文档视界 最新最全的文档下载
当前位置:文档视界 › 复变函数复习提纲及例题

复变函数复习提纲及例题

复变函数复习提纲及例题
复变函数复习提纲及例题

复变函数经典例题

第一章例题 例1.1试问函数二-把」平面上的下列曲线分别变成 ].;平面上的何种曲线? (1) 以原点为心,2为半径,在第一象项里的圆弧; (2) 倾角 二的直线; (3) 双曲线''■='。 解 设Z = x + =r(cosfi + ι SiIl θ)7 = y + jv = Λ(cos

0 特别,取 - ,则由上面的不等式得 ∣∕(z)∣>l∕(z o )∣-^ = M>0 因此, f ② 在匚邻域 内就恒不为0。 例1.3 设 /⑵ 4C ri ) (3≠o) 试证一 在原点无极限,从而在原点不连续。

证令变点匚—…:弓仁门 1 F ,则 而沿第一象限的平分角线 故「匚在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1 北)= 匚在二平面上处处不可微 证易知该函数在二平面上处处连续。但 Δ/ _ z+?z -z _ ?z ?z ?z ?z 零时,其极限为一1。故匚处处不可微。 证因UaJ )二倆,呛J ) = C I 。故 但 /(?) - /(0) _ λj?j ?z ? + i?y 从而 (沿正实轴。一 H ) 当I: 「时,极限不存在。因 二取实数趋于O 时,起极限为1 ,二取纯虚数而趋于 例2.2 在了 — 1满足定理 2.1的条件,但在_ I.不可微。 M (ΔJ 7O)-?(O,O) = 0 = v∕0,0) (O f O) = Ii(Q i Ly)-Ii(Ofi) Ay

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

复变函数期末试卷()

《复变函数论》期末考试试题-A 卷答案 一、 选择题(每小题4分,共20分) ⒈ 21|z |且Im 表示的轨迹为( B ) A 、有界闭区域 B 、有界开区域 C 、无界开区域 D 、无界闭区域 ⒉ 右半平面Re z >0 在映射 ω=i z +i 下的象为( D ) A 、ωIm >0 B 、ωRe >0 C 、ωRe >1 D 、ωIm >1 ⒊ )43(i Ln +-= (C ) A 、)34(5ln arctg i -+π B 、)3 42(5ln arctg k i -+π C 、)342(5ln arctg k i -++ππ D 、)342(5ln arctg k i +++ππ ⒋ ()=f z ( D ) A 、1,2,=∞z B 、0,1,2=z C 、0,1,2,=z ∞ D 、0,=z ∞ ⒌ 0z = 0 为函数 21cos ()z f z z -=的( A ) A 、可去奇点 B 、本性奇点 C 、一阶极点 D 、二阶极点 二、填空题(每小题4分,共36分) ⒈ 设ω=,则()i ω-=( ) ⒉ 设 ?=-++=3 2173)(z z z f ξξξξd ,则 )1('i f +=)136(2i +-π 3. ?=+1)2ln(z z dz = 0 4. ? =++223 4sin z z z z πdz = 0 5. 10?423z =3 (2)()z dz z +z -2= 2i π 6.将函数2 1()(2)f z z =+展成1z -的幂级数,则其收敛圆为(|1|3z -<). 7.||z e 在闭圆|1|1z -≤上的最大值为( 2e )

大学复变函数期末考试试卷及答案(理工科所有专业)

dz C 2

2.设2 2-+= ni ni n α),3,2,1(ΛΛ=n ,则=∞→n n αlim ( ) A. 0; B. 1; C. -1+i ; D. 1+i 。 3.满足不等式3211≤-+≤i z 的所有点z 构成的集合是( )。 A .有界单连通区域; B. 无界单连通区域; C .有界复连通闭域; D.无界复连通闭域。 4.下列函数中,不在复平面内解析的函数是( ) A.1 )(+=z e z f ; B .- =z z f )( ; C .n z z f =)( ; D .)sin (cos )(y i y e z f x +=。 5 A. ∑∞ =+08)56(n n n i ; C. ∑∞ =02n n i ;三.计算题(每小题71.设z 1+=

2.判定函数)2()()(222y xy i x y x z f -+--=在何处可导,在何处解析。 3.计算积分? - C dz z z 4 )2 (sin π 4.计算积分 4=。

5.设,)1(2y x u -=试求解析函数iv u z f +=)(,使得i f -=)2(。 6.将函数) 2)(1(1 )(--=z z z f ,在圆环域21<

