文档视界 最新最全的文档下载
当前位置:文档视界 › 对粗大误差和随机误差处理

对粗大误差和随机误差处理

对粗大误差和随机误差处理
对粗大误差和随机误差处理

用matlab 对一组随机数据的随机误差的处理

当今社会,人们对测量和仪器的精确性要求越来越高,传统的测量精确度远远不能满足当今科技以及人们生活方面的要求,所以需要一种能够快速分析误差的方法出现。matlab 可以大大减少人工运算的成本,成本低,可行性高,而且具有普遍性,故采用matlab 来进行误差处理。

等精度测量粗大误差处理

粗大误差的判别准则

(1)莱以特准则(3σ准则)

具体方法:求出平均值和σ,将残差的绝对值与3σ进行比较,大于3σ的测量值都是坏值。这种方法称为 3σ法则(正态分布)。

适合测量点数较大的情况,计算所有的点。逐一剔除异常值

(2)罗曼诺夫斯基准则

具体方法:首先剔除一个可疑的测得值,然后按照t 分布检验被剔除的测量值是否含有粗大误差。如果是,剔除后,再判断其它的测试结果点。

适合条件:测量次数较少的情况,是逐一剔除的。

等精度测量随机误差处理

(1) 算数平均值

1

1==∑n i n i x x

大多数情况下,真值未知,用=-i i v x x 来代替误差:

σ==σ=s

δ=-i i x x n :测量次数

(2)测量列算数平均值标准差

/σσ=x (3)算数平均值的极限误差:

,δδσ=

=t t

lim δσ=±x t t 为置信系数,通过查表可得。

|()d x x |K n -2,a σ

-≥1,1=-1n i i i d x x n =≠∑

结果表示: lim δ=±X x t x

(4

(5

软件流程设计

等精度测量计算流程

开始 读取数据文件

matlab程序

clc;

clear;

data=load('test.txt'); %

v_2=0; %定义残差的平方

average_data=0; %定义数据的平均值

average_data=mean(data);%计算平均值

if(length(data)<10) %判断数据的长度,用罗曼诺夫斯基准则剔除粗大误差

while(1)

for i=1:length(data) %计算残差和残差的平方和

v(i)=data(i)-average_data;

v_2=v_2+v(i)^2;

end

[max_v,I]=max(abs(v));`

sum=0;

for i=1:length(data)

sum=sum+v(i);

end

average_data=sum/(length(data)-1); %计算数据的平均值

bzc=(v_2/(length(data)-2))^0.5; %计算数据的标准差

alpha=0.05;

t=tinv(1-alpha/2,length(data)-2);

if(v(I)>=(t*bzc)) %判断数据是否为粗大误差data(I)=[];

else break;

end

v=[];

end

end

if(length(data)>=10)

while(1)

for i=1:length(data) %计算残差和残差的平方和

v(i)=data(i)-average_data;

v_2=v_2+v(i)^2;

end

bzc=(v_2/(k-1))^0.5; %计算标准差

bzc_3=3*bzc;

[max_v,I]=max(abs(v));

if max_v>bzc_3 %根据莱以特准则剔除粗大误差data(I)=[];

end

v=[];

l=length(data);

if(k==l)

n=0;

end

end

p=0.95/2;

t=2.60;

end

delta=t*bzc; %极限误差

X_max=average_data+delta;

X_min=average_data-delta;

fid = fopen('result.txt', 'wt');

fprintf(fid,'delta=%12.8f\nX_max=%12.8f\nX_min=%12.8f\ndata(I)=%12.8f\ n',delta,X_max,X_min,data(I)); %把数据写入文本文档

fclose(fid);

用matlab处理数据可以做到效率高,成功率高,节约人力物力,通过此程序进行数据处理,方便快捷,并且可以重复使用

在进行研究过程中,由于我们对matlab软件没有深入了解,所以很多函数以及操作没有特别了解,对基本的操作流程也不是很熟悉。对此,我们上网找了很多关于matlab的基本教程和一些函数的表示方法,同时也去图书馆查阅了有关书籍,从而解决了困扰我们的难题,也让我们对matlab以及误差处理方面的知识有了深刻的了解。

