文档视界 最新最全的文档下载
当前位置:文档视界 › 一维单原子链晶格振动解析步骤

一维单原子链晶格振动解析步骤

一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体

中原子的振动行为。在这个模型中,原子由质量为m的核和劲度系数

为K的弹性相互作用构成。通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。

下面将介绍一维单原子链晶格振动解析步骤:

第一步:建立模型

首先,我们要建立一维单原子链的模型。假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。

第二步:求解运动方程

接下来,我们需要求解原子在这个一维单原子链中的运动方程。

假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:

m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0))

上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) -

2*Un(t) + Un(t-0))表示受到的弹性相互作用力。

第三步:假设解的形式

由于原子在一维单原子链中的振动属于谐振动问题,我们可以假

设原子的位移满足解的形式为:

Un(t) = An*exp(i*(k*n*a - ω*t))

其中,An是振幅,k是波数,ω是角频率,n是原子的编号。将

这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。

第四步:得到声子色散关系

将解的形式代入运动方程,我们可以得到关于角频率ω和波数k

的关系式。具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|

声子色散关系描述了一维单原子链中的声子能量随波数变化的规律。从这个关系式可以看出,一维单原子链中的声子有声学支和光学支两种振动模式,它们的能量随波数的变化方式不同。

第五步:讨论声子模式

最后,我们可以讨论一维单原子链中的声子模式。根据声子色散关系,可以得知对于较小的波数k,声子的能量与波数成线性关系,称为声学支;而对于较大的波数k,声子的能量与波数成正弦关系,称为光学支。声学支和光学支是一维单原子链中的两种不同的声子模式,对应着不同的振动方式。这些声子模式对固体中的热传导和热容等性质有着重要的影响,因此对其进行研究具有重要的意义。

综上所述,通过以上步骤可以对一维单原子链的晶格振动进行解析。这个模型简单却能够揭示固体中声子模式的基本特性,对于理解材料的热学性质具有重要的意义。当然,实际的固体晶格振动是三维的,并且还包括了相互作用效应等复杂因素,因此对于更复杂的晶体结构,振动的解析也会更加复杂。

一维单原子链晶格振动解析步骤

一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体 中原子的振动行为。在这个模型中,原子由质量为m的核和劲度系数 为K的弹性相互作用构成。通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。 下面将介绍一维单原子链晶格振动解析步骤: 第一步:建立模型 首先,我们要建立一维单原子链的模型。假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。 第二步:求解运动方程 接下来,我们需要求解原子在这个一维单原子链中的运动方程。 假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:

m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0)) 上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) - 2*Un(t) + Un(t-0))表示受到的弹性相互作用力。 第三步:假设解的形式 由于原子在一维单原子链中的振动属于谐振动问题,我们可以假 设原子的位移满足解的形式为: Un(t) = An*exp(i*(k*n*a - ω*t)) 其中,An是振幅,k是波数,ω是角频率,n是原子的编号。将 这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。 第四步:得到声子色散关系 将解的形式代入运动方程,我们可以得到关于角频率ω和波数k 的关系式。具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|

固体物理复习提纲3

固体物理复习提纲(Part 3)- 晶格振动和声子论部分(第25讲) 1. 写出一维单原子链的简正模的色散曲线方程,并由周期边界条件求出格波波矢q r 的取值。 答:一维单原子链的简正模的色散曲线方程为: ()i n , ()() 2q a q q q ωωω??=-= ??? 由周期边界条件求出格波波矢q r 的取值: ()s in g le s in g le ()()221, is a n in te g e r. 22th e n u m b e r o f d iffe re n t in z o n e ()/i t iq n a i t iq n N a n n N iq N a l u t A e e u t A e e l e q l l N a L q N a q q N a a a ωωππππ π π--++=?==?=?= =?= - = ?= 2. 原胞总数为N 的一维单原子链,一共有多少个不同的简正模?写出在某一个简正模 (,)i i q q ω上的平均声子数公式和整个晶格的总能量平均值计算公式? 答:原胞总数为N 的一维单原子链,一共有N 个不同的简正模。(注:晶格振动的独立模式数=晶体的自由度数,原胞总数为N 的一维双原子链,一共有2N 个不同的简正模。) 在某一个简正模(,)i i q q ω上的平均声子数q n 公式:1 /)1 q q n T ω= -h B exp (k 整个晶格的总能量平均值计算公式:1 11/)12N i i i q la ttice q q q E T ωω=?? =+??-???? ∑ h h q B e x p (k 3. 什么是格波的声学支和光学支? 答:一维双原子链振动中,振动频率为:

固体物理 第三章 晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件

即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为 3 c )2(V ,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶 晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 3. 晶体中声子数目是否守恒? 答:频率为 的格波的(平均) 声子数为 , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量.