7.利用留数计算积分?C 四.证明函数yi x z f 2)(+=在复平面内不可导。(7分)

参考答案 一、填空题(本大题共8小题,每小题3 1.109 , 2. 4 ,3. 0 ,4. 1,5. -3或 二、单项选择题(本大题共7小题,每小题31. B ,2. B ,3.C,4. B,5. B . 三、计算题(本大题共7小题,15-19 1.解:由i z 31+=得:) sin (cos 2π π i z +=, (1分) 6 24 (cos 23166ππ k i z k +=+=所以)18sin 18(cos 260ππi z +=,)1813sin 1813(cos 262ππi z += , )25sin 1825(cos 264ππi z +=,5z 7分) 2. 解 ) 2()2y xy i x -+,则 (),(22y x y x u -= y u x x u ,12=??-=?? 只在2 1 = y ,x v ??-(6分) 故只在2 1 =y 处可导,处处不解析。(7分) 3z 在2=z 内解析,(2分)

复变函数课后习题答案全

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =? 。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。(8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有 22v u x y x ??==+??,所以(,)2222()v x y x dy xy y C x =+=++? 2,v u y x y ??=-=??又2()v y C x x ?'=+? ,所以 ()0C x '=,即()C x 为常数。

广州大学2011-2012复变函数期末考试卷B卷

学院领导 审批并签名 B 卷 广州大学20011-2012学年第二学期考试卷(答 案) 课 程: 复 变 函 数 考 试 形 式: 闭卷 考查 学院:_ _ _ _ 系:_ _ _ _ _ 专业:_ _ _ _ 班级:_ _ _ _ _ 学号:_ _ 姓名:_ _ _ _ _ 题 次 一 二 三 四 五 六 总分 评 卷 人 分 数 24 30 16 10 10 10 100 评 分 一.填空题(每小题3分,共24分) 1.设1255,34,z i z i =-=+ 则)Re( 2 1z z =__-1/5___。 2. 复数 13i - 的主幅角为 3/π-。 3. 复数1i +的指数形式为i e 42π 。 4. ln(3)i +=6 2ln π i +。 5. 曲线|3||3|10z z -++=的直角坐标方程为116 252 2=+y x 。 6. 0=z 是3 sin z z 的 2 级极点。 7. dz z z z ?=-1 ||2= 0 。 8. 复数项级数 1 2n n n n z ∞ =∑的收敛半径R = 2 。

二.解答下列各题(每小题6分,共30分) 1.求方程 3 10z +=的全部解。 p.32. )31(2 1 , 1),31(2 1 i i --+ 2.设iy x z +=,判定函数i y x z f 2332)(+=在何处可导?何处解析? 答案: p.66. 在抛物线2x y =上可导,但在复平面上处处不解析。 3.计算积分2 ()C x iy dz +? , 其中C 为连接原点O 到i +1的线段。 p.99 i 6 561+- 4.计算积分3 3() C z dz z i -??? 其中C 为正向圆周:||2z =。 答案: p.89 π6- 5.计算积分 cos i z z dz ? 。 答案: p.83 11--e 三.解答下列各题(每小题8分,共16分) 1.判断级数2(1)1 []ln 3n n n i n ∞ =-+∑的收敛性与绝对收敛性。 答案: p.109 收敛、非绝对收敛 2.将函数1 ()(1)(2) f z z z = --在圆环域1||2z <<内展成洛朗级数。 答案: p.132 ------- --8 4211112 1 z z z z z n n 四.(10分)求 dz z z z )3 211( 4 ||-++? =的值。 答案: p.86 i π6

复变函数习题集(1-4)

第一章 复数与复变函数 一、选择题: 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π= -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 32 1+ - (D )i 2 12 3+ - 3.复数z -3(cos -isin )5 5 π π =的三角表示式为( ) A .44-3(cos isin )5 5 ππ+ B . 443(cos isin )55ππ- C . 443(cos isin )5 5 ππ+ D .44-3(cos isin )5 5 ππ- 4.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 二、填空题 1.设) 2)(3()3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π=-=i z z ,则=z 4.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线. 5.=+++→)21(lim 4 2 1z z i z 三.求方程z 3+8=0的所有复根. 第二章 解析函数 一、选择题:

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

《复变函数与积分变换》期末考试试卷A及答案详解

?复变函数与积分变换?期末试题(A )答案及评分标准 ?复变函数与积分变换?期末试题(A ) 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + ) ;3. 211)(z z f +=,=)0() 5(f ( 0 ); 4.0=z 是 4sin z z z -的(一级)极点;5. z z f 1 )(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( B ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在( C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;

