文档视界 最新最全的文档下载
当前位置:文档视界 › 材料的热学性能

材料的热学性能

材料的热学性能
材料的热学性能

材料物理性能复习总结

第一章电学性能 1.1 材料的导电性 ,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。 一、金属导电理论 1、经典自由电子理论 在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。 2、量子自由电子理论 金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。 0K时电子所具有最高能态称为费密能E F。 不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。 马基申定则:′,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻′。 3、能带理论 能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。 图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。 图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没有活动的余地,即便是禁带上面的能带完全是空的,在外电场作用下电子也很难跳过禁带,具有这种能带结构的材料是绝缘体。

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能.doc

材料物理性能 第一章 考点1. 电子理论的发展经历了三个阶段,即古典电子理论、量子自由电子理论和能带理论。古典电子理论假设金属中的价电子完全自由,并且服从经典力学规律; 量子自由电子理论也认为金属中的价电子是自由的,但认为它们服从量子力学规律;能带理论则考虑到点阵周期场的作用。 考点2. 费米电子 在T = 0K时,大块金属中的自由电子从低能级排起,直到全部价电子均占据了相应的能级为止。具有能量为EF(0)以下的所有能级都被占满,而在EF(0)之上的能级都空着,EF(0)称为费米能,是由费米提出的,相应的能级称为费米能级。 考点3. 四个量子数 1、主量子数n 2、角量子数l 3、磁量子数m 4、自旋量子数ms 考点4. 思考题 1、过渡族金属物理性能的特殊性与电子能带结构有何联系? 过渡族金属的 d 带不满,且能级低而密,可容纳较多的电子,夺取较高的 s 带中的电子,降低费米能级。 第二章 考点5. 载流子 载流子可以是电子、空穴,也可以是离子、离子空位。材料所具有的载流子种类不同,其导电性能也有较大的差异,金属与合金的载流子为电子,半导体的载流子为电子和空穴,离子类导电的载流子为离子、离子空位。而超导体的导电性能则来自于库柏电子对的贡献。 考点6. 杂质可以分为两类 一种是作为电子供体提供导带电子的发射杂质,称为“施主”;另一种是作为电子受体提供价带空穴的收集杂质,称为“受主”。 掺入施主杂质后在热激发下半导体中电子浓度增加(n>p),电子为多数载流子,简称“多子”,空穴为少数载流子,简称“少子”。这时以电子导电为主,故称为n型半导体。施主杂质有时也就称为n型杂质。 在掺入受主的半导体中由于受主电离(p>n),空穴为多子,电子为少子,因而以空穴导电为主,故称为p型半导体。受主杂质也称为p型杂质。 考点7. 我们把只有本征激发过程的半导体称为本征半导体。 考点8. 在同一种半导体材料中往往同时存在两种类型的杂质,这时半导体的导电类型主要取决于掺 杂浓度高的杂质。 随着温度的升高本征载流子的浓度将迅速增加,而杂质提供的载流子浓度却不随温度而改变。因此,在高温时即使是杂质半导体也是本征激发占主导地位,呈现出本征半导体的特征(n≈p)。一般半导体在常温下靠本征激发提供的载流子甚少

纳米材料物理热学性质

纳米材料的热学性质 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。 1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。 2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小, 二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和熔解焓建立的块体材料的熔解温度(有时称熔点) 熔解焓(或称熔解热)和熔解熵一般是常数,但对于纳米材料则非如此实验表明:纳米微粒的熔解温度依赖于微粒的尺寸。 四反应体系的化学平衡 利用纳米氧化铜和纳米氧化锌分别与硫酸氢钠溶液的反应,测定出不同粒径,不同温度时每个组分反应的平衡浓度,从而计算出平衡常数,进而得到化学反应的标准摩尔吉布斯函数;通过不同温度的标准摩尔吉布斯函数,可得化学反