第二章 误差和分析数据处理

第二章误差和分析数据处理 1.指出下列各种误差是系统误差还是偶然误差?如果是系统误差,请区别方法误差、仪器和试剂误差或操作误差,并给出它们的减免办法。 (1)砝码受腐蚀;(2)天平的两臂不等长;(3)容量瓶与移液管未经校准;(4)在重量分析中,试样的非被测组分被共沉淀;(5)试剂含被测组分;(6)试样在称量过程中吸湿;(7)化学计量点不在指示剂的变色范围内;(8)读取滴定管读数时,最后一位数字估计不准;(9)在分光光度法测定中,波长指示器所示波长与实际波长不符。(10)在HPLC测定中,待测组分峰与相邻杂质峰部分重叠。 答:(1)系统误差;校准砝码。 (2)系统误差;校准仪器。 (3)系统误差;校准仪器。 (4)系统误差;控制条件扣除共沉淀。 (5)系统误差;扣除试剂空白或将试剂进一步提纯。 (6)系统误差;在110℃左右干燥后称重。 (7)系统误差;重新选择指示剂。 (8)偶然误差;最后一位是估计值,因而估计不准产生偶然误差。 (9)系统误差;校准仪器。 (10)系统误差;重新选择分析条件。 2.表示样本精密度的统计量有哪些? 与平均偏差相比,标准偏差能更好地表示一组数据的离散程度,为什么? 3.说明误差与偏差、准确度与精密度的区别和联系。 4.什么叫误差传递?为什么在测量过程中要尽量避免大误差环节? 5.何谓t分布?它与正态分布有何关系? 6.在进行有限量实验数据的统计检验时,如何正确选择置信水平? 7.为什么统计检验的正确顺序是:先进行可疑数据的取舍,再进行F检验,在F检验通过后,才能进行t检验? 8.说明双侧检验与单侧检验的区别,什么情况用前者或后者? 9.何谓线性回归?相关系数的意义是什么? 10.进行下述运算,并给出适当位数的有效数字。

粗大误差处理方法

粗大误差处理方法 在一组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,并决定取舍。常用的方法有拉依达法、肖维纳特(Chavenet)法。格拉布斯(Grubbs)法等。 一、拉依达法 当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为: ︳xi -x-‘︳>3S 则该测量数据应舍弃。 这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。 取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在x-‘一3S与x-‘十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。 另外,当测量值与平均值之差大于2倍标准偏差(即︳xi -x-‘︳>2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。 拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。 二、肖维纳特法 进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi 是可疑的,应予舍弃。判别范围由下式确定: 肖维纳特法可疑数据舍弃的标准为: ︳xi一x-‘︳/S≥kn

测量误差及数据处理.

