文档视界 最新最全的文档下载
当前位置:文档视界 › 一维j原子链晶格振动的色散关系

一维j原子链晶格振动的色散关系

一维j原子链晶格振动的色散关系

郑世燕;袁怡圃;常斗亮

【期刊名称】《大学物理》

【年(卷),期】2022(41)5

【摘要】本文以一维j原子链晶格振动为理论计算模型,在简谐近似和最近邻近似下获得其晶格振动方程组,并分别令j=1,2,3得到了一维单原子、双原子以及三原子链晶格振动的色散关系,获得了与现有教材及文献中已有的相同结论.结果表明,本文所获得的一维j原子链晶格振动方程组具有一般性.紧接着以该组晶格振动方程组为出发点,通过数值模拟法分析原子间距、恢复力系数及原子质量等晶体结构参数对一维四原子链晶格振动色散关系的影响,进而加深了对固体物理学晶格振动相关内容的理解,并可为工程上带通滤波器的研发提供一定的参考.

【总页数】6页(P13-18)

【作者】郑世燕;袁怡圃;常斗亮

【作者单位】泉州师范学院物理与信息工程学院

【正文语种】中文

【中图分类】O484

【相关文献】

1.具有在位势的一维双原子链晶格振动的色散关系

2.多近邻作用下具有在位势的一维双原子链晶格振动的色散关系

3.计及所有长程库仑作用一维双原子链晶格振动

的色散关系4.不同近邻作用下一维双原子链晶格振动色散关系5.具有在位势和力常数交错的一维双原子链晶格振动色散关系

因版权原因,仅展示原文概要,查看原文内容请购买

第3章作业(2016)

第三章 作业题 1、在一维双原子晶格振动的情况下,证明在布里渊区边界a q 2π ±=处,声学支格波中所有 轻原子m 静止,而光学支格波中所有重原子M 静止。画出这时原子振动的图像。

2、.具有简单立方布喇菲格子的晶体,原子间距为2×10-10m ,由于非线性相互作用,一个沿[100]方向传播,波矢大小为10 103.1?=q m -1的声子同另一个波矢大小相等当沿[110]方向传播的声子相互作用,合成为第3个声子,试求合成后的声子波矢。 3、试求质量为m ,原子间距为2/a ,力常数交错为1β,2β的一维原子链振动的色散关系。当1215ββ=时,求在0=q 和a q π =处的)(q ω,并粗略画出色散关系。

4 对NaCl晶体,测知其密度ρ=2.18g/cm3,正负离子的平衡距离α=2.81×10-10m,格波光学支的最高频率为3.6×1013(rad/s),试以一维双原子晶链模型计算:(1)NaCl的恢复力常数β;(2)长声学波的波速;(3)NaCl的弹性模量。已知Na和Cl的原子量分别为23和35.5,每摩尔的原子数为6.024×1023,且由弹性波理论得到波速υ=(弹性模量/介质密度)1/2=[E/ ρ]1/2.(第二问中声学波公式有误,答案正确)

5 已知NaCl 晶体平均每对离子的相互作用能为 n r r q T U //)(2βα+-= 其中马德隆常数75.1=α,9=n ,平衡离子间距m 1082.2100-?=r 。 (1)试求离子在平衡位置附近的振动频率。 (2)计算与该频率相当的电磁波的滤长,并与NaCl 红外吸收频率的测量值61μm 进行比较。

固体物理 第三章 晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件

即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为 3 c )2(V ,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶 晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 3. 晶体中声子数目是否守恒? 答:频率为 的格波的(平均) 声子数为 , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.

4. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多? 答:频率为 的格波的(平均) 声子数为 . 因为光学波的频率 比声学波的频率 高, ( )大于( ), 所以在 温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目. 5. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多? 的格波的因2cos qa m qa dq d g βωυ== 9. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样? 答:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为Na 的