材料物理性能-复习资料

第二章材料的热学性能 热容:热容是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。 不同温度下,物体的热容不一定相同,所以在温度T时物体的热容为: 物理意义:吸收的热量用来使点阵振动能量升高,改变点阵运动状态,或者还有可能产生对外做功;或加剧电子运动。 晶态固体热容的经验定律: 一是元素的热容定律—杜隆-珀替定律:恒压下元素的原子热容为25J/(K?mol); 二是化合物的热容定律—奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 热差分析:是在程序控制温度下,将被测材料与参比物在相同条件下加热或冷却,测量试样与参比物之间温差(ΔT)随温度(T)时间(t)的变化关系。 参比物要求:应为热惰性物质,即在整个测试的温度范围内它本身不发生分解、相变、破坏,也不与被测物质产生化学反应同时参比物的比热容,热传导系数等应尽量与试样接近。 第三章材料的光学性能 四、选择吸收:同一物质对各种波长的光吸收程度不一样,有的波长的光吸收系数可以非常大,而对另一波长 的吸收系数又可以非常小。 均匀吸收:介质在可见光范围对各种波长的吸收程度相同。 金属材料、半导体、电介质产生吸收峰的原因 (1)金属对光能吸收很强烈,这是因为金属的价电子 处于未满带,吸收光子后即呈激发态,用不着跃迁到导 带即能发生碰撞而发热。(2)半导体的禁带比较窄, 吸收可见光的能量就足以跃迁。(3)电介质的禁带宽, 可见光的能量不足以使它跃迁,所以可见光区没有吸收 峰。紫外光区能量高于禁带宽度,可以使电介质发生跃 迁,从而出现吸收峰。电介质在红外区也有一个吸收峰, 这是因为离子的弹性振动与光子辐射发生谐振消耗能量所致。 第六章材料的磁学性能 一、固有磁矩产生的原因 原子固有磁矩由电子的轨道磁矩和电子的自旋磁矩构成,电子绕原子核运动,产生轨道磁矩;电子的自旋也产生自旋磁矩。当电子层的各个轨道电子都排满时,其电子磁矩相互抵消,这个电子层的磁矩总和为零。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消(方向相反的电子自旋磁矩可以互相抵消),原子就具有“永久磁矩”。 二、抗磁性与顺磁性 抗磁性:轨道运动的电子在外磁场作用下产生附加的且与外磁场反向的磁矩。 产生原因:外加磁场作用下电子绕核运动所感应的附加磁矩造成的。 顺磁性:材科的顺磁性来源于原子的固有磁矩。 产生原因:因为存在未填满的电子层,原子存在固有磁矩,当加上外磁场 时,为了降低静磁能,原子磁矩要转向外磁场方向,结果使总磁矩不为零而表 现出磁性。 三、强顺磁性:过渡族金属在高温都属于顺磁体,这些金属的顺磁性主要是由 于3d, 4d, 5d电子壳层未填满,而d和f态电子未抵消的磁矩形成晶体离子 构架的固有磁矩,因此产生强烈的顺磁性。 四、磁化曲线、磁滞回线

