系是怎样的? 26.参与DNA复制的酶在原核生物和真核生物有何异同? 27.复制的起始过程如何解链?引发体是怎样生成的? 28.解释遗传相对保守性及其变异性的生物学意义和分子基础。 29.什么是点突变、框移突变,其后果如何? 30.简述遗传密码的基本特点。 31.蛋白质生物合成体系包括哪些物质,各起什么作用。 32.简述原核生物基因转录调节的特点。阻遏蛋白与阻遏机制的普遍性。33.简述真核生物基因组结构特点。 34.同一生物体不同的组织细胞的基因组成和表达是否相同?为什么?35.简述重组DNA技术中目的基因的获取来源和途径。 36.作为基因工程的载体必须具备哪些条件? 37.什么叫基因重组?简述沙门氏菌是怎样逃避宿主免疫监视的?38.简述类固醇激素的信息传递过程。 39.简述血浆蛋白质的功能。 40.凝血因子有几种?简述其部分特点? 41.简述红细胞糖代谢的生理意义。 42.试述维生素A缺乏时,为什么会患夜盲症。 43.简述佝偻病的发病机理。 44.维生素K促进凝血的机理是什么?

生物化学实验报告

生物化学实验报告 动物营养研究所 树润 2015.10.12 猪血中超氧化物歧化酶(SOD)的分离纯化及活性测定一.实验目地 1.通过实验了解活性物质的分离提取。 2.了解超氧化物歧化酶的基本功能与应用。 二.实验原理 超氧化物歧化酶是一种酸性蛋白,是唯一以自由基为底物 的酶,具有清除自由基的功能酶,在酶分子上共价连接金属辅 基,因此它对热、PH、以及某些理化性质表现出异常的稳定性。 该酶首次从牛红细胞中分离得到,是一种蓝色含铜蛋白,之后, 研究发现该蛋白酶具有催化氧发生歧化反应的能力,因此将其 命名为超氧化物歧化酶1-2。超氧化物歧化酶是一种能专一地清 除超氧离子自由基(O2-)的金属酶,它具有抗衰老、抗辐射、 抗炎抗癌等作用,因而在医药(如关节炎、红斑狼疮等疾病的 治疗3)、化妆品(有防晒抗炎效果4)、食品工业(SOD灵芝菌5 等)等方面具有了广泛的应用前景。 超氧化物歧化酶是广泛存在于生物体的一种金属酶, 可催化超氧阴离子自由基(O2-)与H+发生歧化反应, 生成H2O2和 O2。SOD催化下述反应:2H++2O2-→H2O2+O2。

超氧化物歧化酶按照它所含金属离子的不同,可分为 Cu-Zn-SOD、Mn-SOD、Fe-SOD等三种。Cu-Zn-SOD为二聚体,呈 蓝绿色;Mn-SOD呈紫红色;Fe-SOD呈黄褐色。 SOD提取、纯化制备方法各异, 常用方法有经典的溶剂沉淀法、盐析法、超滤法和层析法等6-7。本实验采用有机溶剂沉淀法8以新鲜猪血为原料,从中提取SOD并进行纯化。酶活力测定可用以下方法:邻苯三酚自氧化法9、黄嘌呤氧化酶法、NBT光还原法、化学发光法、肾上腺素自氧化法、亚硝酸法等。 该实验SOD酶活性采用邻苯三酚自氧化法测定,酶活性单 位定义为:每毫升反应液中,每分钟抑制邻苯三酚自氧化速率 达50%的酶量定义为一个酶单位。 样品中蛋白质含量用考马斯亮蓝G-250法测定。考马斯亮 蓝G-250在游离状态下呈红色,与蛋白质结合呈现蓝色。在一 定围,溶液在595nm波长下的光密度与蛋白质含量成正比,可 用比色法测定,测定围1-1000μg。 三.实验试剂与器材 1.实验试剂 ACD抗凝剂、0.9%Nacl、丙酮、95%乙醇、氯仿、考马斯 亮蓝G-250、50mmol/L pH8.3磷酸缓冲液、10mmol/L EDTA钠盐 溶液、3mmol/L邻苯三酚溶液等 2.实验器材

专升本生物化学问答题答案(A4)..

温医成教专升本《生物化学》思考题参考答案 下列打“*”号的为作业题,请按要求做好后在考试时上交 问答题部分:(答案供参考) 1、蛋白质的基本组成单位是什么?其结构特征是什么? 答:组成人体蛋白质的氨基酸仅有20种,且均属L-氨基酸(甘氨酸除外)。 *2、什么是蛋白质的二级结构?它主要形式有哪两种?各有何结构特征? 答:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 α-螺旋、β-折叠。 α-螺旋:多肽链的主链围绕中心轴做有规律的螺旋上升,为右手螺旋,肽链中的全部肽键 都可形成氢键,以稳固α-螺旋结构。 β-折叠:多肽链充分伸展,每个肽单元以Cα为旋转点,依次折叠成锯齿状结构,肽链间形成氢键以稳固β-折叠结构。 *3、什么是蛋白质变性?变性的本质是什么?临床上的应用?(变性与沉淀的关系如何?)(考过的年份:2006 答:某些理化因素作用下,使蛋白质的空间构象遭到破坏,导致其理化性质改变和生物活性的丢失,称为蛋白质变性。 变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。 变性的应用:临床医学上,变性因素常被应用来消毒及灭菌。此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。 (变性与沉淀的关系:变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。) 4、简述细胞内主要的RNA及其主要功能。(同26题) 答:信使RNA(mRNA):蛋白质合成的直接模板; 转运RNA(tRNA):氨基酸的运载工具及蛋白质物质合成的适配器; 核蛋白体RNA(rRNA):组成蛋白质合成场所的主要组分。 *5、简述真核生物mRNA的结构特点。 答:1. 大多数真核mRNA的5′末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C ′2也是甲基化,形成帽子结构:m7GpppNm-。 2. 大多数真核mRNA的3′末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。 6、简述tRNA的结构特点。 答:tRNA的一级结构特点:含10~20% 稀有碱基,如DHU;3′末端为—CCA-OH;5′末端大多数为G;具有TψC 。 tRNA的二级结构特点:三叶草形,有氨基酸臂、DHU环、反密码环、额外环、TΨC环组