固体物理总结晶格振动与晶体的热学性质完全版

第四章总结 第四章要求 1、掌握一维单原子链振动的格波解及色散关系的求解过程以及 格波解的物理意义; 2、掌握一维双原子链振动的色散关系的求解过程,清楚声学波 与光学波的定义以及它们的物理本质; 3、了解三维晶格的振动; 4、掌握离子晶体长光学波近似的宏观运动方程的建立过程及系 数的确定,清楚LST关系及离子晶体的光学性质; 5、了解局域振动的概念; 6、掌握晶格热容的量子理论;熟悉晶格振动模式密度; 7、掌握非谐效应的概念以及它在热膨胀和热传导中的作用。 一维晶格的振动和三维晶格的振动 晶格振动的简谐近似和简正坐标 状态及能量确定晶格振动谱的实验方法 离子晶体的长波近似 热容 晶格振动的爱因斯坦模型 热容量德拜模型 晶格状态方程 非简谐效应热膨胀

热传导 一 、晶格振动的状态及能量 1、一维单晶格的振动 一维单原子链 格波:晶格振动是晶体中诸原子(离子)集体地在作振动,由于晶体 内原子间有相互作用,存在相互联系,各个原子的振动间都存在着固定的位相关系,从而形成各种模式的波,即各晶格原子在平衡位臵附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。 相邻原子之间的相互作用 βδ δ -≈- =d dv F a d v d ⎪⎪⎭⎫ ⎝ ⎛=2 2δβ 表明存在于相邻原子之间的弹性恢复力是正比于相对位移的 第n 个原子的运动方程) 2(11n n n n m μμμβμ-+=-+∙ ∙ ) (naq t i nq Ae -=ωμ 色散关系: 把 ω 与q 之间的关系称为色散关系,也称为振动频谱或振动谱。 ) 2 1 ( sin 4]cos 1[22 2 aq m aq m ββω= -= 其中波数为 λπ /2=q ,ω是圆频率,λ是波长 (1) “格波”解的物理意义 一个格波解表示所有原子同时做频率为ω的振动,不同原子之间 有位相差。相邻原子之间的位相差为aq 。 (2)q 的取值范围【-(π/a)

固体物理 课后习题解答(黄昆版)第三章

黄昆固体物理习题解答 第三章晶格振动与晶体的热学性质 3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移 为,μ= a nj j sin(ωj_ j + σ j) ,σj为任意个相位因子,并已知在较高温 度下每个格波的平均能量为,具体计算每个原子的平方平均位移。解:任意一个原子的位移是所有格波引起的位移的叠加,即 μn= ∑ μnj=∑ a j sin(ωj t naq j+σj) j j (1) μ2 n = ? ? ? ∑ μ j nj ? ? ? ? ? ? ∑ μ j * nj ? ? ? = ∑ μ j 2 nj + ∑ μ μnj*nj′ j j′ 由于μ μnj?nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项 μ相比是一小量,可以忽略不计。所以2= ∑ μ 2 nj n j 由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2 j a j sin( t naq j j j)dt a =j (2) T 0 2 已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为 1 L T ? 1 ? d μ?2 ?ρw a2 T 1 = ∫ ∫dx0?ρnj?= j j∫0 2 ω+ σ= ρ 2 2 T??dt L a sin( t naq)dt w La nj T 0 0 0 ? 2 ?dt??2T 0 j j j j 4 j j 其中L 是原子链的长度,ρ 使质量密度,T0为周期。 1221 所以T nj = ρ w La j j=KT(3) 4 2 μKT 因此将此式代入(2)式有 nj 2 = ρ ωL 2 j

固体物理试题库汇总

固体物理试题库汇总 预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制 一、名词解释 1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。 2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。 3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 4.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。 5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 6.理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。 7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。 8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。 9.点阵常数(晶格常数)--惯用元胞棱边的长度。 10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。 11.配位数—晶体中和某一原子相邻的原子数。 12.致密度—晶胞内原子所占的体积和晶胞体积之比。 13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能) 14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。 15.费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。