材料热学力学性能

第一章 脆性材料的断裂强度等于甚至低于弹性极限,因而断裂前不发生塑性形变。脆性材料的抗拉断裂强度低,但抗压断裂强度高。 强度:材料对塑性变形和断裂的抗力 塑性:材料在断裂前发生的不可逆的变形量的多少 韧性:断裂前单位体积材料所吸收的变形和断裂能。即外力所做的功。 泊松比 比例极限(16)弹性极限(17表征材料对极微量塑性变形的抗力)屈服强度抗拉强度延伸率断面收缩率P7 真应力S——真应变?曲线P8 单位体积材料在断裂前所吸收的能量,也就是外力使材料断裂所做的功,称为金属的韧度或断裂应变能密度Ut,它可能包含三部分能量,即弹性变形能、塑性变形能和断裂能。 第二章 零构建的刚度取决于两个因素:构件的几何和材料的刚度。表征材料刚度的力学性能指标是弹性模量。在加工过程中,应当提高材料的塑性,降低塑性变形抗力——弹性极限和屈服强度。 金属变形的微观解释P12 弹性模量表明了材料对弹性变形的抗力,代表了材料的刚度。 影响弹性模量的内部因素有纯金属的弹性模量、合金元素与第二相的影响,外部因素有温度、加载速率和冷变形影响p14 总之,弹性模量是最稳定的力学性能参数,对合金成分和组织的变化不敏感。 单晶体金属的弹性模量,其值在不同的结晶学方向上是不同的,也表现出各向异性。在原子间距较小的结晶学方向上,弹性模量的数值较高,反之较小。 弹性比功:弹性应变能密度,指金属材料吸收变形功而又不发生永久变形的能力,是在开始塑性变形前单位体积金属所能吸收的最大弹性变形功,韧度指标。P17 金属塑性变形方式为滑移和孪生,临界切分应力p21 滑移面和滑移方向常常是金属晶体中原子排列最密的晶面和晶向。金属浸提中的滑移系越多,其塑性可能越好。 实用金属材料的塑性变形特点择优取向形变织构(p22): 1 各晶粒塑性变形的非同时性和不均一性 2 各晶粒塑性变形的相互制约性与协调性 屈服效应、时效效应p23 提高屈服强度的途径: 1 纯金属

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

材料物理性能第七章作业课后习题2013版中文版

7.2 电子极化和SF6 SF6(六氟化硫)气体具有高的绝缘强度,因此在高压应用中被广泛的用作绝缘体和电解质,例如高压变压器、开关、断路器、传输线以及高压电容等。在室温和一个大气压下SF6气体的介电常数为1.0015。单位体积SF6的分子数N可以由气体定律P=(N/N A) RT得到。计算SF6分子的电极化率αe。将其与图7.4中Z线的极化率进行分析比较。(注:SF6分子没有净偶极距。假定所有的极化率都是由电极化所引起) 解:由公式7.14:εr =1+Nαe /ε0(1) 推出公式(2): αe=ε0 (εr-1)/N (2) 由已知条件可知:N=PN A/RT=101325*6.02*1023/(8.314*298)=2.462*1025 εr =1.0015 ε0=8.85*10-12 带入公式(2)可得: αe=8.85*10-12*(1.0015-1)/(2.462*1025) 计算得:αe=5.39*10-40F·m2 分析: 2 可见αe几乎与Z呈线性关系,αe =(0.0704 Z +0.1156)*10-40为拟合的线性曲线。 易知SF6的Z为70,带入该式可得:αe =5.04*10-40 F·m2,与计算结果相差不多,可见计算的数据5.39*10-40 F·m2符合这条拟合线,计算结果较为准确。 7.3液氙的电子极化 cm-依据表7.1的电极化率计算其相对介电常液氙常常被用于辐射探测器,其密度为3.0g.3 数(rε的实验值是1.96) 解:

要计算r ε,需要从密度d 求出单位体积Xe 原子的个数。如果at M =131.29是Xe 的原子质量数。Na 是阿伏伽德罗常数,那么 2313223 1 6.02103. 1.37510131.29.A at N d mol g cm N cm M g mol ----??===? 根据N=1.37528310m -?和402 4.410e F m α-=?? 得到: 2840 12 1.37510 4.41011 1.6838.8510 e r N αεε--???=+ =+=? 若采用克劳体斯—莫索提方程,可得: 28401202840 12 022 1.37510 4.41011338.8510 1.891.37510 4.41011338.8510e r e N N αεεαε----????++??===???-- ?? 综上之,简单关系公式低估了相对介电常数,由于实验值是1.96,故所得结果 1.89r ε=为所求相对介电常数。 7.4 相对介电常数,键强,带隙和折射率 金刚石、硅和锗都是具有相同晶体结构的共价键固体,它们的相对介电常数如表7.10所示。 表7.10 金刚石、硅和锗的特性 εr M at 密度 (g/cm 3) αe (10-40F ?m 2) Y (GPa) E g (eV) n 金刚石 5.8 12 3.52 0.923 827 5.5 2.42 硅 11.9 28.09 2.33 4.17 190 1.12 3.45 锗 16 72.61 5.32 5.02 75.8 0.67 4.09 a 解释为什么εr 从金刚石到锗依次增加。 答:因为从金刚石到锗,电子数目依次增加,而电子极化率与电子数目及护城线性关系,所以随着电子数目的增加,电子极化率增加,由电子极化率与εr 的关系式可以看出,电子极化率增加,εr 也增加,所以εr 从金刚石到锗依次增加。 b 计算每种晶体中原子的极化率,并作极化率-弹性模量图,他们有相关性吗? 解:金刚石