4. 温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多? 答:频率为 的格波的(平均) 声子数为 . 因为光学波的频率 比声学波的频率 高, ( )大于( ), 所以在 温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目. 5. 对同一个振动模式, 温度高时的声子数目多呢, 还是温度低时的声子数目多? 的格波的因2cos qa m qa dq d g βωυ== 9. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样? 答:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为Na 的

固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b = 2 a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2 和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)()(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id ===g g g ……… (1) 由于a 3=–(a 1+ a 2) 313()o o a n a a n =-+g g 把(1)式的关系代入,即得 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理总结晶格振动与晶体的热学性质完全版

第四章总结 第四章要求 1、掌握一维单原子链振动的格波解及色散关系的求解过程以及 格波解的物理意义; 2、掌握一维双原子链振动的色散关系的求解过程,清楚声学波 与光学波的定义以及它们的物理本质; 3、了解三维晶格的振动; 4、掌握离子晶体长光学波近似的宏观运动方程的建立过程及系 数的确定,清楚LST关系及离子晶体的光学性质; 5、了解局域振动的概念; 6、掌握晶格热容的量子理论;熟悉晶格振动模式密度; 7、掌握非谐效应的概念以及它在热膨胀和热传导中的作用。 一维晶格的振动和三维晶格的振动 晶格振动的简谐近似和简正坐标 状态及能量确定晶格振动谱的实验方法 离子晶体的长波近似 热容 晶格振动的爱因斯坦模型 热容量德拜模型 晶格状态方程 非简谐效应热膨胀

热传导 一 、晶格振动的状态及能量 1、一维单晶格的振动 一维单原子链 格波:晶格振动是晶体中诸原子(离子)集体地在作振动,由于晶体 内原子间有相互作用,存在相互联系,各个原子的振动间都存在着固定的位相关系,从而形成各种模式的波,即各晶格原子在平衡位臵附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。 相邻原子之间的相互作用 βδ δ -≈- =d dv F a d v d ⎪⎪⎭⎫ ⎝ ⎛=2 2δβ 表明存在于相邻原子之间的弹性恢复力是正比于相对位移的 第n 个原子的运动方程) 2(11n n n n m μμμβμ-+=-+∙ ∙ ) (naq t i nq Ae -=ωμ 色散关系: 把 ω 与q 之间的关系称为色散关系,也称为振动频谱或振动谱。 ) 2 1 ( sin 4]cos 1[22 2 aq m aq m ββω= -= 其中波数为 λπ /2=q ,ω是圆频率,λ是波长 (1) “格波”解的物理意义 一个格波解表示所有原子同时做频率为ω的振动,不同原子之间 有位相差。相邻原子之间的位相差为aq 。 (2)q 的取值范围【-(π/a)

固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b = 2 a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

固体物理 课后习题解答(黄昆版)第三章

黄昆固体物理习题解答 第三章晶格振动与晶体的热学性质 3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移 为,μ= a nj j sin(ωj_ j + σ j) ,σj为任意个相位因子,并已知在较高温 度下每个格波的平均能量为,具体计算每个原子的平方平均位移。解:任意一个原子的位移是所有格波引起的位移的叠加,即 μn= ∑ μnj=∑ a j sin(ωj t naq j+σj) j j (1) μ2 n = ? ? ? ∑ μ j nj ? ? ? ? ? ? ∑ μ j * nj ? ? ? = ∑ μ j 2 nj + ∑ μ μnj*nj′ j j′ 由于μ μnj?nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项 μ相比是一小量,可以忽略不计。所以2= ∑ μ 2 nj n j 由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2 j a j sin( t naq j j j)dt a =j (2) T 0 2 已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为 1 L T ? 1 ? d μ?2 ?ρw a2 T 1 = ∫ ∫dx0?ρnj?= j j∫0 2 ω+ σ= ρ 2 2 T??dt L a sin( t naq)dt w La nj T 0 0 0 ? 2 ?dt??2T 0 j j j j 4 j j 其中L 是原子链的长度,ρ 使质量密度,T0为周期。 1221 所以T nj = ρ w La j j=KT(3) 4 2 μKT 因此将此式代入(2)式有 nj 2 = ρ ωL 2 j