第一章测量误差及数据处理 物理实验的任务不仅是定性地观察各种自然现象,更重要的是定量地测量相关物理量。而对事物定量地描述又离不开数学方法和进行实验数据的处理。因此,误差分析和数据处理是物理实验课的基础。本章将从测量及误差的定义开始,逐步介绍有关误差和实验数据处理的方法和基本知识。误差理论及数据处理是一切实验结果中不可缺少的内容,是不可分割的两部分。误差理论是一门独立的学科。随着科学技术事业的发展,近年来误差理论基本的概念和处理方法也有很大发展。误差理论以数理统计和概率论为其数学基础,研究误差性质、规律及如何消除误差。实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量质量,提高测量结果的可信赖程度。对低年级大学生,这部分内容难度较大,本课程尽限于介绍误差分析的初步知识,着重点放在几个重要概念及最简单情况下的误差处理方法,不进行严密的数学论证,减小学生学习的难度,有利于学好物理实验这门基础课程。 第一节测量与误差 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量,以取得物理量数据的表征。对物理量进行测量,是物理实验中极其重要的一个组成部分。对某些物理量的大小进行测定,实验上就是将此物理量与规定的作为标准单位的同类量或可借以导出的异类物理量进行比较,得出结论,这个比较的过程就叫做测量。例如,物体的质量可通过与规定用千克作为标准单位的标准砝码进行比较而得出测量结果;物体运动速度的测定则必须通过与二个不同的物理量,即长度和时间的标准单位进行比较而获得。比较的结果记录下来就叫做实验数据。测量得到的实验数据应包含测量值的大小和单位,二者是缺一不可的。 国际上规定了七个物理量的单位为基本单位。其它物理量的单位则是由以上基本单位按一定的计算关系式导出的。因此,除基本单位之外的其余单位均称它们为导出单位。如以上提到的速度以及经常遇到的力、电压、电阻等物理量的单位都是导出单位。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 测量可以分为两类。按照测量结果获得的方法来分,可将测量分为直接测量和间接测量两类,而从测量条件是否相同来分,又有所谓等精度测量和不等精度测量。 根据测量方法可分为直接测量和间接测量。直接测量就是把待测量与标准量直接比较得出结果。如用米尺测量物体的长度,用天平称量物体的质量,用电流表测量电流等,

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

对粗大误差和随机误差处理

用matlab 对一组随机数据的随机误差的处理 当今社会,人们对测量和仪器的精确性要求越来越高,传统的测量精确度远远不能满足当今科技以及人们生活方面的要求,所以需要一种能够快速分析误差的方法出现。matlab 可以大大减少人工运算的成本,成本低,可行性高,而且具有普遍性,故采用matlab 来进行误差处理。 等精度测量粗大误差处理 粗大误差的判别准则 (1)莱以特准则(3σ准则) 具体方法:求出平均值和σ,将残差的绝对值与3σ进行比较,大于3σ的测量值都是坏值。这种方法称为 3σ法则(正态分布)。 适合测量点数较大的情况,计算所有的点。逐一剔除异常值 (2)罗曼诺夫斯基准则 具体方法:首先剔除一个可疑的测得值,然后按照t 分布检验被剔除的测量值是否含有粗大误差。如果是,剔除后,再判断其它的测试结果点。 适合条件:测量次数较少的情况,是逐一剔除的。 等精度测量随机误差处理 (1) 算数平均值 1 1==∑n i n i x x 大多数情况下,真值未知,用=-i i v x x 来代替误差: σ==σ=s δ=-i i x x n :测量次数 (2)测量列算数平均值标准差 /σσ=x (3)算数平均值的极限误差: ,δδσ= =t t lim δσ=±x t t 为置信系数,通过查表可得。 |()d x x |K n -2,a σ -≥1,1=-1n i i i d x x n =≠∑

结果表示: lim δ=±X x t x (4 (5 软件流程设计 等精度测量计算流程 开始 读取数据文件

matlab程序 clc; clear; data=load('test.txt'); % v_2=0; %定义残差的平方 average_data=0; %定义数据的平均值 average_data=mean(data);%计算平均值 if(length(data)<10) %判断数据的长度,用罗曼诺夫斯基准则剔除粗大误差 while(1) for i=1:length(data) %计算残差和残差的平方和 v(i)=data(i)-average_data; v_2=v_2+v(i)^2; end [max_v,I]=max(abs(v));` sum=0; for i=1:length(data)