生物化学全部简答题

1.合成的多肽多聚谷氨酸,当处在PH3.0以下时,在水溶液中形成α螺旋,而在PH5.0以上时却为伸展状态。 A.解释该现象。 B.在哪种PH条件下多聚赖氨酸会形成α-螺旋? 答:(a)由可离子化侧链的氨基酸残基构成的α-螺旋对pH值的变化非常敏感,因为溶液的pH值决定了侧链是否带有电荷,由单一一种氨基酸构成的聚合物只有当侧链不带电荷时才能形成α-螺旋,相邻残基的侧链上带有同种电荷会产生静电排斥力从而阻止多肽链堆积成α-螺旋构象.Glu侧链的pKa约为4.1,当pH值远远低于4.1(大约3左右)时,几乎所有的多聚谷氨酸侧链为不带电荷的状态,多肽链能够形成α-螺旋.在pH值为5或更高时,几乎所有的侧链都带负电荷,邻近电荷之间的静电排斥力阻止螺旋的形成,因此使同聚物呈现出一种伸展的构象. (b)Lys侧链的pK为10.5,当pH值远远高于10.5时,多聚赖氨酸大多数侧链为不带电荷的状态,该多肽可能形成一种α-螺旋构象,在较低的pH值时带有许多正电荷的分子可能会呈现出一种伸展的构象. 2.为什么说蛋白质水溶液是一种稳定的亲水胶体? 答:①蛋白质表面带有很多极性基因,比如:-NH3,-COO-,-OH,-SH,-CONH2等,和水有高度亲和性,当蛋白质与水相遇时,水很容易被蛋白质吸引,在蛋白质外面形成一种水膜,水膜的存在使蛋白颗粒相互隔开,蛋白之间不会碰撞而聚成大颗粒,因此蛋白质在水溶液中比较稳定而不易沉淀。 ②蛋白质颗粒在非等电点状态时带有相同电荷,蛋白质颗粒之间相互排斥保持一定距离,不易沉淀。 3. R侧链对α-螺旋的影响。 答:侧链大小和带电荷性决定了能否形成α-螺旋,即形成α-螺旋的稳定性,肽链上连续出现带有相同电荷的氨基酸,如赖氨酸,天冬氨酸,谷氨酸;由于静电排斥不能形成链内氢键,从而不能形成稳定的α-螺旋,R基较小且不带电荷的氨基酸有利于α-螺旋的形成,R基越大,如异亮氨酸,不易形成α-螺旋,脯氨酸终止α-螺旋。 4.卷发(烫发)的生物化学基础。 答:永久性卷发烫发是化学变化,α-角蛋白在湿热条件下可以伸展转变为β-折叠,在冷却干燥时又可自发恢复原状,这是因为α-角蛋白的侧链R基一般都比较大,不适于处在β-折叠状态,此外α-角蛋白中的螺旋多肽链之间有很多二硫键交联,这些二硫键也是当外力解除后,肽链恢复原状的重要力量。 5.简述淀粉遇碘的呈色原理。 答:淀粉与碘呈颜色反应,直链淀粉为蓝色,支链淀粉为紫红色,红色糊精、无色糊精也因此得名。颜色反应是因为碘分子进入淀粉螺旋圈内,形成淀粉-碘络合物。其颜色与淀粉链长短有关。当链长小于6个Glc残基时,不能形成一个螺旋,因此不能呈色。当平均长度为20个残基时呈红色;大于60个残基时呈蓝色。支链淀粉分子量虽大,但分支单位的长度只有20~30个Glc残基故与碘呈红紫色。 6.糖的D、L-型,α-、β-型是如何决定的? 答:(1)D、L型: 单糖的D-及L-两种一异构体,判断其D-型还是L-型是将单糖分子离羰基最远的不对称碳原子上—OH的空间排布与甘油醛比较,若与D-甘油醛相同,即-OH 在不对称碳原子右边的为D-型,若与L-甘油醛相同,即-OH在不对称碳原子左