晶格振动与晶体的热学性质-习题

第三章 晶格振动与晶体的热学性质 1。什么是简谐近似? 解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。 2.试定性给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义. 解:由一维单原子链的色散关系2 sin 2qa m β ω= ,可求得一维单原子链中振动格波的相速度为 2 2sin qa qa m a q v p β ω == (1) 2 cos qa m a dq d v g βω== . 由(1)式及结合上图3。1中可以看出,由于原子的不连续性,相速度不再是常数。但当0→q 时,m a v p β =为一常数。这是因为当波长很长时,一个波长范围含有若干个原

子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。 由(2)式及结合上图3。1中可以看出,格波的群速度也不等于相速度.但当0→q , m a v v p g β ==,体现出弹性波的特征,当q 处于第一布区边界上,即a q π = 时,0=g v , 而m a v p β π 2= ,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上 它是一种驻波。 3。周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样? 解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件.其具体含义是设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第j tN +个原子的运动情况一样,其中t =1,2,3…。 引入这个条件后,导致描写晶格振动状态的波矢q 只能取一些分立的不同值。 如果晶体是无限大,波矢q 的取值将趋于连续。 4。什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为 1 1)() /()(-= T k q w j B j e q n 对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化. 5。试比较格波的量子声子与黑体辐射的量子光子;“声子气体”与真实理想气体有何相同之处和不同之处? 解:格波的量子声子与黑体辐射的量子光子都是能量量子,都具有一定的能量和动量,但是声子在与其它粒子相互作用时,总能量守恒,但总动量却不一定守恒;而光子与其它粒子相互作用时,总能量和总动量却都是守恒的。“声子气体”与真实理想气体的相同之处是粒子之间都无相互作用,而不同之处是“声子气体"的粒子数目不守恒,但真实理想气体的粒子数目却是守恒的。 6.晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果? 解:我们知道晶体比热容的一般公式为 2 )/()/(20 )1()()()(-=∂∂=⎰T k T k B B V V B B m e d e T k k T E c ωωω ωωρω 由上式可以看出,在用量子理论求晶体比热容时,问题的关键在于如何求角频率的分布函数)(ωρ。但是对于具体的晶体来讲,)(ωρ的计算非常复杂。为此,在爱因斯坦模型中,

固体物理

课程内容结构 ?绪言 ?第一章晶体结构 ?第二章固体的结合 ?第三章晶格振动与晶体的热学性质 ?第四章晶体中的缺陷 ?第五章金属电子论 ?第六章能带理论 固体物理 ?固体物理: 研究固态物质的宏观物理性质、内部微观结构、内部各种粒子的相互作用,运动规律,以及宏观性质与微观运动间的联系的科学。 第一章晶体结构 二、布拉伐晶格(Bravais lattice) 基元:放置在格点上的原子或原子团称为基元是一个格点所代表的物理实体。 由基元代表点在空间中的周期性排列所形成的晶格称为布拉伐晶格,布拉伐晶格是一种数学上的抽象,是格点在空间中周期性的规则排列,其每个格点是几何等价的。 简单晶格与复式晶格图示 ?3 简单晶格必须由同种原子组成; ?反之,由同种原子组成的晶格却不一定是简单晶格,如:金刚石、Mg、Zn等晶格都是复式晶格, 如: 相同原子但几何位置不等价的原子构成的晶体金刚石。 ?4由基元代表点在空间中的周期性排列所形成的晶格称为Bravais晶格. ?5 只有将基元以同样方式放置在每个格点上才能得到晶体结构。即:晶体结构是基元与Bravais晶格相结合的结果: 基元+Bravais晶格=晶体结构 ?6 基元可以含有一个或多个原子,但所含原子必定不等价,否则还可以进一步划分为更小的单元,这是构成基元的必要条件。 ?7 Bravais晶格反映晶体结构的几何性质,最主要特点是周期性,每个格点在几何上完全等价的。 三、原胞,晶胞 三维晶格的原胞与基矢 晶胞 定义:晶体学通常选取较大的周期单元来研究晶格结构,为同时反映周期性与对称性,称为晶胞。