武汉理工材料物理性能复习资料

第一章 一、基本概念 1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。晶体中的塑性形变有两种基本方式:滑移和孪晶。 2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。 3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。 4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。 二、基本理论 1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。 金属与非金属晶体滑移难易的对比 金属非金属 由一种离子组成组成复杂 金属键物方向性共价键或离子键有方向性 结果简单结构复杂 滑移系统多滑移系统少 2.无机材料高温蠕变的三个理论 ○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。热运动有助于使位错从障碍中解放出来,并使位错运动加速。当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。 ○2扩散蠕变理论:高温下的蠕变现象和晶体中的扩散现象类似,并且把蠕变过程看成是外力作用下沿应力作用方向扩散的一种形式。 ○3晶界蠕变理论:多晶陶瓷中存在着大量晶界,当晶界位向差大时,可以把晶界看成是非晶体,因此在温度较高时,晶界粘度迅速下降,外力导致晶界粘滞流动,发生蠕变。 第二章 一、基本概念 1.裂纹的亚临界生长:裂纹除快速失稳扩展外,还会在使用应力下,随着时间的推移而缓慢扩展,这种缓慢扩展也叫亚临界生长,或称为静态疲劳。 2.裂纹扩展动力:物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能,反之,前者小于后者,则裂纹不会扩展。将上述理论用于有裂纹的物体,物体内储存的弹性应变能的降低(或释放)就是裂纹扩展动力。

材料物理性能资料讲解

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: T U T Q C v v ??=??=)( 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 P P P T H T V P T U T V P U T Q C )()(??=??+??=??+?=??=)( 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α

9.热导率(导热系数)λ: 单位温度梯度下,单位时间内通过单位截面积的 在 热量。(标志 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△ 材 T/△X。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论 1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位h ν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。

材料物理性能答案

)(E k → 第一章:材料电学性能 1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率ρ或电阻率σ评价材料的导电能力。 按材料的导电能力(电阻率),人们通常将材料划分为: 2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动。如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。 E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。 缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性) 3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线。 4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。 n 决定,并且其能量值也是不连续的,能级差与材料线度 L 2成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。 k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度。ρ =V/(2π)3,含自旋的能态密度应为2ρ 3,2,1k k k k → →→→的三个分量为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点,对于准连续的能级,此坐标系中的每个整数点都代表一个能态。人们把此坐标系常数称为k 空间或状态空间。