生化名词解释、简答

试卷一 五、写出下列物质的中文名称并阐明该物质在生化中的应用(共8分) DNS-C1 DNFB DEAE —纤维素 BOC 基 1、DNS-Cl : 5一二甲氨基萘-1-磺酰氯,用作氨基酸的微量测定,或鉴定肽链的N —端氨基酸。 2、DNFB :2,4一二硝基氟苯,鉴定肽链的N —端氨基酸。 3、DEAE 一纤维素: 二乙氨基乙基纤维素,阴离子交换剂,用于分离蛋白质。 4、BOC 基: 叔丁氧羰酰基,人工合肽时用来保护氨基酸的氨基。 六、解释下列名词(共12分) 1、肽聚糖:肽聚糖是以NAG 与NAM 组成的多糖链为骨干与四肽连接所成的杂多糖。 2、蛋白质的别构效应:含亚基的蛋白质由于一个亚基的构象改变而引起其余亚基和整个分子构象、性质和功能发生改变的作用称别构效应。 3、肽平面:由于肽键不能自由旋转,形成肽键的4个原子和与之相连的2个α-碳原子共处在1个平面上,形成酰胺平面,也称肽平面。 4、两面角:由于肽链中的C α-N 键和Cα—C 键是单键,可以自由旋转,其中绕C α-N 键旋转的角度称φ角,绕C α-C 键旋转的角度称ψ角,这两个旋转的角度称二面角。 5、波耳效应:pH 的降低或二氧化碳分压的增加,使血红蛋白对氧的亲和力下降的现象称波耳效应。 6、碘价:100克脂肪所吸收的碘的克数称碘价,碘价表示脂肪的不饱和度。 七、问答与计算(共30分) 1、今从一种罕见的真菌中分离到1个八肽,它具有防止秃发的作用。经分析,它的氨基酸组成是:Lys 2,Asp 1,Tyr 1,Phe 1,Gly 1,Ser 1和Ala 1。此八肽与FDNB 反应并酸水解后。释放出FDNB-Ala 。将它用胰蛋白酶酶切后,则得到氨基酸组成为:Lys 1,Ala 1,Ser 1和Gly ,Phe 1,Lys 1的肽,还有一个二肽。将它与胰凝乳蛋白酶反应后,释放出游离的Asp 以及1个四肽和1个三肽,四肽的氨基酸组成是:Lys 1,Ser 1,Phe 1和Ala 1,三肽与FDNB 反应后,再用酸水解,释放出DNP-Gly 。请写出这个八肽的氨基酸序列。(10分)Ala-Ser-Lys-phe-Gly-Lys-Tyr-Asp 2、试求谷胱甘肽在生理pH 时带的净电荷,并计算它的等电点。已知pK (COOH )=2.12 pK (COOH )=3.53 pK (N +H 3)=8.66 pK(SH)=9.62 净电荷为-1,83 .22 53 .312.2=+= PI 3、若有一球状蛋白质,分子中有一段肽链为Ala-Gln-Pro-Trp-Phe-Glu-Tyr-Met… 在生理条件下,哪些氨基酸可能定位在分子内部?(5分) 球状蛋白质形成亲水面,疏水核,所以Ala,Pro,Trp,phe,Met 可能定位在分子内部。

生物化学实验内容

《生物化学实验》内容 课程类型:制药工程专业必修 实验总学时:32课时 开设实验项目数:8个 适用对象:2017制药工程1、2班 实验教师:段志芳 一、实验目标及基本要求 生物化学实验是一门独立的实验课程,培养学生生物化学实验基本操作技能、实验数据处理能力、分析问题解决问题的能力和实事求是的科学态度。 二、实验内容

三、成绩 包括实验时的表现(实验出勤、安全卫生、操作对错、损坏器皿情况等,占50%)及实验报告的完成情况和完成质量(占50%),每个实验按总分为100分为满分进行打分,共8个实验,总评取平均值。 四、要求 (1)实验过程中同组人可以配合进行; (2)实验报告独立完成,同组人数据相同,不得抄袭他组数据;(3)实验过程若出现失误应向老师汇报后再进行重做; (4)对实验结果进行简单的分析. 实验一植物组织中可溶性总糖的提取 一、实验目的 1. 掌握可溶性总糖的概念和性质。 2. 掌握可溶性总糖提取的基本原理。

3.掌握溶解、过滤、洗涤、定容等基本操作技术。 二、实验原理 可溶性糖是指易溶于水的糖,包括绝大部分的单糖、寡糖,常见的有葡萄糖、果糖、麦芽糖和蔗糖等。它们在植物体内可以充当能量的储存、转移的介质、结构物质和功能分子如糖蛋白的配基。总糖主要指具有还原性的葡萄糖、果糖、戊糖、乳糖和在测定条件下能水解为还原性的单糖的蔗糖、麦芽糖以及可能部分水解的淀粉。可溶性总糖提取方法包括:热水提取法、酶提取法、超声波提取法等。其溶于热水,不溶于60%以上乙醇,所以用热水提取、乙醇沉淀除去部分醇溶性杂质。本实验利用可溶性糖溶于水的特性,将植物磨碎,用热水将组织中的可溶性糖提取出来,结合实验二得到总糖浓度,已知溶液体积和原料重量,可以求出总糖含量。 三、实验用品 1.仪器设备:电子天平(精确到0.0g,配称量纸若干);可控温电 加热板或电炉或电热套或水浴锅均可。可共用。 2.玻璃器皿:研钵1套;100mL锥形瓶1个;25mL量筒1个;玻 璃棒1根;100mL烧杯2个;胶头滴管1支;过滤装置1套(铁架台1台+铁圈1个+玻璃漏斗1个+100mL容量瓶1个+洗瓶1个); 不锈钢刮勺1个;剪刀1把。此部分为每组所用,集中到小框里,放置各实验台上。 3.药品试剂:新鲜植物叶片;蒸馏水。 4.其他:9cm滤纸若干(与玻璃漏斗配套);纸巾若干;标签纸若