16.色心--晶体内能够吸收可见光的点缺陷。 17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。 18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。 19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。 20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。 21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。 22.德拜频率ωD── Debye模型中g(ω)的最高频率。 23.爱因斯坦频率ωE──Einsten模型中g(ω)的最可几频率。 24.电子密度分布--温度T时,能量E附近单位能量间隔的电子数。 25.接触电势差--任意两种不同的物质A、B接触时产生电荷转移,并分别在A和B上产生电势V A、V B,这种电势称为接触电势,其差称为接触电势差。 25.BLoch电子费米气--把质量视为有效质量→ m,除碰撞外相互间无互作用,遵守费米分布的 Bloch电子的集合称为BLoch电子费米气。 26.惯用元胞(单胞):既能反映晶格周期性,又能反映其对称性的结构单元。 27.简谐近似:晶体中粒子相互作用势能泰勒展开式中只取到二阶项的近似。 28.杜隆-伯替定律:高温下固体比热为常数。 29.晶体的对称性:经过某种对称操作后晶体能自身重合的性质。 30.格波的态密度函数(振动模式密度):在ω附近单位频率间隔内的格波总数。 31.晶体结合能:原子在结合成晶体过程中所释放出来的能量。 32.倒格矢:

晶格振动与晶体的热学性质-习题

第三章 晶格振动与晶体的热学性质 1。什么是简谐近似? 解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。 2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义. 解:由一维单原子链的色散关系2 sin 2qa m β ω= ,可求得一维单原子链中振动格波的相速度为 2 2sin qa qa m a q v p β ω == (1) 2 cos qa m a dq d v g βω== . 由(1)式及结合上图3。1中可以看出,由于原子的不连续性,相速度不再是常数。但当0→q 时,m a v p β =为一常数。这是因为当波长很长时,一个波长范围含有若干个原

子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。 由(2)式及结合上图3。1中可以看出,格波的群速度也不等于相速度.但当0→q , m a v v p g β ==,体现出弹性波的特征,当q 处于第一布区边界上,即a q π = 时,0=g v , 而m a v p β π 2= ,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上 它是一种驻波。 3。周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样? 解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件.其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。 引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。 如果晶体是无限大,波矢q 的取值将趋于连续。 4。什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为 1 1)() /()(-= T k q w j B j e q n 对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化. 5。试比较格波的量子声子与黑体辐射的量子光子;“声子气体”与真实理想气体有何相同之处和不同之处? 解:格波的量子声子与黑体辐射的量子光子都是能量量子,都具有一定的能量和动量,但是声子在与其它粒子相互作用时,总能量守恒,但总动量却不一定守恒;而光子与其它粒子相互作用时,总能量和总动量却都是守恒的。“声子气体”与真实理想气体的相同之处是粒子之间都无相互作用,而不同之处是“声子气体"的粒子数目不守恒,但真实理想气体的粒子数目却是守恒的。 6.晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果? 解:我们知道晶体比热容的一般公式为 2 )/()/(20 )1()()()(-=∂∂=⎰T k T k B B V V B B m e d e T k k T E c ωωω ωωρω 由上式可以看出,在用量子理论求晶体比热容时,问题的关键在于如何求角频率的分布函数)(ωρ。但是对于具体的晶体来讲,)(ωρ的计算非常复杂。为此,在爱因斯坦模型中,

固体物理学3晶格振动

第三章 晶格振动与晶体热力学性质 3-1 一维晶格的振动 一、 一维单原子链(简单格子)的振动 1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为a ,原子质量为m 。 用xn 和xk 分别表示序号为n 和k 的原子在t 时刻偏离平衡位置的位移,用x nk = x n -x k 表示在t 时刻第n 个和第k 个原子的相对位移。 (2)振动方程和解 平衡时,第k 个原子与第n 个原子相距0r a k n =- )(r u 为两个原子间的互作用势能,平衡时为)(0r u , t 时刻为)()(0r r u r u δ+= )()(0r r u r u δ+=⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=3332 220)(d d 61)(d d 21d d )(000 r r u r r u r r u r u r r r δδδ ⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=33322200 00 d d 61d d 21d d )()(nk r nk r nk r x r u x r u x r u r u r u 第 n 个与第 k 个原子间的相互作用力: ⋅⋅⋅+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-=2 33220 0d d 21d d d d nk r nk r nk x r u x r u r u f 振动很微弱时,势能展开式中忽略掉(δr )二次方以上的高次项---简谐近似。 (忽略掉作用力中非线性项的近似---简谐近似。) 得: nk nk r nk x x r u f β-=⎪⎪⎭⎫ ⎝⎛-=022d d 0 22d d r r u ⎪⎪⎭⎫ ⎝⎛=β