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

第一章--误差和数据处理习题解答

第一章 误差和数据处理习题解答 1、指出下列情况属于随机误差还是系统误差: (1)视差; (2)天平零点漂移; (3)千分尺零点不准; (4)照相底版收缩; (5)水银温度计毛细管不均匀; (6)电表的接入误差。 解:(1)忽左忽右,属随机误差; (2)往单方向漂移属系统误差;随机漂移属随机误差; (3)属系统误差,应作零点修正; (4)属系统误差; (5)按随机误差处理; (6)属系统误差,可作修正。 2、说明以下因素的系统误差将使测量结果偏大还是偏小: (1)米尺因低温而收缩; (2)千分尺零点为正值; (3)测密度铁块内有砂眼; (4)单摆公式测重力加速度,没考虑θ≠0; (5)安培表的分流电阻因温度升高而变大。 解:(1)使结果偏大; (2)使结果偏大,属系统误差,修正时应减去这正零点值; (3)使密度值偏小; (4)使结果偏小: 当θ≠0时,单摆公式为: )2 sin 411(220θπ +=g l T 或 2220 2)2sin 1(4θπ+=T l g 若用θ=0的2 0204T l g π=近似,结果偏小; (5)分流电阻变大,分流变小,使结果偏大。 3、用物理天平(仪?=0.020g )称一物体的质量m ,共称5次,结果分别为36.127g 、 36.122g 、36.121g 、36.120g 和36.125g 。试求这些数据的平均值、绝对不确定度和相对不确定度。 解:36.12736.12236.12136.12036.12536.12336.1230 m g +++++== m S =0.0026g , 已知:仪? =0.020g , 0.020u g ==?

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

知识笔记-2.2 随机误差的分析1-随机误差的统计处理

§ 2.2随机误差的分析 § 2.2.1随机误差的统计处理 1、测量值的数学期望:对某一被测量进行n 次等精度测量,得到x 1,x 2...x n ,其算数平均值为:1 1n i i x x n ==∑,也称为样本平均值。当测量次数n →∞时,样本平均值x 的极限称为测量值的数学期望。 2、方差:当n →∞时,测量值与期望值之差的平方的统计平均值,可写为: 2 221111lim ()lim n n i x i n n i i x E n n σδ→∞→∞===-=∑∑ 3、标准差: 21 1lim n i n i n σδ→∞==∑ 标准差反映了测量的精密度。 4、正态分布 根据概率论中的中心极限定理和随机误差的性质可知,在多数情况下,随机误差服从正态分布。其分布密度可以写为如下公式: 22-(x -E )1(x )=exp[]2σ2πσ i x i ? 测量值x i 的分布曲线如图所示:可以看出,测量值对称的分 布在数学期望的两侧。 根据随机误差的正态分布曲线,可以得出以下结论: ☆ δ愈小、Φ(δ)愈大,说明绝对值小的随机误差出现的概 率大; ☆随着δ的加大, Φ(δ)很快趋于0,即超过一定界限的随机 误差实际上几乎不出现(有界性; ☆ σ愈小,正态分布愈尖,表明测得值愈集中,精密度高; ☆ 大小相等符号相反的误差出现的概率相等 (对称性、补 偿性)。 5、残差: i i u x x =- 注意两点:☆ 残差的代数和等于0. ☆当测量次数趋于无穷时,残差等于随机误差. 6、有限次测量的标准差:

贝塞尔公式:∑-==∧ σn u i i n 1112 用极差法求标准差:=σC R x ? 其中R 为测量结果中的最大值和最小值之差。C 为极差系数,可以通过查表得到。 7、算术平均值的标准差:当n 为有限次测量时,平均值的标准差课表示为:=σ σn x /?? 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