生化简答题与答案

生化简答题 ●肿瘤抑制因子p53在调控磷酸戊糖途径(pentose phosphate pathway, PPP)中的作用机制 6-磷酸葡糖脱氢酶此酶为磷酸戊糖途径的关键酶,其活性的高低决定6-磷酸葡糖进入磷酸戊糖途径的流量。此酶活性主要受NADPH/NADP+比值的影响,比值升高则被抑制,降低则被激活。另外NADPH对该酶有强烈抑制作用。 p53可以与磷酸戊糖途径上的第一步反应的关键酶葡萄糖-6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PD)相结合,并且抑制它的活性。 在正常情况下,p53参与阻止这一途径的进行,细胞中的葡萄糖因此被主要用于进行酵解和三羧酸循环;在p53发生突变或缺失的肿瘤细胞中,由于p53的突变使它失去与G6PD 结合的能力和对G6PD的抑制,细胞中利用葡萄糖的另一代谢途径即磷酸戊糖途径因此加速进行,大量消耗葡萄糖,这一发现部分解释了自19世纪20年代末科学家所提出的Warburg 现象(Warburg effect)。另外,由于PPP的加速,产生大量NAPDH及戊糖(DNA的组份原料),可以满足肿瘤细胞快速生长所需要的大量的DNA复制。 这一研究还第一次提出:p53除了具有转录活性外,还具有催化功能,它通过与底物瞬时结合,以”hit-and-run”的模式使G6PD酶的活性降低。 ● 结合所学糖代谢所学知识,分析临床上使用果糖2,6二磷酸辅助治疗心肌缺血的机制. F-2,6-2P是磷酸果糖激酶-1(PFK-1)的别构激活剂,能够促进葡萄糖的分解,产生ATP,为心肌提供能量,弥补了因缺血造成的能量不足。 【二磷酸果糖(FDP)属于心血管类正性肌力药物,是机体葡萄糖代谢中的一个重要中间产物,二磷酸果糖在代谢过程中通过刺激果糖激酶和丙酮酸激酶的活性,增加细胞内三磷酸腺苷(ATP)和磷酸肌酸的浓度,具有调节细胞代谢,增加细胞能量,维持细胞骨架,提高红细胞韧性和释氧等功能。因此,在抗缺血,缺氧,提高机体功能方面显示出一定的作用,由于二磷酸果糖静脉给药后可较好地改善心肌代谢,保护心肌,改善心肌缺血,常作为心肌缺血的辅助治疗用药(2,6二磷酸果糖】 心绞痛、心衰、心肌梗塞的辅助治疗药物,在临床治疗中适用症较广,副作用轻微,在心血管急慢性病症中发挥了一定的作用。 ● 二甲双胍(Metformin)是临床上重要的降血糖药物,据研究其机制与metformin促进糖 的无氧分解和抑制糖异生有关,请试结合糖的无氧酵解生化知识分析,metformin有何副作用? 糖无氧氧化反应终产物为乳酸,而二甲双胍促进糖的无氧分解,故在使用二甲双胍的病人中,由于二甲双胍的累积有可能发生乳酸性酸中毒。 (大概这个意思吧~其他的自己看着办) ● 病例分析 某对夫妻,喜得一子,无比喜悦!可第三天,医生检查发现小宝宝出现黄疸、贫血、面色苍白。初步诊断为新生儿黄疸,给予光照治疗以去黄疸,患儿3天后因多器官衰竭死亡。 1、请问医生的处理正确吗?错误在哪里? 2、新生儿有哪些病会引起黄疸呢? 1、错,宝宝贫血、面色苍白为病理性性黄疸(溶血性黄疸),而医生误诊为生理性黄疸,耽误治疗。

生物化学简答题35566

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤? 生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽 限速步骤: 1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸 2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。 3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、 NADH+H+和CO2。 4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用? 概念: 转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。 这一过程分为两步反应: -H2O +H2O +H2O -H 2O 转氨作用的生理意义: a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成 时对非必需氨基酸的需求。 b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此, 对糖和蛋白质代谢产物的相互转变有其重要性。 c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨 基酸脱氨的重要方式。 d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血 清的转氨酶含量大有助于肝炎病情的诊断。 转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。 5.简述磷酸戊糖途径概念及生理意义 概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。 1)产生大量的NADPH,为细胞的各种合成反应提供还原力 2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷 酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

生物化学简答题

1.比较三种可逆性抑制作用的特点。 (1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用的大小与抑制剂与底物的浓度以及酶对它们的亲和力有关。Km值升高,Vm不变。 (2)非竞争性抑制:抑制剂的结构与底物结构不相似或不同,只与酶活性中心外的必需基因结合。不影响酶与底物的结合。抑制作用的强弱只与抑制剂的浓度有关。Km值不变,Vm 下降。 (3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离为产物。Km,Vm均下降。 DNA复制与转录过程的异同点。 DNA的复制与转录的相同点:复制和转录都是酶促的核苷酸聚合的过程,有以下相似之处,都以DNA为模板;都需依赖DNA的聚合酶;聚合过程都是核苷酸之间生成磷酸二酯键;都从5′至3′方向延伸成新链多聚核苷酸;都遵从碱基配对规律。 复制与转录的不同点: 1 转录以DNA单链为模版而复制以双链为模板 2 转录用的无引物而复制以一段特异的RNA为引物 3 转录和复制体系中所用的酶体系不同 4转录和复制的配对的碱基不完全一样,转录中A对U,而复制中A对T,而且转录体系中有次黄嘌呤碱基的引入 (1)三羧酸循环 在线粒体基质中进行,反应过程的酶,除了琥珀酸脱氢酶是定位于线粒体内膜外,其余均位于线粒体基质中主要事件顺序为: 1)乙酰CoA与草酰乙酸结合,生成柠檬酸,放出CoA。柠檬酸合成酶。 2)柠檬酸先失去一个H2O而成顺乌头酸,再结合一个H2O转化为异柠檬酸。顺乌头酸酶 3)异柠檬酸发生脱氢、脱羧反应,生成a-酮戊二酸,放出一个CO2,生成一个NADH+H+。异柠檬酸脱氢酶 4)a-酮戊二酸氧化脱羧生成琥珀酰CoA,放出一个CO2,生成一个NADH+H+。酮戊二酸脱氢酶 5)琥珀酰辅酶A合成酶催化底物水平磷酸化反应 6)琥珀酸脱氢生成延胡索酸,生成1分子FADH2,琥珀酸脱氢酶 7)延胡索酸和水化合而成苹果酸。延胡索酸酶 8)苹果酸氧化脱氢,生成草酸乙酸,生成1分子NADH+H+。苹果酸脱氢酶