第三章 晶格振动和晶体的热学性质

第三章晶格振动和晶体的热学性质 [引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0 C=的规律不符。1906年爱因斯坦提出固体比热容的量子理论, V 认为独立谐振子的能量是量子化的,可以得到T=0K时0 C=的规律的结论,但与低温 V 下3 C T的实验结果不符。1912年德拜提出固体的比热容理论,把固体当成连续介质, ~ V 晶格振动的格波看连续介质中的弹性波,得到低温下3 ~ C T的结果。随后,玻恩及玻 V 恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。 因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。这种近似称为绝热近似。晶格振动理论就是在这个近似的基础上建立的。 本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情

况,最后讨论晶体的热学性质。 [本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程 §3-1一维单原子链 考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0 ………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ?,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为: ()∑≠=N j i ij x U ?21……………………………………………(3-1-2) 式中ij ij i j ij u x x x x +=-=0 是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对 位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将?展开为: ………………(3-1-3) 于是有:() ∑∑∑≠≠≠+???? ????+???? ????+=j i ij ij j i ij ij j i ij u x u x x U Λ20 2200 412121???…………… (3-1-4) 图3-1-1 一维单原子晶格 ()()() Λ+??? ? ????+???? ????+=+=2 220021ij ij ij ij ij ij ij ij u x u x x u x x ?????

第三部分 晶格振动

第三部分 晶格振动 1. 讨论晶格振动时的物理框架是牛顿力学还是量子力学? 牛顿力学+量子力学修正,所以又可称为半经典理论。 2. 讨论晶格振动时采用了哪些近似条件? 采用了近邻近似和简谐近似。 3. 什幺是近邻近似和简谐近似? 近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用; 简谐近似:在原子的互作用势能展开式中,只取到二阶项。 4. 为什幺可使用玻恩-卡曼周期边界条件? 晶体的性质由晶体的绝大多数原子的状态所决定,体内原子数>>表面原子数, 在近邻近似下,所以可以以方便为原则选择边界条件,可使用玻恩-卡曼周期 边界条件,而且使用玻恩-卡曼周期边界条件给出了较多的信息,对后续的讨 论带来方便。若采取零边界条件,原则上讲也是允许的,但不能给出有用的信 息。 5. 一维单原子链色散关系是怎样的?相速度v p 等于什幺? ω=421 2βm qa ⎛⎝ ⎫⎭⎪sin v p =ωq 6. 一维格波波矢q 的的取值范围是什幺?q 在第一B 、Z 内取值数是多少? q 的取值范围:为保证唯一性,g 在第一B.Z 内取值,即- ππa q a 〈≤ q 在第一B.Z 内取值数为N (初基元胞数)。 7. 一维格波波矢q 有哪些特点? q 不连续(准连续);均匀分布;密度 Na L 22ππ= 8. 一维双原子链的色散关系是怎样的? ωββββββ212 1222121212=+m m qa ±++(cos ) 9. 在三维晶体中,格波独立的q → 点数,声学波支数,光学波支数,格波总支数分 别等于多少? 独立的q → 点数=晶体的初基元胞数N ; 格波个数 = 晶体原子振动自由度数,3NS 个; 格波支数=3S (初基元胞内原子振动的自由度数)其中3支声学波,3(s-1) 支光学波。 10. 定性地讲,声学波和光学波分别描述了晶体原子的什幺振动状态? 定性地讲,声学波描述了元胞质心的运动, 光学波描述了元胞内原子的相对运动。 描述元胞内原子不同的运动状态是二支格波最重要的区别。 11. 格波模式密度g(ω)的定义是什幺,g(ω)是如何表示的? 模式密度g(ω)的定义:单位频率间隔的格波数。

对一维双原子链晶格振动的讨论

对一维双原子链晶格振动的讨论 祖春燕 06科教一班 指导教师:陈敬艳 摘要:在固体物理中,一维原子链晶格振动是晶格振动理论的基础。本文研究了一维双原子链晶格振动的色散关系,讨论了一维双原子链晶格振动的特点,并总结了几种不同情况的一维双原子链振动的色散关系。 关键词:晶格振动,色散关系,光学模,声学模 一维双原子链晶格的振动是研究晶格振动理论的基础,它包含了晶格振动的主要性质,是固体物理教科书中不可缺少的内容。但在固体物理教科书中对该现象的理论分析及总结并不完备,本文试图从一维双原子链晶格振动出发总结出各种讨论的情况,以弥补教科书中的不足。为了简化问题,我们选择自由一维双原子链,并且考虑最近邻原子的相互作用。 1.一维双原子链的色散关系 考虑一般的一维双原子链,即在一条直线上相间地排列着质量为m 、M 的原子(m