材料物理性能考点

一、概念题 1.电畴:晶体中存在一些不同方向的自发极化区域(domain).在铁电体中,固有电极矩在一定的子区域内取向相同这些区域就称为电畴。(取向相同的固有电偶极矩)电畴的排列方式分为180度电畴(反平行)和90度电畴。因而不加电场时,整个晶体总电矩为零。 2.畴壁:两畴之间的界壁称为畴壁。 3.马基申等人把固溶体电阻率看成由金属基本电阻率ρ(T)和残余电阻ρ残组成。即ρ=ρ(T)+ρ残称为马基申定律。根据马基申定律,在高温时金属的电阻率基本上取决于ρ(T) ,而在低温时取决于ρ残。既然ρ残是电子在杂质和缺陷上的散射引起的,那么ρ残的大小就可以用来评定金属的电学纯度。 8. 电介质的击穿,当施加在电介质上的电压增大到一定值时,使电介质失去绝缘性的现象称为击穿(breakdown)。击穿形式:1)电击穿,是一电过程,仅有电子参与;2)热击穿;3)化学击穿 9.介质损耗:.电介质在电场作用下,单位时间内因发热而消耗的能量称电介质的损耗功率。介质损耗形式:1)电导(或漏导)损耗,实际使用的电介质都不是理想的绝缘体,都或多或少地存在一些弱联系带电离子或空穴,在E 作用下产生漏导电流,发热,产生损耗。2)极化损耗 10.超导体:材料失去电阻的状态称为超导态,存在电阻的状态称为正常态,具有超导态的材料称为超导体。 11.接触电性:两种不同的材料接触,由于它们可以有不同的相、不同的晶体结构、电子结构,所以在它们的交界面上不可避免地要发生载流子的某种行为,由此而引起两种材料单独存在时所没有的新的电学效应,称为接触电性。 12、热电效应:电位差、温度差、电流、热流之间存在着的交叉联系构成了热点效应。 第一个热电效应——塞贝克效应:两种下同的导体组成一个闭合回路时,若在两接头处存在温度差,则回路中将有电势及电流产生,这种现象称为塞贝克效 第二个热电效应——玻尔贴效应:当有电流通过两个不同导体组成的回路时,除产生焦耳热外,在两接头处还分别出现吸收或放出热量Q的现象,Q称为玻尔帖热,此现象称为玻尔帖效应, 第三个热电效应——汤姆逊效应:当电流通过具有一定温度梯度的导体时,除产生焦耳热外,另有一横向热流流入或流出导体(即吸热或放热),此种热电现象称为汤姆逊效应。 13、热释电效应:在某些绝缘物中,由于温度变化而引起电极化状态改变的现象。 23、光电效应:是指光线照射在金属表面时,金属中有电子逸出的现象,称为光电效应。(百度的) 24、一般吸收:在光学材料中,石英对所有可见光几乎都透明的,在紫外波段也有很好的透光性能,且吸收系数不变,这种现象为一般吸收。 25.选择吸收:在光学材料中,石英对于波长范围为3.5—5.0μm的红外光却是不透明的,且吸收系数随波长剧烈变化,这种现象为选择吸收。 26.折射率的色散:材料的折射率随入射光的频率的减小而减小,这种现象称为折射率的色散。 27.光生伏特效应:是指半导体在受到光照射时产生电动势的现象。(百度的) 28光的非弹性散射:当光通过介质时,从侧向接受到的散射光主要是波长(或频率)不发生变化的瑞利散射光,属于弹性散射。当使用高灵敏度和高分辨率的光谱仪,可以发现散射光中还有其它光谱成分,它们在频率坐标上对称地分布在弹性散射光的低频和高频侧,强度一般比弹性散射微弱得多。这些频率发生改变的光散射是入射光子与介质发生非弹性碰撞的结果,称为非弹性散射。