生化简答题大全及答案教学文稿

1.脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。 2.何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、β-羟丁酸和丙酮。酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰CoA并进入三羧酯循环而被氧化利用。 3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖→丙酮酸→乙酰CoA→合成脂肪酸→酯酰CoA葡萄糖→磷酸二羧丙酮→3-磷酸甘油脂酰CoA+3-磷酸甘油→脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。 4.简述脂肪肝的成因。肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。 5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。 7.写出甘油的代谢途径?甘油→3-磷酸甘油→(氧化供能,异生为糖,合成脂肪再利用) 8.简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒 9.试比较生物氧化与体外物质氧化的异同。生物氧化与体外氧化的相同点:物质在体内外氧化时所消耗的氧量、最终产物和释放的能量是相同的。生物氧化与体外氧化的不同点:生物氧化是在细胞内温和的环境中在一系列酶的催化下逐步进行的,能量逐步释放并伴有ATP的生成,将部分能量储存于ATP分子中,可通过加水脱氢反应间接获得氧并增加脱氢机会,二氧化碳是通过有机酸的脱羧产生的。生物氧化有加氧、脱氢、脱电子三种方式,体外氧化常是较剧烈的过程,其产生的二氧化碳和水是由物质的碳和氢直接与氧结合生成的,能量是突然释放的。 10.试述影响氧化磷酸化的诸因素及其作用机制。影响氧化磷酸化的因素及机制:(1)呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体Ⅰ中的铁硫蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、硫化氢抑制复合体Ⅳ。(2) 解偶联剂:二硝基苯酚和存在于棕色脂肪组织、骨骼肌等组织线粒体内膜上的解偶联蛋白可使氧化磷酸化解偶联。(3)氧化磷酸化抑制剂:寡霉素可与寡霉素敏感蛋白结合,阻止质子从F0质子通道回流,抑制磷酸化并间接抑制电子呼吸链传递。(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化磷酸化速度减慢。(5) 甲状腺素:诱导细胞膜Na+-K+-ATP酶生成,加速ATP分解为ADP,促进氧化磷酸化;增加解偶联蛋白的基因表达导致耗氧产能均增加。(6)线粒体DNA突变:呼吸链中的部分蛋白质肽链由线粒体DNA编码,线粒体DNA因缺乏蛋白质保护和损伤修复系统易发生突变,影响氧化磷酸化。11.试述体内的能量生成、贮存和利用。糖、脂、蛋白质等各种能源物质经生物氧化释放大量能量,其中约40% 的能量以化学能的形式储存于一些高能化合物中,主要是ATP。ATP的生成主要有氧化磷酸化和底物水平磷酸化两种方式。ATP是机体生命活动的能量直接供应者,每日要生成和消耗大量的ATP。在骨骼肌和心肌还可将ATP的高能磷酸键转移给肌酸生成磷酸肌酸,作为机体高能磷酸键的储存形式,当机体消耗ATP过多时磷酸肌酸可与ADP反应生成ATP,供生命活动之用。 12.试从蛋白质营养价值角度分析小儿偏食的害处。食物蛋白质的营养价值高低决定于所含必需氨基酸的种类和数量以及各种氨基酸的比例与人体蛋白质的接近程度。单一食物易出现某些必需氨基酸的缺乏,营养价值较低,如果将几种营养价值较低的蛋白质混合使用,则必需氨基酸可相互补充从而提高营养价值,此称蛋白质的互补作用。小儿偏食易导致体内某些必需氨基酸的不足,食物蛋白质使用效率低,影响小儿的生长发育。