固体物理CH4-习题解答

第四章习题试解 1. 一维单原子晶格,在简谐近似下,考虑每一原子与其余所有原子都有作用,求格波的色散关 系. 解:设原子质量为m ,周期为a ,第n 个原子偏离平衡位置的位移为μn ,第n-k 与n+k 个原子偏离平衡位置的位移分别为μn-k ,μn+k ,其与第n 个原子间的弹性恢复力系数为β-k ,βk . n-k n-1 n n+1 n+k 显然:k k ββ-= 第n 个原子受n-k 和n+k 原子的合力为: 第n 个原子受所有原子的合力为: 振动的运动学方程可写为: 代入振动的格波形式的解 ()i qna t nq Ae ωμ-= 有2()[()][()]()()(2)i qna t i q n k a t i q n k a t i qna t k k m i Ae Ae Ae Ae ωωωωωβ-+----=+-∑ 色散关系即为 2.聚乙烯链…—CH =CH —CH =CH…的伸张振动,可以采用一维双原子链模型来描述,原胞两原子质量均为M,但每个原子与左右邻原子的力常熟分别为β1和β2,原子链的周期为a .证明振动频率为 证:如图,任意两个A 原子〔或B 原子〕之间的距离为a,设双键距离b 2,单键距离b 1 …—CH =CH —CH =CH —CH =CH —CH =CH —CH =CH … 2n-2 2n-1 2n 2n+1 2n+2 AB A b2 b1 只考虑近邻作用的A,B 两原子的运动方程为 A :222121221()()n n n n n M μβμμβμμ+-=--- B : 21122212212()()n n n n n M μβμμβμμ++++=--- 将格波解()2i qna t n Ae ωμ-= 和2 [()]21i q na b t n Be ωμ+-+= 代入以上运动方程,有 化简得:1221212()()0iqb iqb M A e e B ββωββ-+--+= 同理:1221212()()0iqb iqb e e A M B ββββω--+++-= 化为以A 、B 为未知数的线性齐次方程组,它的有解条件是 从而得到 3.求一维单原子链的振动模式密度g<ω>,若格波的色散可以忽略,其g<ω>具有什么形式,比较 这两者的g<ω>曲线. 解:一维情况q 空间的密度约化为L/2π,L=Na 为单原子链的长度,其中a 为原子间距,N 为原子数目.则在dq 间隔内的振动模式数目为2L dq π .dω频率间隔内的振动模式数目为 等式右边的因子2来源于ω〔q 〕具有中心反演对称,q ﹥0和q ﹤0区间是完全等价的.从而有 对于一维单原子链,只计入最近邻原子之间的相互作用时,有 其中ωm 为最大频率.代入g <ω>得