耐火材料的热学性质

耐火材料的热学性质 耐火材料的热学性质有热膨胀、热导率、热容、温度传导性,此外还有热辐射性。 3.1 耐火材料的热膨胀 耐火材料的热膨胀是其体积或长度随温度升高而增大的物理性质。原因是材料中的原子受热激发的非谐性振动使原子的间距增大而产生的长度或体积膨胀。衡量耐火材料的热膨胀性能的技术指标有热膨胀率、热膨胀系数。 3.1.1 热膨胀率 热膨胀率也称线膨胀率,物理意义:是试样在一定的温度区间的长度相对变化率。测定出热膨胀率,才能计算出热膨胀系数。 线膨胀率=[(L T-L0)/L0]×100% 式中:L T、L0—分别为试样在温度T、T0时的长度,(mm)。 3.1.2 热膨胀系数 热膨胀系数有平均线膨胀系数α、真实线膨胀系数αT,体膨胀系数β。以后除特别说明外,热膨胀系数一般指的是平均线膨胀系数。线膨胀系数物理意义:在一定温度区间,温度升高1℃,试样长度的相对变化率。 热膨胀系数α=(L T-L0)/ L0(T-T0)=ΔL/ L0ΔT 式中:T、T0—分别为测试终了温度、测试初始温度,(℃)。 体热膨胀系数β=ΔV/V0ΔT 式中:V0—为试样在初始温度T0时的体积,(mm3)。 真实热膨胀系数αT=dL/LdT 式中;L—为试样在某温度时的长度,(mm)。 如线膨胀系数数值很小,则体膨胀系数约等于线膨胀系数的3倍。对于各向同性晶体,体膨胀系数β≈3α;对于各向异性晶体,体膨胀系数等于各晶轴方向的线膨胀系数只和,即β≌αa+αb+αc。 影响材料热膨胀系数的因素有:化学矿物组成、晶体结构类型和键强等。 ①化学矿物组成的影响:含有多晶转变的制品,热膨胀系数的变化不均匀,在相变点会发生突变,例如硅质制品和氧化锆制品;材料中含有较多低熔液相或挥发性成分时,热膨胀系数α在相应的温度区域也发生较大的变化。 ②晶体结构类型的影响:结构紧密的晶体热膨胀系数较大、无定型的玻璃热膨胀系数较

材料物理性能

一、填空20*1 1.控制或改造材料性能的路线是工艺→结构→性能,即工艺决定结构,结构改变性能。 2.材料在外力作用下发生形状和尺寸的变化,称为形变。 3.弹性模量影响的因素:原子结构、温度、相变。 4.材料的各种热学性能均与晶格热振动有关。 5.可见光的波长390-770nm。 6.光的频率、波长和辐射能都是由光子源决定的。 7.欧姆定律的两种表达形式:均匀导体,I=V/R,非均匀导J=óE。 8.物质的磁性是电流产生的。 9.磁性材料的磁化曲线和磁滞回线是材料在外加磁场时表现出来的宏观特性。 10.影响材料的击穿强度的因素:介质结构的不均匀性、材料中气泡的作用、材料表面状态和边缘电场。 8.智能材料的功能和生命特征:传感功能、反馈功能、学习能力和预见性功能、响应功能、自诊断能力、自修复能力、自调节能力。 二、名词解释5*3 1.塑性形变和弹性形变 塑性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 弹性形变:在超过材料的屈服应力作用下产生形变,外力移去后不能恢复的形变。 2.声频支振动和光频支振动 声频支振动:振动着的质点中包含中包含频率甚低的格波,质点间的位相差不大,则格波类似于弹性体中的应变波,称为声频支振动。 光频支振动:可以看成是相邻原子振动方向相反,形成一个范围很小、频率很高的振动。 3.反射、折射、双折射 反射:光线入射到界面时,一部分光从界面上反射,形成反射线。 折射:光线入射到界面时,其余部分进入第二种介质,形成折射线。 双折射:由一束折射光入射后分成两束光的现象。 4.压电效应、压敏效应、光电效应、热释电效应、电热效应、西贝尔效应 压电效应:在晶体的特定方向上施加压力或拉力,晶体的一些对应的表面上分别出现正负束缚电荷,其电荷密度与外施力的大小成正比例,也即正压电效应具有对称中心的点群晶体不会具有压电性。 压敏效应:对电压变化敏感的非线性电阻效应,即在某一临界电压下,电阻值非常之高,几乎无电流通过,超过该临界电压,电阻迅速降低,让电流通过。 光电效应:某些物质受到光照后,引起物质电性发生变化,这种光致电变的现象称为光电效应。 热释电效应:由于温度的变化而引起的晶体表面荷电现象。 电热效应:热电体在绝热条件下,当外加电场引起永久极化强度改变是时,其温度将发生变化的现象。 西贝尔效应:半导体材料的两端如果有温差,那么在较高的温度区有更多的电子被激发到导带中去,但热电子趋向于扩散到较冷的区域。当这两种效应引起的化学势梯度和电场梯度相等且方向相反时,就达到稳定状态。多数载流子扩散到冷端,结果在半导体两端就产生温差电动势,这种现象被称为温差电动势效应,也被称为西贝尔效应。 5.居里点 居里点:是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁电相转变成顺电相引的相变温度。