生物化学简答题新整理

第一章蛋白质的结构与功能 1.为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 各种蛋白质的含氮量颇为接近,平均为16%,因此测定蛋白质的含氮量就可推算出蛋白质含量。常用的公式为:蛋白质含量(克%)=每克样品含氮克数 X 6.25 X 100。 2.何谓肽键和肽链及蛋白质的一级结构? 一个氨基酸的a-羧基和另一个氨基酸的a-氨基,进行脱水缩合反应,生成的酰胺键称为肽键。肽键具有双键性质。由许多氨基酸通过肽键相连而形成长链,称为肽链。肽链有二端,游离a-氨基的一端称为N-末端,游离a-羧基的一端称为C-末端。蛋白质一级结构是指多肽链中氨基酸排列顺序,它的主要化学键为肽键。 3.什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征? 蛋白质二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋、β-折叠、β-转角和无规卷曲四种。在α-螺旋结构中,多肽链主链围绕中心轴以右手螺旋方式旋转上升,每隔3.6个氨基酸残基上升一圈。氨基酸残基的侧链伸向螺旋外侧。每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羰基上的氧形成氢键,以维持α-螺旋稳定。在β-折叠结构中,多肽键的肽键平面折叠成锯齿状结构,侧链交错位于锯齿状结构的上下方。两条以上肽键或一条肽键内的若干肽段平行排列,通过链间羰基氧和亚氨基氢形成氢键,维持β-折叠构象稳定。在球状蛋白质分子中,肽链主链常出现1800回折,回折部分称为β-转角。β-转角通常有4个氨基酸残基组成,第二个残基常为脯氨酸。无规卷曲是指肽链中没有确定规律的结构。 4.举例说明蛋白质的四级结构。 蛋白质四级结构是指蛋白质分子中具有完整三级结构的各亚基在空间排布的相对位置。例如血红蛋白,它是由1个α亚基和1个β-亚基组成一个单体,二个单体呈对角排列,形成特定的空间位置关系。四个亚基间共有8个非共价键,维系其四级结构的稳定性。 5.举例说明蛋白质的变构效应。 当配体与蛋白质亚基结合,引起亚基构象变化,从而改变蛋白质的生物活性,此种现象称为变构效应。 变构效应也可发生于亚基之间,即当一个亚基构象的改变引起相邻的另一亚基的构象和功能的变化。 例如一个氧分子与Hb分子中一个亚基结合,导致其构象变化,进一步影响第二个亚基的构象变化,使之更易与氧分子结合,依次使四个亚基均发生构象改变而与氧分子结合,起到运输氧的作用。 6.常用的蛋白质分离纯化方法有哪几种?各自的作用原理是什么? 蛋白质分离纯化的方法主要有:盐析、透析、超离心、电泳、离子交换层析、分子筛层析等方法。盐析是应用中性盐加入蛋白质溶液,破坏蛋白质的水化膜,使蛋白质聚集而沉淀。透析方法是利用仅能通透小分子化合物的半透膜,使大分子蛋白质和小分子化合物分离,达到浓缩蛋白质或去除盐类小分子的目的。蛋白质为胶体颗粒,在离心力作用下,可沉降。由于蛋白质其密度与形态各不相同,可以应用超离心法将各种不同密度的蛋白质加以分离。蛋白质在一定的pH溶液中可带有电荷,成为带电颗粒,在电场中向相反的电极方向泳动。由于蛋白质的质量和电荷量不同,其在电场中的泳动速率也不同,从而将蛋白质分离成泳动速率快慢不等的条带。蛋白质是两性电解质,在一定的pH溶液中,可解离成带电荷的胶体颗粒,可与层析柱内离子交换树脂颗粒表面的相反电荷相吸引,然后用盐溶液洗脱,带电量小的蛋白质先被洗脱,随着盐浓度增加,带电量多的也被洗脱,分部收集洗脱蛋白质溶液,达到分离蛋白质的目的。分子筛是根据蛋白质颗粒大小而进行分离的一种方法。层析柱内填充着带有小孔的颗粒,小分子蛋白质进入颗粒,而大分子蛋白则不能,因此不同分子量蛋白质在层折柱内的滞留时间不同,流出层析柱的先后不同,可将蛋白质按分子量大小而分离。 种氨基酸具有共同或特异的理化性质 氨基酸具有两性解离的性质 含共轭双键的氨基酸具有紫外吸收性质最大吸收峰在 280 nm 附近 氨基酸与茚三酮反应生成蓝紫色化合物氨基酸与茚三酮反应生成蓝紫色化合物

生物化学简答题答案

生物化学简答题 1. 产生ATP的途径有哪些试举例说明。 答:产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。 氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反应,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有个ADP磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。 底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的过程。例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反应中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动ADP磷酸化生成ATP,这就是通过底物水平磷酸化产生了ATP。 2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。 (1)共性:用量少而催化效率高;仅能改变化学反应速度,不能改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的 活化能。 (2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。 3.什么是乙醛酸循环,有何生物学意义 乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组

织中尚未发现。乙醛酸循环反应分为五步(略)。总反应说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或者转变为葡萄糖。 乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。 4. 简述氨基酸代谢的途径。 答:氨基酸代谢的途径主要有三条,一是合成组织蛋白质进行补充和更新;二是经过脱羧后转变为胺类物质和转变为其他一些非蛋白含氮物,以及参与一碳单位代谢等;三是氨基酸脱氨基后生成相应的α-酮酸和氨。其中α-酮酸可以走合成代谢途径,转变为糖和脂肪,也可以走分解代谢途径,氧化为CO2和H2O,并产生能量;氨能进入尿素循环生成尿素排出体外或生成其他一些含氮物和Gln。 5. 简述尿素循环的反应场所、基本过程、原料、产物、能量情况和限速酶、生理意义。 答:尿素循环是在人体肝脏细胞的线粒体和胞液中进行的一条重要的代谢途径。在消耗ATP的情况下,在线粒体中利用CO2和游离NH3先缩合形成氨甲酰磷酸,再与鸟氨酸缩合形成瓜氨酸,瓜氨酸从线粒体中转移到胞液,与另一分子氨(贮存在天冬氨酸内)结合生成精氨酸,精氨酸再在精氨酸酶的催化下水解生成尿素和鸟氨酸,鸟氨酸又能再重复上述反应,组成一个循环途径。因此原料主要为氨(一分子游离氨和一分子结合氨)和二氧化碳;产物为尿素;每生成一分子尿素需要消耗4个ATP,限速酶为精氨酸代琥珀酸合成酶。尿素循环的生理意义是将有毒的氨转变为无毒的尿素,是机体对氨的一种解毒方式。