固体物理温习题目解答

一、名词说明: 1、晶体:是由离子、原子或分子(统称为粒子)有规律地排列而成的,具有周期性和对称性。 2、非晶体:有序度仅限于几个原子,不具有长程有序性和对称性。 3、点阵:格点的整体称为点阵。 4、晶格:晶体中微粒重心,做周期性的排列所组成的骨架,称为晶格 5、格点:微粒重心所处的位置称为晶格的格点(或结点)。 6、晶体的周期性:晶体中微粒的排列依照必然的方式不断的做周期性重复,如此的性质成 为晶体结构的周期性。 7、晶体的对称性:晶体通过某些对称操作后,仍能恢恢复状的特性。(有轴对称、面对称、 体心对称即点对称)。 8、密勒指数:某一晶面别离在三个晶轴上的截距的倒数的互质整数比称为此晶面的Miller 指数 9、倒格子:设一晶格的基矢为→ 1a ,→ 2a ,→ 3a ,假设另一格子的基矢为→1b ,→2b ,→3b ,与→ 1a , → 2a ,→ 3a 存在以下关系:⎩⎨ ⎧≠===•j i j i a b ij j i 0 22ππδ (i,j=1,2,3)。那么称以→ 1b , →2b ,→3b 为基矢的格子是以→1a ,→2a ,→ 3a 为基矢的格子的倒格子。(相对的可称以→ 1a ,→ 2a ,→ 3a 为基矢的格子是以→1b ,→2b ,→ 3b 为基矢的格子的正格子)。 10、配位数:能够用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数。 11、致密度:晶胞内原子所占体积与晶胞整体积之比称为点阵内原子的致密度。 12、固体物理学元胞:体积最小的晶胞,格点只在顶角上,内部和面上都不包括其他格点,整个元胞只包括一个格点。是反映晶体周期性的最小结构单元。 13、结晶学元胞:格点不仅在顶角上,同时能够在体心或面心上;晶胞的棱也称为晶轴,其 边长称为晶格常数、点阵常数或晶胞常数;体积通常较固体物理学元胞大。反映晶体周期性和对称性的最小结构单元。 14、布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合,而且每一个格点周围的情形都一样。(Bravais 格子) 15、复式格子:晶体由两种或两种以上的原子组成,而且每种原子都各自组成一种相同的布

《固体物理学》概念和习题答案

固体物理学概念和习题固体物理基本概念和思考题: 1.给出原胞的定义.. 答:最小平行单元.. 2.给出维格纳-赛茨原胞的定义.. 答:以一个格点为原点;作原点与其它格点连接的中垂面或中垂线;由这些中垂面或中垂线所围成的最小体积或面积即是维格纳-赛茨原胞.. 3.二维布喇菲点阵类型和三维布喇菲点阵类型.. 4. 请描述七大晶系的基本对称性.. 5. 请给出密勒指数的定义.. 6. 典型的晶体结构简单或复式格子;原胞;基矢;基元坐标.. 7. 给出三维、二维晶格倒易点阵的定义.. 8. 请给出晶体衍射的布喇格定律.. 9. 给出布里渊区的定义.. 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子.. 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式.. 13. 写出分子晶体的雷纳德-琼斯势表达式;并简述各项的来源.. 14. 请写出晶格振动的波恩-卡曼边界条件.. 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点..晶体含N个原胞;每个原胞含p个原子;问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式

16. 给出声子的定义.. 17. 请描述金属、绝缘体热容随温度的变化特点.. 18. 在晶体热容的计算中;爱因斯坦和德拜分别做了哪些基本假设.. 19. 简述晶体热膨胀的原因.. 20. 请描述晶体中声子碰撞的正规过程和倒逆过程.. 21. 分别写出晶体中声子和电子分别服从哪种统计分布给出具体表达式 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义.. 23. 写出金属的电导率公式.. 24. 给出魏德曼-夫兰兹定律.. 25. 简述能隙的起因.. 26. 请简述晶体周期势场中描述电子运动的布洛赫定律.. 27. 请给出在一级近似下;布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系.. 28. 给出空穴概念.. 29. 请写出描述晶体中电子和空穴运动的朗之万Langevin方程.. 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势.. 31. 解释直接能隙和间接能隙晶体.. 32. 请说明本征半导体与掺杂半导体的区别.. 33. 请解释晶体中电子的有效质量的物理意义.. 34. 给出半导体的电导率.. 35. 说明半导体的霍尔效应与那些量有关..

晶格振动部分习题参考解答

晶格振动部分习题参考解答 9.设有一双子链最近邻原子间的力常数为和10,两种原子质量相等,且最近邻距离为 a/2,求在q=0,q= a π 处的(q).并定性画出色散曲线。 m m 10 m m ____________________________________________________ →← →← 2 2 a a 解:已知 21 )cos 2(12122212 12 qa m m A ββββββω++- += (1) 21 )cos 2(12122212 12 0a m m ββββββω++- += (2) 由题意 2=10 1=10 代入(1)式 得 21 )cos 20100(111222qa m m A ββββω++-= =21 )cos 20101(11qa m m +-ββ = []2 1)cos 20101(11qa m +-β 当q=0时 0)1111(0 2=-==m q A β ω 当q=a π时 m m a q A β β ωπ2)911(2 = -= = 把 2=10 1=10 代入(2)式 得 []2 1)cos 20101(1120qa m ++β ω= 当q=0时 m q βω220 2 == 时a q π±= m a q β ωπ 202 0= = 10.设三维晶格的光学格波在q=0的长波极限附近有i ω(q)= 0-Aq 2 (A 0),求证光学波 频率分布函数(格波密度函数)为:g()= ∑ -=) 1(31 s i 24πV 2 321 )(0A i ωω- i ω≤0 g()=0 i ω>0 证:由格波密度函数的定义已知,对一支格波在d i ω区间格波数为