立方格子的特征 原胞与晶胞的区别与联系 例:以二维有心长方晶格为例,画出固体物理学原胞、晶胞,并说出它们各自的特点 四晶面与密勒指数 1、晶面的概念 布拉伐格子的格点还可看成分列在平行等距的平面系上,格点在每个平面上的分布是相同的,这种平面称为晶面。整个晶格可以看作无数互相平行等距分布的全同的晶面构成,而晶格的所有格点都处于这族晶面上。 立方结构的晶格的晶向与晶面问题 ?立方结构的晶格(如面心立方,体心立方等)均以立方单胞(即晶胞)为单位来研究晶向与晶面的问题。 晶面指数与晶面间距 关系分析 画出体心立方和面心立方晶格结构在(100),(110),(111)面上的原子排列 (2)面心立方晶格 2 对称原素与对称操作 (一) n度旋转对称轴 证明n度旋转轴中n只能取1、2、3、4、6 ?任何一种晶体一定属于7个晶系之一,其晶格一定是14种Bravais晶格之一, ?Bravais晶格即反映晶格的周期性也反映其对称性。 ?32点群,230空间群 2、倒格子定义 3、倒格子与正格子的关系 3.2 倒格子与正格子基矢间关系 3.3位矢之间关系 小结 习题 二维正方格子的布里渊区 二维正方格子布里渊区图示(演示) 按照原子相互作用力的类型,晶体可分为五种类型 5 氢键晶体 共价键、金属键、范德瓦尔斯键共存的石墨结构 2.1.6 原子电负性 §2.3 非晶体 ?固态物质的基态应该是长程有序结构的晶体,体系自由能最低. ?非晶态是一种热力学的亚稳态,在一定条件下可以转变为晶态----晶化 ?此外在急冷过程中所形成的亚稳非晶态不一定是唯一的,可能会向更稳定的亚稳态转变,此现

第三章 晶格振动和晶体的热学性质

第三章晶格振动和晶体的热学性质 [引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0 C=的规律不符。1906年爱因斯坦提出固体比热容的量子理论, V 认为独立谐振子的能量是量子化的,可以得到T=0K时0 C=的规律的结论,但与低温 V 下3 C T的实验结果不符。1912年德拜提出固体的比热容理论,把固体当成连续介质, ~ V 晶格振动的格波看连续介质中的弹性波,得到低温下3 ~ C T的结果。随后,玻恩及玻 V 恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。 因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。这种近似称为绝热近似。晶格振动理论就是在这个近似的基础上建立的。 本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情

况,最后讨论晶体的热学性质。 [本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程 §3-1一维单原子链 考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0 ………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ?,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为: ()∑≠=N j i ij x U ?21……………………………………………(3-1-2) 式中ij ij i j ij u x x x x +=-=0 是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对 位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将?展开为: ………………(3-1-3) 于是有:() ∑∑∑≠≠≠+???? ????+???? ????+=j i ij ij j i ij ij j i ij u x u x x U Λ20 2200 412121???…………… (3-1-4) 图3-1-1 一维单原子晶格 ()()() Λ+??? ? ????+???? ????+=+=2 220021ij ij ij ij ij ij ij ij u x u x x u x x ?????

一维单原子链振动能与热容的研究

一维单原子链振动能与热容的研究 刘凤智 【摘要】对于一维晶格可以严格求出振动能和热容,将它们与爱因斯坦模型和德拜模型的结果进行比较,可以找出两种模型的成功与不足,如此可以加深对模型的理解,也有助于模型的完善. 【期刊名称】河南科学 【年(卷),期】2012(030)009 【总页数】5 【关键词】单原子链;振动能;热容;爱因斯坦模型;德拜模型 晶格振动理论是晶体的重要理论,从晶格振动理论可以推出晶体的物理性质,特别是晶格热容的计算.对于一维晶格振动,因为模型简单,常常可以得出严格解,而受到人们的重视,一维单原子链也是晶格振动理论的入门知识,在固体物理教学中占有重要的地位.晶格振动理论就是起源于对晶格热学性质的研究,而能量和热容是热学性质中很有代表性的物理量.对晶格热容和振动能的具体求解是一个比较复杂的问题,在一般的讨论中常采用爱因斯坦和德拜两个简化模型.因为一维单原子可以做严格意义上的理论研究,为了深刻理解模型的实质,可以对一维晶格进行对比研究,找出爱因斯坦和德拜模型的成功与不足,有利于对实际三维晶格的认识[1].本文首先从理论上将三种处理方法应用到一维单原子链,得出相应的振动能与热容,并得出极端情况下的极限值,随后用一个实际例子做了讨论,得出一些有意义的结论. 1 由爱因斯坦模型计算晶格振动能和等容摩尔热容 对于一维单原子链,假设原子数为N,晶格常数为a,晶格的力常数为β,原