生物化学期末考试试题及答案-2

《生物化学》期末考试题A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生物化学简答题

什么是蛋白质的二级结构,他主要有哪几种? 蛋白质的二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。它主要有α-螺旋,β-折叠,β-转角和无规则卷曲四种。 简述α-螺旋结构特征:1、在α-螺旋结构中,多肽链主要围绕中心轴以右手螺旋方式螺旋上升,每隔 3.6个氨基酸残基上升一圈,螺距 为0.54nm2、氨基酸残基的侧链伸向螺旋外侧。3、每个氨基酸残基的亚氨基上的氢与第四个氨基酸残基羟基上的氧形成氢键,以维持α-螺旋稳定。 简述常用蛋白质分离、纯化方法:盐析、透析、超速离心、电泳、离子交换层析、分子筛层析。 简述谷胱甘肽的结构和功能:组成:谷胱甘肽由谷氨酸、半胱氨酸和甘氨酸构成的活性三肽,功能基团:半胱氨酸残基中的巯基。功能: 1、作为还原剂清除体内H2O2,使含巯基的酶或蛋白质免遭氧化,维持细胞膜的完整性。 2.具有嗜核特性,与亲电子的毒物或药物结合, 保护核酸和蛋白质免遭损害。 哪些原因影响蛋白质α-螺旋结构的形成或稳定?1、一条多肽链中,带有相同电荷的氨基酸彼此相邻,相互排斥,妨碍α-螺旋的形成。2、含有大侧链的氨基酸残基,彼此相邻,空间位阻较大也会影响α-螺旋的形成。3、脯氨酸为亚氨基酸,亚氨基酸形成肽键后,没有了 游离的氢,不能形成氢键,因此不能形成α-螺旋。 酶的化学修饰的特点是什么:①在化学修饰过程中,酶发生无活性和有活性两种形式的互变②该修饰时共价键的变化,最常见的是磷酸 化和去磷酸化修饰③常受激素的调控④是酶促反应⑤有放大效应 酶的变构调节特点是什么:细胞内一些中间代谢产物能与某些酶分子活性中心以外的某一部位以非共价键可逆结合,使酶构象发生改变 并影响其催化活性,进而调节代谢反应速率,这种现象为变构反应,其特点是①变构酶常由多个亚基构成②变构效应剂常结合在活性中 心以外的调节部位,引起酶空间构象的改变,从而改变酶的活性③变构效应剂与调节部位以非共价键结合④酶具有无活性和有活性两种 方式互变⑤不服从米曼氏方程,呈S型曲线 酶和一般催化剂比较有何异同:相同点:①反应前后无质和量的改变②不改变反应的平衡点③只催化热力学允许的反应④都是通过降低 反应活化能而增加反应速率的不同点①酶的催化效率高②酶对底物有高度特异性③酶活性的可调节性,酶的催化作用多受多种因素调节 ④酶是蛋白质,对反应条件要求严格,如温度、pH等 简述Km和Vmax的意义:Km的意义:①Km等于反应速率为最大速率一半时的底物浓度②一些酶的K2>>K3,Km可表示酶和底物 的亲和力③Km值是酶的特征性常数,它与酶结构,酶所催化的底物和反应环境如温度、pH、离子强度等有关,而与酶浓度无关Vmax 的意义:Vmax是酶被底物完全饱和时的反应速率 简述何谓酶原与酶原激活的意义:一些酶在细胞合成时,没有催化活性,需要经一定的加工剪切才有活性。这类无活性的酶的前体称为 酶原。在合适的条件下和特定的部位,无活性的酶原向有活性的酶转化的过程称为酶原的激活。酶原激活的意义:酶原形式的存在及酶 原的激活有重要的生理意义。消化道蛋白酶以酶原形式分泌,避免了胰腺细胞和细胞外间质的蛋白被蛋白酶水解而破坏,并保证酶在特 定环境及部位发挥其催化作用。正常情况下血管内凝血酶原不被激活,则无血液凝固发生,保证血流通畅运行。一旦血管破损,凝血酶 原激活成凝血酶,血液凝固发生催化纤维蛋白酶原变成纤维蛋白阻止大量失血,起保护机体作用 举例说明什么是同工酶,有何意义:同工酶使指催化相同的化学反应,但酶分子结构、理化性质及免疫学性质等不同的一组酶意义:①同工酶可存在于不同个体的不同组织中,也可存在于同一个体同一组织中和同一细胞中。它使不同的组织、器官和不同的亚细胞结构 具有不同的代谢特征。例如:LDH1和LDH5分别在心肌和肝脏高表达②还可以作为遗传标志,用于遗传分析研究。在个体发育的不同 阶段,同一组织也可因基因表达不同而有不同的同工酶谱,即在同一个体的不同发育阶段其同工酶亦有不同③同工酶的测定对于疾病的 诊断及预后判定有重要意义。如心肌梗死后3~6小时血中CK2活性升高,24小时酶活性到达顶峰,3天内恢复正常水平 金属离子作为辅助因子的作用有哪些:①作为酶活性中心的催化基因参加反应,传递电子②作为连接酶与底物的桥梁,便于酶和底物密 切接触③为稳定酶的空间构象④中和阴离子,降低反应的静电斥力 酶的必需基团有哪几种,各有什么作用:酶的必需基团包括活性中心内的必需基团和活性中心外的必需基团。活性中心内的必需基团有 结合基团和催化基团。结合基团结合底物和辅酶,使之与酶形成复合物。能识别底物分子特异结合,将其固定于酶的活性中心。催化基 团影响底物分子中某些化学键的稳定性,催化底物发生化学反应,并最终将其转化为产物。