材料物理性能重点

《材料物理性能》思考题 第一章热学性能 1.1 概述 1、材料的热学性能包括热容、热膨胀、热传导和热稳定性等。 2、什么是格波? 答:由于晶体中的原子间存在着很强的相互作用,原子的微振动不是孤立的,原子的运动状态(或晶格振动)会在晶体中以波的形式传播,形成“格波”。 3、若三维晶体由N个晶胞组成,每个晶胞中含有S个原子,则晶体中格波数为3NS 个,格波支数为3S 个。 4、受热晶体的温度升高,实质是晶体中热激发出的声子数目的增加。 5、举例说明某一材料热学性能的具体应用。 1.2 热容 1、什么是比热容和摩尔热容(区分:定压摩尔热容和定容摩尔热容)? 答:比热容(c):质量为1kg的物质在没有相变和化学反应条件下温度升高1K所需要的热量答:摩尔热容(C m):1mol物质在没有相变和化学反应条件下温度升高1K所需要的热量 3、固体热容的经验定律和经典理论只适用于高温,对低温不适用! 4、由德拜模型可知,温度很低时,固体的定容摩尔热容与温度的三次方成正比(德拜T3定律)。 5、金属热容由晶格振动和自由电子两部分贡献组成 6、自由电子对热容的贡献在极高温和极低温度下不可忽视,在常温时与晶格振动热容相比微不足道! 7、一级相变对热容的影响特征是什么? 答:在相变温度下,热焓发生突变,热容不连续变化。 8、影响无机材料热容的因素有哪些? 答:温度,键强,弹性模量,熔点 9、对于隔热材料,需使用低热容(如轻质多孔)隔热砖,便于炉体迅速升温,同时降低热量损耗。 10、什么是热分析法?DTA、DSA和TG分别是哪三种热分析方法的简称?举例说明热分析

法的应用。 答:热分析法:在程序控制温度下,测量物质的物理性质与温度关系的一种技术。 DTA:差热分析(1.测量系统(示差热电偶)2. 加热炉3. 温度程序控制器4. 记录仪)1.3 热膨胀 1、什么是线或体膨胀系数?答:温度升高1 K时,物体的长度(体积)的相对增加量。 2、固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。 3、材料的热膨胀来自原子的非简谐振动。 4、材料热膨胀的物理本质可用原子间的作用力曲线或势能曲线曲线来解释。 5、熔点较高的金属具有较低的膨胀系数。 6、结构对称性较低的单晶体,其膨胀系数具有各向异性,不同的晶向有不同的线膨胀系数。一般来说,弹性模量高的方向将有较小的膨胀系数,反之亦然。(如石墨:平行于C轴方向的热膨胀系数大于垂直于C轴方向的热膨胀系数。) 7、举例说明一级相变对材料膨胀性能的影响。 8、钢的不同组织比容从大到小的顺序为:马氏体、渗碳体、铁素体、珠光体、奥氏体。 9、通常陶瓷制品表面釉层与坯体热膨胀系数的大小关系如何?为什么? 1.4 热传导 1、什么是热导率? 2、固体材料热传导主要有、和三种微观机制,不同材料导热机制有何区别? 3、对于声子热导而言,热阻来源于声子扩散过程中的各种(如声子的碰撞、点缺陷的散射、晶界的散射和位错的散射等)。 4、对于同一种物质,多晶体、单晶体和非晶体的热导率的大小关系如何? 5、请综合分析非晶体的热导率与温度的关系。 6、综合分析影响无机材料热导率的因素。 1.5 热稳定性 1、什么是材料的热稳定性?。 2、材料抗热冲击损坏的两大类型为和。 3、什么是热应力?材料的热应力主要来源于哪三个方面? 4、抗热应力损伤性正比于断裂表面能,反比于应变能的释放率。

相关文档