子质量为m,只考虑最近邻原子的作用,可以得出晶格振动的色散关系[2]: 其中:ωm为晶格振动的截止频率;q为波矢,可以将它限制在第一布里渊区,即-π/a

固体物理知识概要

第一章 (2)体心立方(body- centered cubic,bcc):原胞基矢 每个晶胞有2个等效格点。常见金属:碱金属晶体,过渡金属晶体,Cr ,Mo, W. 体心立方原胞体积为: a1 ⋅ ( a2⨯a3 ) = a3/2 最近邻原子数:8个 (3)面心立方(face-centered cubic,fcc) 原胞基矢 每个晶胞有4个等效格点。常见金属:贵金属Cu、Ag、Au、Al、Ni、Pb等。 面心立方原胞体积为: a1 ⋅ ( a2⨯a3 ) = a3/4 最近邻原子数:12个 7大晶系,14种布拉菲格子,32种宏观对称操作。 密堆积配位数 配位数:一个原子周围最近邻的粒子数。 致密度:晶胞中粒子所占的体积与晶胞体积之比。比值越大,堆积越密。 粒子被看作为有一定半径的刚性小球。最近邻的小球互相相切。两球心间的距离等于两最近邻粒子间的距离。 1.同种粒子构成的晶体 原子半径相同,刚球半径也相同。一般采用密堆积。配位数为12、8。 2. 不同粒子组成的晶体 (1)氯化铯(CsCl) Cs+离子半径为r,Cl-离子半径为R,则 r = 0.73R 配位数为8。 (2)氯化钠(NaCl), Na+离子半径为r,Cl-离子半径为R,则 r = 0.41R 配位数为6。 晶列、晶面、密勒指数; 晶向:晶格可看成是在任意方向上由无穷多的平行直线组成的,所有的格点都落在这些直线上。每 一条这样的直线称为晶格的一个晶列。晶列的方向称为晶格的晶向。 晶向的表示:晶向指数 [ l1l2l3 ]:任取一个格点作为原点O。作晶胞基矢a、b、c,考虑某晶列 上的一个格点P,该格点的位矢为:l1a1+ l2a2+ l3a2且l1 l2 l3 为三个互质整数。则该晶向指数为 [ l1 l2 l3 ]。 晶面:晶格可在任意方向上分割成无穷多的平行平面组成,使得所有的格点都落在这些平面上。所 有互相平行的平面构成一族,称为晶格的晶面。 晶面的表示:在晶胞基矢a、b、c下,一晶面与它们的截距分别为 l'a、m'b、n'c 若有互质整数 l、m、n 使(lmn)称为晶体的密勒指数(Miller indices)。若某晶面指数为负数,则在此数上面加一横杠。 若取原胞基矢,则互质整数(h1 h2 h3 )称为晶面指数。 右图晶面描述晶面密勒指数为:(263)倒格子 取原胞基矢a1、a2、a3,定义三个新矢量b1、b2、b3,满足:Ωd为原胞的体积。 b1、b2、b3 称为晶体的倒格子基矢。相对地, a1、a2、a3 称为晶体的正格子基矢。 b1、b2、b3 互相独立,可构成一新的矢量空间,称倒格子空间。