固体物理期末复习题目

一、名词解释: 1、晶体 ; 2、非晶体; 3、点阵; 4、晶格; 5、格点; 6、晶体的周期性; 7、晶体的对称性 8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量 二、计算证明题 1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π= 此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么? 2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。(碳原子的重量为2310*99.1-g ) 3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。 4、晶体点阵中的一个平面.hkl (a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。 (b )证明正格子原胞体积与倒格子原胞体积互为倒数 5. 证明体心立方格子和面心立方格子互为正、倒格子。 6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a 的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。 7、氪原子组成惰性晶体为体心立方结构,其总势能可写为 ()⎥⎥⎦ ⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。 8. 设两原子间的互作用能可表示为()n m r r r u βα +-=式中,第一项为引力能;第二项为排 斥能;βα,均为正常数。证明,要使这两原子系统处于平衡状态,必须n>m 。 9. 已知,由N 个惰性气体原子结合成的具有面心立方结构的晶体,其互作用能可表示为 ()()()⎥⎥⎦⎤⎢⎢⎣ ⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=61245.1413.122R R N R U σσε 式中,σε,为参数;R 为原子最近邻间距。试求:(1)平衡时的晶体体积 ;(2)体积弹性模量;(3)抗张强度。 10. 一维单原子链晶格振动的色散关系为2 sin 2 qa m βω=。 其中:β为力常数,q 为波矢,a 为晶格常数。

固体物理考题汇总 (无答案)

第一章晶体结构 一、填空 1、晶面有规则,对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。由晶粒组成的固体,称为。 2、化合物半导体材料GaAs晶体属于闪锌矿类结构,晶格常数为a,其配位数为。一个惯用元胞(结晶学元胞)内的原子数,其布喇菲格子是。其初基原胞(固体物理学原胞)包含原子数,体积为。初基元胞的基矢为,,。 3、半导体材料Si具有金刚石型晶体结构,晶格常数为a,其配位数为。一个惯用元胞(结晶学元胞)内的原子数。属于布喇菲格子。写出其初基元胞(固体物理学元胞)的基矢________,_______,_______。晶格振动色散关系中支声学波,支光学波,其总的格波数。 4、简立方结构如果晶格常数为a,其倒格子元胞基矢为是_______,______,_________ 。在倒格子空间中是结构,第一布里渊区的形状为______,体积为______ 。 5、某元素晶体的结构为体心立方布喇菲格子,其格点面密度最大的晶面的密勒指数____ ,并求出该晶面系相邻晶面的面间距

________。(设其晶胞参数为a )。 6、根据三个基矢的大小和夹角的不同,十四种布喇菲格子可归属于_____ 晶系,其中当 90,=====γβαc b a 时称为 _____类晶系,该晶系的布喇菲格子有 ______ 。 7、NaCl 晶体是由两个 _ 格子沿体对角线滑移1/4长度套构而成;设惯用原胞的体积为a 3,一个惯用元胞内的原子数 ;其配位数为 ,最近邻距离 ;初基原胞体积为 ,第一布里渊区体积为______;晶体中有 支声学波, 支光学波。 8、对晶格常数为a 的SC ,与倒格矢 242K i j k a a a πππ = +- 正交的晶面族的晶面指数为____,其面间距为 __ 。 9、半导体材料Si 具有金刚石型晶体结构,晶格常数为a ,一个惯用元胞内的原子数 ,一个固体物理学原胞内的原子数 ;固体物理学原胞的体积 ,倒格子原胞的体积 __ ,第一布里渊区的体积为 ;晶格振动色散关系中 支声学波,______ 支光学波。 10、已知有某晶体的固体物理学原胞基矢为1a ,2a ,3a ,若某晶面在这三个固体物理学原胞基矢上的截距分别为 -3, 2,-1,则该晶面指数为 ,晶向12332R a a a =-+的晶向指数为 。 11、某元素晶体的结构为体心立方布拉伐格子,其格点面密度最大的晶面的密勒指数为 __ ,该晶面系相邻晶面的面间距为______。(设其晶胞参数为a )。