活性中心外的必需基团为维持酶活性的空间 构象所必需 何谓酶促反应动力学,影响酶促反应速率的因素有哪些:酶促反应动力学是研究酶促反应速率及影响酶促反应速率各因素的科学,影响 酶促反应速率的因素有酶浓度、底物浓度、pH、温度、抑制剂及激活剂等①在在其他因素不变的情况下,底物浓度的变化对反应速率影 响的作图时呈矩形双曲线的②底物足够时,酶浓度对反应速率的影响呈直线关系③温度对反应速率的影响具有双重性④pH通过改变酶和 底物分子解离状态影响反应速率⑤抑制剂可逆或不可逆的降低酶促反应速率⑥激活剂可加快酶促反应速率 举例说明竞争性抑制作用在临床上的应用:以磺胺类药物为例:①对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境中的叶酸, 而是在菌体内二氢叶酸合成酶的催化下,以对氨基苯甲酸为底物合成二氢叶酸。二氢叶酸是核苷酸合成过程中的辅酶之一四氢叶酸的前 体②磺胺类药物的化学结构与对氨基甲苯酸相似,是二氢叶酸合成酶的竞争性抑制剂,抑制二氢叶酸的合成。细菌则因核苷酸乃至核酸 的合成受阻而影响其生长繁殖。人类能直接利用食物中的叶酸,体内的核酸合成不受磺胺类药物的干扰。③根据竞争性抑制剂的特点, 服用磺胺类药物时必须保持血液中药物的高浓度,以发挥其有效竞争性抑菌作用许多属于抗代谢物的抗癌药物,如氨甲喋呤、5-氟尿嘧啶、6-巯基嘌呤等,几乎都是酶的竞争性抑制剂,它们分别抑制四氢叶酸、脱氧胸苷酸及嘌呤核苷酸的合成,以抑制肿瘤的生长 比较三种可逆性抑制作用的特点:①竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用大小与抑制剂和底 物的浓度以及酶对它们的亲和力有关。Km升高,Vmax不变②非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶活性中心外 的必需基团结合。不影响酶在结合抑制剂后与底物的结合。该抑制作用的强弱只与抑制剂的浓度有关。Km不变,Vmax下降③反竞争抑 制剂:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。Km和Vmax均下降 生物氧化的特点:1、在细胞内温和的环境中(提问,PH接近中性):在一系列酶的催化下逐步进行:能量逐步释放有利于ATP的形成;广泛的加氢脱水反应使物质能间接获得氧,并增加脱氢的机会;产生的水是由脱下的氢与氧结合产生的,CO2由有机酸脱羧产生。 氧化磷酸化的抑制剂有哪些,请举例说明:1、呼吸链抑制剂:鱼藤酮、粉蝶霉素A、异戊巴比妥、抗霉素A、二巯基丙醇、CO、CN-、N3及H2S。2、解偶联剂:二硝基苯酚。3、氧化磷酸化抑制剂:寡霉素。 NADH呼吸链的电子传递顺序;如果加入异戊巴比妥结果将如何?NAD H→FMN(Fe-S)→CoQ→Cyt b→Cyt c1→Cyt c→Cyt aa3→1/2O2,异戊巴比妥与FMN结合,从而阻断电子传递链,使电子传递终止,细胞呼吸停止。 体内生成ATP的两种方式的什么,以哪种为主?底物水平磷酸化和氧化磷酸化。前者指直接将代谢物分子中的能量转移给ADP(或者GDP)而生成ATP(或GTP)的过程。后者指代谢物脱下的2H在呼吸链电子传递过程中偶联ADP磷酸化而生成ATP的过程,这是产生ATP的主要方式。 简述胞液中的还原当量(H+)的两种穿梭途径:在胞液中生成的H+不能直接进入线粒体经呼吸链氧化,需借助穿梭作用才能进入线粒体 内。其中通过α-磷酸甘油穿梭,2H氧化时进入琥珀酸呼吸链,生成 1.5分子ATP;进过苹果酸-天冬氨酸的穿梭作用,则进入NADH呼吸链,生成 2.5分子ATP。 磷酸戊糖途径的生理意义:(1)为核酸的生物合成提供核糖(2)提供NADPH作为供氢体参与多种代谢反应:a.NADPH是体内许多合成代谢 的供氢体,如脂肪酸和胆固醇的合成.b. NADPH参与体内羟化反应,与生物合成和生物转化有关.c. 用于维持GSH的还原状态,保护-SH基蛋白和-SH酶免受氧化及的损坏:保护红细胞膜的完整性. TCA循环的要点: a乙酰CoA经TCA循环被氧化成2分子CO2;b 有4次脱氢反应,其中3次由NAD+接受,1次由FAD接受:c 有3个不可逆反应,分别由柠檬酸合酶、异柠檬酸脱氢酶、a-酮戊二酸脱氢酶催化;d 消耗2分子水(柠檬酸合酶及延胡索酸酶反应);e 发生1次底物水平磷酸化反应(由琥珀酰CoA合成酶催化) 糖异生的关键酶反应:丙酮酸羧化酶:丙酮酸+CO2+ATP→草酰乙酸+ADP+Pi 磷酸烯醇式丙酮酸羧激酶:草酰乙酸+GTP→磷酸烯醇式丙 酮酸+GDP 果糖双磷酸酶-1: 1,6-双磷酸果糖+H2O→6-磷酸果糖+Pi 葡萄糖-6-磷酸酶:6-磷酸葡萄糖+H2O→葡萄糖+Pi。 6-磷酸葡萄糖的代谢途径及其在糖代谢中的作用:1来源:a葡萄糖经糖酵解途径中的己糖激酶或葡萄糖激酶催化磷酸化反应生成;b.由糖原分解产生的1-磷酸葡萄糖异构生成;c非糖物质经糖异生途径由6-磷酸果糖异构生成. 2.去路:a经糖酵解生成乳酸;b.经有氧氧化彻底分解为 CO2和水;c.由变位酶催化生成1-磷酸葡萄糖,参与糖原合成;d.在6-磷酸葡萄糖脱氢酶的催化下进入磷酸戊糖途径;e异生为葡萄糖. 3.由此可见,6-磷酸葡萄糖是糖代谢多种途径的交叉点,是各代谢途径的共同中间产物.6-磷酸葡萄糖的代谢去向取决于各代谢途径中相关酶的活

相关文档