固体物理复习资料

第1章晶体结构和晶体衍射 一、晶格结构的周期性与对称性: 1.原胞(初基晶胞)、惯用晶胞的定义:原胞:晶格具有三维周期性,三维晶格中体积最小的重复单元称为固体物理学原胞,简称原胞。 惯用晶胞:为了反映晶体的周期性和对称性,所取的重复单元不一定是最小的。结点不仅可以在顶角上,还可以在体心或面心上,这种最小重复单元称为惯用晶胞(也叫作布拉维晶胞)2.晶向与晶面指数的定义 晶向:布拉维格子上任何两格点连一直线称为晶列,晶列的取向称为晶向。晶向指数:R=l1a1+l2a2+l3a3,将l1,l2,l3化为互质整数,用l1,l2,l3表示晶列的方向,这三个互质整数称为晶向指数。 晶面指数:晶面族在基矢上的截距系数的倒数,化成与之具有相同比率的三个互质的整数h,k,l。 二、什么是布拉维点阵(格子)?为什么说布拉维点阵是晶体结构的数学抽象?描述点阵与晶体结构的区别?1.如果晶体由一种原子组成,且基元中只包含一个原子,则相应的网格就称为布拉维格子。如果晶体虽由一种原子组成,但若基元中包含两个原子,或晶体由多种原子组成,则每一种原子都可以构成一个布拉维格子。 2.布拉维格子是一个无限延伸的点阵,它忽略了实际晶体中表面、结构缺陷的存在,以及T≠0时原子瞬时位置相对于平衡位置小的偏离。但它反映了晶体结构中原子周期性的规则排列。即平移任意格矢R n,晶体保持不变的特性,是实际晶体的一个理想抽象。 3.晶体结构=点阵+基元 三、典型的晶体结构、对应的布拉菲点阵及其最小基元是什么? 晶体结构: 1.氯化钠(NaCl)结构 该结构的布拉维点阵是fcc,初基基元为一个Na+离子和一个Cl-离子。2.氯化铯(CsCl)结构 该结构的布拉维点阵是sc(简单立方),初基基元为一个Na+离子和一个Cl-离子。 3.六角密堆积(hcp)结构 该结构的布拉维晶格点阵是简单六角,初基基元包含两个原子,原子位置:(0 0 0),(2/3,1/3,1/2)。4.金刚石结构 金刚石型结构的晶格类型属于fcc晶格点阵(该结构可以看作是两个fcc晶格格点上放上同种原子沿立方体的体对角线错开1/4对角线长而得到。)初基基元有两个全同原子,座标为(0 0 0)和(1/4,1/4,1/4)。 5.立方硫化锌(ZnS)结构(闪锌矿结构)―― 立方硫化锌结构的晶格类型属于fcc晶格点阵,初基基元有两个不同原子,座标为S (000),Zn(1/4,1/4,1/4)。 四、填充率(致密度)的计算

固体物理复习提纲

固体物理复习提纲 1.请给出1维单原子链晶格振动的运动方程,并由此推导出频率-波矢关系。 书p58页4.1.3推导过程见书p58页 2.请分别写出1维单原子链和1维双原子链的晶格振动的色散关系表达式。请讨 论双原子链振动的声频支和光频支的频率范围。 一维单p58页4.1.7和一维双61页4.2.9 声频支4.2.10光频支4.2.11 3.请论述声频波和光频波原胞中两个原子的位移特征。 声频波情况原胞中两个原子是沿同方向振动。在长波极限情况,声频波中原胞中两个原子是一同运动,振幅,位相都没有差别。在短波极限时声频波中较轻的原子静止不动,只有重原子在做振动,而且相邻原胞重原子的运动方向是相反的。 长波极限时光频波中原胞中两个原子运动始终保持质心位置不变。短波极限时光频波中的原胞中重原子是静止不动,只有轻原子振动,相邻原胞轻原子的运动方向相反。 4.将晶格振动看待成为一个简谐振子,求解得到的能量本征值如何表达?振动的 振动方程(本征函数)如何表达?在某一温度下,声子的平均数目如何表示?能量本征值书p66页4.3.17,本征函数4.3.18,平均数目4.3.20 5.何谓声频波?何谓光频波?在3维晶体中,有几支声频波?光频波有几支?格 波的总模式数是多少? 格波频率较低的称为声频支格波,格波频率较高的称为光频支格波。在3维晶体中有3支声频波,3r-3支光频波,r为原胞内原子个数。格波总模式数等于晶体原子自由度总数目3rN 6.经典物理中,对晶体的比热Cv研究的结果用公式表示为什么?

它表明了什么含 义?考虑到晶格振动的影响,使用爱因斯坦模型修正后的公式是什么?分析爱因斯坦模型在高温区和低温区的表达形式?这一结果与实验结果有何区别?区别原因何在? 比热公式书p76页4.7.7 表明含义:高温晶格比热是一常量,与温度无关,也与物质元素无关。问老师! 爱因斯坦修正公式书77页4.7.13 7.在利用德拜模型研究晶体的比热时,晶格内能的表达式是什么?比热用什么来 表达?请讨论在高温时和低温时的比热的表达形式。 内能78页4.7.23,比热4.7.24 8.固体物理中,晶体的物态方程如何表达?由此推导出的膨胀系数如何表达?考 虑到电子对比热的贡献,膨胀系数如何表达? 书p81,晶体的物态方程4·8·8,膨胀系数:4.8.13 9.只考虑晶格热传导行为,请写出热导率的表达式,对其中的各个符号分别说明。 对高温下和低温下的热导率与温度的依赖关系进行论述。 热导率书p83,4.9.6。c是材料单位体积的比热,v是声子气的方均根速率,l为材料长度。依赖关系p84 10.肖特基缺陷是怎么产生的?弗兰克尔缺陷又是怎么产生的?它们在热平衡 时的缺陷数目如何表达? 肖特基缺陷的形成原因:这种空位是晶体内部格点上的原子或离子通过接力运动移到表面格点位置后在晶体内所留下的空位弗兰克尔缺陷形成的原因:如果晶体内部格点上的原子或离子移到晶格间隙位置形成间隙原子,同时在原来格点位置上留下空位,于是晶体中将存在等浓度的晶格空位和填隙原子。 它们在热平衡时缺陷数目表达形式为:书p88~91