固体物理复习提纲

固体物理复习提纲 1.请给出1维单原子链晶格振动的运动方程,并由此推导出频率-波矢关系。 书p58页4.1.3推导过程见书p58页 2.请分别写出1维单原子链和1维双原子链的晶格振动的色散关系表达式。请讨 论双原子链振动的声频支和光频支的频率范围。 一维单p58页4.1.7和一维双61页4.2.9 声频支4.2.10光频支4.2.11 3.请论述声频波和光频波原胞中两个原子的位移特征。 声频波情况原胞中两个原子是沿同方向振动。在长波极限情况,声频波中原胞中两个原子是一同运动,振幅,位相都没有差别。在短波极限时声频波中较轻的原子静止不动,只有重原子在做振动,而且相邻原胞重原子的运动方向是相反的。 长波极限时光频波中原胞中两个原子运动始终保持质心位置不变。短波极限时光频波中的原胞中重原子是静止不动,只有轻原子振动,相邻原胞轻原子的运动方向相反。 4.将晶格振动看待成为一个简谐振子,求解得到的能量本征值如何表达?振动的 振动方程(本征函数)如何表达?在某一温度下,声子的平均数目如何表示?能量本征值书p66页4.3.17,本征函数4.3.18,平均数目4.3.20 5.何谓声频波?何谓光频波?在3维晶体中,有几支声频波?光频波有几支?格 波的总模式数是多少? 格波频率较低的称为声频支格波,格波频率较高的称为光频支格波。在3维晶体中有3支声频波,3r-3支光频波,r为原胞内原子个数。格波总模式数等于晶体原子自由度总数目3rN 6.经典物理中,对晶体的比热Cv研究的结果用公式表示为什么?

它表明了什么含 义?考虑到晶格振动的影响,使用爱因斯坦模型修正后的公式是什么?分析爱因斯坦模型在高温区和低温区的表达形式?这一结果与实验结果有何区别?区别原因何在? 比热公式书p76页4.7.7 表明含义:高温晶格比热是一常量,与温度无关,也与物质元素无关。问老师! 爱因斯坦修正公式书77页4.7.13 7.在利用德拜模型研究晶体的比热时,晶格内能的表达式是什么?比热用什么来 表达?请讨论在高温时和低温时的比热的表达形式。 内能78页4.7.23,比热4.7.24 8.固体物理中,晶体的物态方程如何表达?由此推导出的膨胀系数如何表达?考 虑到电子对比热的贡献,膨胀系数如何表达? 书p81,晶体的物态方程4·8·8,膨胀系数:4.8.13 9.只考虑晶格热传导行为,请写出热导率的表达式,对其中的各个符号分别说明。 对高温下和低温下的热导率与温度的依赖关系进行论述。 热导率书p83,4.9.6。c是材料单位体积的比热,v是声子气的方均根速率,l为材料长度。依赖关系p84 10.肖特基缺陷是怎么产生的?弗兰克尔缺陷又是怎么产生的?它们在热平衡 时的缺陷数目如何表达? 肖特基缺陷的形成原因:这种空位是晶体内部格点上的原子或离子通过接力运动移到表面格点位置后在晶体内所留下的空位弗兰克尔缺陷形成的原因:如果晶体内部格点上的原子或离子移到晶格间隙位置形成间隙原子,同时在原来格点位置上留下空位,于是晶体中将存在等浓度的晶格空位和填隙原子。 它们在热平衡时缺陷数目表达形式为:书p88~91

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ⎧ =+⎪⎪ ⎪=+⎨⎪ ⎪=+⎪⎩ a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =⎧⎪ =⎨⎪=⎩ a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2 -,∞。所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6π;体心立方:8 ;面心立方:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π⎛⎫∴== ⎪⎝⎭ 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 4223m V π⎫∴=⨯=⎪⎪⎝⎭ 328 m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭

相关文档