(B) 如果)(z f 在C 所围成的区域内解析, 则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( D ). (A) 的可去奇点;为z 1 sin ∞ (B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分) (1)设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a (2).计算 ? -C z z z z e d ) 1(2 其中C 是正向圆周:2=z ; (3)计算?=++33 42215 d )2()1(z z z z z (4)函数3 2 32) (sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 四、(本题14分)将函数) 1(1 )(2 -= z z z f 在以下区域内展开成罗朗级数; (1)110<-

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数积分(练习题)

基本要求 1. 正确理解复变函数积分的概念;01()lim ()n k k C k f z dz f z λζ→==?∑? 2. 掌握复变函数积分的一般计算法;()()()(())()C C f z dz u iv dx idy f z t z t dt βα '=++=??? 3. 掌握并能运用柯西—古萨基本定理和牛顿—莱布尼茨公式来计算积分; ()0C f z d z =? ,10 10()()()z z f z dz G z G z =-? 4. 掌握闭路变形定理、复合闭路定理,并能运用其计算积分; 1()()C C f z dz f z dz =?? ,1()()k n C C k f z dz f z dz ==∑?? 5. 掌握并能熟练运用柯西积分公式;00 ()2()C f z dz if z z z π=-? 6. 掌握解析函数的高阶导数公式,理解解析函数的导数仍是解析函数,会用高阶导数公式计算积分。 0102()()()! n C if z f z dz z z n π+=-? 一、填空题 1.2||122z dz z z ==++? ( ) ; 2.22|1|111z z dz z -=+=-? ( ) ; 3.2||1cos ()z z dz z π==-? ( ) ; 4.设()f z 在单连通域D 内解析且不为零,C 为D 内任一条简单闭曲线,则()2()1() C f z f z dz f z '''++=? ( ); 5.解析函数()f z 的导函数仍为( ),且()()n f z =( )。 二、计算下列各题 1.计算积分2(2)C iz dz +?,C 是由(1,0)A 到(0,1)B 的直线段; 111.33 i -+ 2.计算积分22z C e dz z z +? ,:||2C z =; 22(1).i e π--

复变函数期末考试题大全(东北师大)

____________________________________________________________________________________________________ 一、填空题(每小题2分) 1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3、若01=+z e ,则z = 4、()i i +1= 5、积分()? +--+i dz z 22 22= 6、积分?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α 1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 2321- B 223i - C 223i +- D i 2 321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ?=-123z z dz B ?=-12 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β

复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

《复变函数与积分变换》习题册

第一章 复数与复变函数 本章知识点和基本要求 掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念; 熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。 一、填空题 1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______. 2、设(12)(35)13i x i y i ++-=-,则x = ,y = 3、若1231i z i i +=--,则z = 4、若(3)(25) 2i i z i +-= ,则Re z = 5、若4 21i z i i +=- +,则z = 6、设(2)(2)z i i =+-+,则arg z = 7复数1z i =-的三角表示式为 ,指数表示式为 。 8、复数i z 212--=的三角表示式为 _________________,指数表示式为 _________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____. 10、设4 i e 2z π=,则Rez=____________. Im()z = 。z = 11、.方程0273=+z 的根为_________________________________. 12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程

为 。 13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数1 2 +-= z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的部。 16 二、判断题(正确打√,错误打?) 1、复数7613i i +>+. ( ) 2、若z 为纯虚数,则z z ≠. ( ) 3、若 a 为实常数,则a a = ( ) 4、复数0的辐角为0. 5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在 00(,)x y 点连续。 ( ) 6、设21,z z 为复数,则2121z z z z ?=。 ( ) 7、1212z z z z +=+ ( ) 8、参数方程2 z t ti =+ (t 为实参数)所表示的曲线是抛物线2y x =. ( ) 三、单项选择题 1、下列等式中,对任意复数z 都成立的等式是 ( ) A.z·z =Re(z·z ) B. z·z =Im(z·z ) C. z·z =arg (z·z ) D. z·z =|z| 2、方程3z =8 的复根的个数为 ( ) A. 3个 B. 1个 C. 2个 D. 0个 3、当11i z i +=-时,1007550z z z ++的值等于 ( ) A i B i - C 1 D 1- 4、方程23z i +-= ( ) A 中心为23i -的圆周

相关文档
相关文档 最新文档