晶格振动

第三部分 晶格振动 1. 讨论晶格振动时的物理框架是牛顿力学还是量子力学? 牛顿力学+量子力学修正,所以又可称为半经典理论。 2. 讨论晶格振动时采用了哪些近似条件? 采用了近邻近似和简谐近似。 3. 什幺是近邻近似和简谐近似? 近邻近似:在晶格振动中,只考虑最近邻的原子间的相互作用; 简谐近似:在原子的互作用势能展开式中,只取到二阶项。 4. 为什幺可使用玻恩-卡曼周期边界条件? 晶体的性质由晶体的绝大多数原子的状态所决定,体内原子数>>表面原子数, 在近邻近似下,所以可以以方便为原则选择边界条件,可使用玻恩-卡曼周期 边界条件,而且使用玻恩-卡曼周期边界条件给出了较多的信息,对后续的讨 论带来方便。若采取零边界条件,原则上讲也是允许的,但不能给出有用的信 息。 5. 一维单原子链色散关系是怎样的?相速度v p 等于什幺? ω=421 2βm qa ⎛⎝ ⎫⎭⎪sin v p =ωq 6. 一维格波波矢q 的的取值范围是什幺?q 在第一B 、Z 内取值数是多少? q 的取值范围:为保证唯一性,g 在第一B.Z 内取值,即- ππa q a 〈≤ q 在第一B.Z 内取值数为N (初基元胞数)。 7. 一维格波波矢q 有哪些特点? q 不连续(准连续);均匀分布;密度 Na L 22ππ= 8. 一维双原子链的色散关系是怎样的? ωββββββ212 1222121212=+m m qa ±++(cos ) 9. 在三维晶体中,格波独立的q → 点数,声学波支数,光学波支数,格波总支数分 别等于多少? 独立的q → 点数=晶体的初基元胞数N ; 格波个数 = 晶体原子振动自由度数,3NS 个; 格波支数=3S (初基元胞内原子振动的自由度数)其中3支声学波,3(s-1) 支光学波。 10. 定性地讲,声学波和光学波分别描述了晶体原子的什幺振动状态? 定性地讲,声学波描述了元胞质心的运动, 光学波描述了元胞内原子的相对运动。 描述元胞内原子不同的运动状态是二支格波最重要的区别。 11. 格波模式密度g(ω)的定义是什幺,g(ω)是如何表示的? 模式密度g(ω)的定义:单位频率间隔的格波数。

固体物理CH4-习题解答

第四章习题试解 1. 一维单原子晶格,在简谐近似下,考虑每一原子与其余所有原子都有作用,求格波的色散关 系. 解:设原子质量为m ,周期为a ,第n 个原子偏离平衡位置的位移为μn ,第n-k 与n+k 个原子偏离平衡位置的位移分别为μn-k ,μn+k ,其与第n 个原子间的弹性恢复力系数为β-k ,βk . n-k n-1 n n+1 n+k 显然:k k ββ-= 第n 个原子受n-k 和n+k 原子的合力为: 第n 个原子受所有原子的合力为: 振动的运动学方程可写为: 代入振动的格波形式的解 ()i qna t nq Ae ωμ-= 有2()[()][()]()()(2)i qna t i q n k a t i q n k a t i qna t k k m i Ae Ae Ae Ae ωωωωωβ-+----=+-∑ 色散关系即为 2.聚乙烯链…—CH =CH —CH =CH…的伸张振动,可以采用一维双原子链模型来描述,原胞两原子质量均为M,但每个原子与左右邻原子的力常熟分别为β1和β2,原子链的周期为a .证明振动频率为 证:如图,任意两个A 原子〔或B 原子〕之间的距离为a,设双键距离b 2,单键距离b 1 …—CH =CH —CH =CH —CH =CH —CH =CH —CH =CH … 2n-2 2n-1 2n 2n+1 2n+2 AB A b2 b1 只考虑近邻作用的A,B 两原子的运动方程为 A :222121221()()n n n n n M μβμμβμμ+-=--- B : 21122212212()()n n n n n M μβμμβμμ++++=--- 将格波解()2i qna t n Ae ωμ-= 和2 [()]21i q na b t n Be ωμ+-+= 代入以上运动方程,有 化简得:1221212()()0iqb iqb M A e e B ββωββ-+--+= 同理:1221212()()0iqb iqb e e A M B ββββω--+++-= 化为以A 、B 为未知数的线性齐次方程组,它的有解条件是 从而得到 3.求一维单原子链的振动模式密度g<ω>,若格波的色散可以忽略,其g<ω>具有什么形式,比较 这两者的g<ω>曲线. 解:一维情况q 空间的密度约化为L/2π,L=Na 为单原子链的长度,其中a 为原子间距,N 为原子数目.则在dq 间隔内的振动模式数目为2L dq π .dω频率间隔内的振动模式数目为 等式右边的因子2来源于ω〔q 〕具有中心反演对称,q ﹥0和q ﹤0区间是完全等价的.从而有 对于一维单原子链,只计入最近邻原子之间的相互作用时,有 其中ωm 为最大频率.代入g <ω>得

3-6 晶格振动的模式密度

§3-6 晶格振动的模式密度 3. 6. 1 晶格模式密度定义 为了准确求出晶格热容以及它与温度的变化关系,必须用较精确的办法计算出晶格振动的模式密度(也叫频率分布函数)。原则上讲,只要知道了晶格振动谱ωj (q ),也就知道了各个振动模的频率,模式密度函数g (ω)也就确定了。但是,一般来说,ω与q 之间的关系是复杂的,除非在一些特殊的情况下,得不到g (ω)的解析表达式,因而往往要用数值计算。图3-6-1给出了一个实际的晶体(钾)的模式密度,同时给出了德拜近似下的模式密度进行比较,可以看出除在低频极限以外,两个模式密度之间存在有一定的差别。这可以说明为什么德拜热容理论只是在极低温下才是严格正确的。因为在极低温下,只有那些低频振动模才对热容有贡献。 了解晶格振动模密度的意义不仅局限于晶格热容的量子理论。实际上,计算所有热力学函数时都要涉及到对各个晶格振动模的求和,这就需要知道模式密度函数。以后还会看到,在讨论晶体的某些电学性质、光学性质时,也要用到晶格振动模式密度函数。根据式(3-5-12),我们可以定义: ()0lim n g ωωω ∆→∆=∆…………………………………………………………(3-6-1) Δn 表示在ω—ω+Δω间隔内晶格振动模式的数目,如果在q 空间中,根据ω (q )=常数作出等频面,那么在等频面ω和ω+Δω之间的振动模式的数目就是Δn 。由于晶格振动模(格波)在q 空间分布是均匀的,密度为V/3 (2)π(V 为晶体体积),因此有: 3 ((2) V n ωωωπ∆= ⨯∆频率为和+的等频率面间的体积)…………(3-6-2) 图3-6-1 钾的模式密度与德拜近似模式密度的比较

晶格振动部分习题参考解答

晶格振动部分习题参考解答 9.设有一双子链最近邻原子间的力常数为和10,两种原子质量相等,且最近邻距离为 a/2,求在q=0,q= a π 处的(q).并定性画出色散曲线。 m m 10 m m ____________________________________________________ →← →← 2 2 a a 解:已知 21 )cos 2(12122212 12 qa m m A ββββββω++- += (1) 21 )cos 2(12122212 12 0a m m ββββββω++- += (2) 由题意 2=10 1=10 代入(1)式 得 21 )cos 20100(111222qa m m A ββββω++-= =21 )cos 20101(11qa m m +-ββ = []2 1)cos 20101(11qa m +-β 当q=0时 0)1111(0 2=-==m q A β ω 当q=a π时 m m a q A β β ωπ2)911(2 = -= = 把 2=10 1=10 代入(2)式 得 []2 1)cos 20101(1120qa m ++β ω= 当q=0时 m q βω220 2 == 时a q π±= m a q β ωπ 202 0= = 10.设三维晶格的光学格波在q=0的长波极限附近有i ω(q)= 0-Aq 2 (A 0),求证光学波 频率分布函数(格波密度函数)为:g()= ∑ -=) 1(31 s i 24πV 2 321 )(0A i ωω- i ω≤0 g()=0 i ω>0 证:由格波密度函数的定义已知,对一支格波在d i ω区间格波数为

相关文档