“测量误差、不确定度和数据处理”作业参考答案

“测量误差、不确定度和数据处理”作业参考答案(总分:40分) 1.(3分) 1 5 8 9 2 3 2. (3分) (1) 5位 1.08 (2) 5位 0.862 (3) 5位 27.0 (4) 6位 3.14 (5) 4位 0.00200 (6) 5位 4.52?103 3. (2分) A 正确,其他结果的平均值和不确定度的最后一位没有对齐; 4.(2分) (3) 5. (4分) (1) A=(1.70±0.01)?104km, P=95%; (2) B=(1.7±0.5)?10-3m, P=95%; (3) C=(1.08±0.02)?10cm, P=95%; (4) D=(9.95±0.02)?10?C, P=95%; 6. (4分) (1) 216.5-1.32=215.2 (2) 0.0221?0.0221=0.000488 (3) 55100.60.11000.66.1160.121500400?=?=-? (4) 15cm=1.5?102mm=1.5?105μm 7. (5分) (1) 98.754+1.3=100.0 (2) 107.50–2.5=105.0 (3) 27.6÷0.012=2.3?103 (4) 121×10= 1.2×103 (5) 00.20.3800.760.200.4000.76==- (6) 0.100 .11000.200.50)001.000.1)(0.3103()3.1630.18(00.50=??=+--? (7) ()()23101.20.11010 0.11000.10.110000.100.10.100.1000.110000.100.7700.78412.46.50.100?=+??=+??=+?-+? (8) 27.30 .47915680.4790.9436250.4790.943252==+=+ (9) 6630.148030.1410080.030.141005 .20.230.141005.23.213.23=-=-?=-?=-?- 8. (9分) 解:n=6,一般取置信概率P=95%,查表知t p =2.45 ()mm D D i i 836.9836.9837.9834.9838.9836.9835.96 16161=++++++==∑= ()()()()()mm mm D D t U i i p B A D 3366225 2估2 仪22222估2仪6122 2 10510241017108200010004030 101452166000100020002000010452166-----=?≈?≈?+?=++??=?+?+-++-+++-?=?+?+--=?+?=∑.......... 因此 ()mm D 005.0836.9±=, (P =95%) 9. (8分) 解: 3322485478520 9534214225444cm g cm g h D m .....==???==ππρ 3 3661022 222222222222222210510097410181106151062020901053420050414225400204-----?≈?≈?+?+?=+?+=++=?? ? ????+??? ????+??? ????==..........ln ln ln h U D U m U U h U D U m U E h D m h D m ρρρρρρ 32310252100974485cm g E U --?≈??==...ρρρ 因此()303.048.5cm g ±=ρ, (P =95%)或()302304785cm g ..±=ρ, (P =95%) 分析: 相对不确定度大的直接测量量D 对间接测量量ρ的不确定度贡献最大; 相对不确定度小的直接测量量m 对间接测量量ρ的不确定度贡献最小; 这是乘除表达式构成的间接测量量共同的规律。

第二章误差及数据处理

第二章误差及数据处理 (第一部分) 一、选择题 1. 从精密度好就可断定分析结果可靠的前提是() A. 随机误差小; B. 系统误差小; C. 平均偏差小; D. 相对偏差小。2.以下哪些是系统误差的特点(A、C、E);哪些是偶然误差的特点()。 A.误差可以估计其大小; B.数值随机可变; C.误差是可以测定的; D.在同一条件下重复测定中,正负误差出现的机会相等,具有抵消性; E.通过多次测定,均出现正误差或负误差。 3.准确度、精密度、系统误差、偶然误差之间的关系正确的是()。 A.准确度高,精密度一定高; B.偶然误差小,准确度一定高; C.准确度高,系统误差、偶然误差一定小; D.精密度高,准确度一定高; E.偶然误差影响测定的精密度,但不影响准确度。 4、下列有关随机误差的论述中不正确的是() A.随机误差在分析中是不可避免的; B.随机误差出现正误差和负误差的机会均等; C.随机误差具有单向性; D.随机误差是由一些不正确的偶然因素造成的。 5.消除或减免系统误差的方法有();减小偶然误差的方法有()。 A.进行对照试验; B.进行空白试验; C.增加测定次数; D.遵守操作规程; E.校准仪器; F.校正分析方法。 6.下列情况对分析结果产生何种影响(A.正误差;B.负误差;C.无影响;D.降低精密度) (1)标定HCl溶液时,使用的基准物Na2CO3中含少量NaHCO3()。 (2)在差减法称量中第一次称量使用了磨损的硅码()。 (3)把热溶液转移到容量并立即稀释至标线()。 (4)配标准溶液时,容量瓶内溶液未摇匀()。 (5)平行测定中用移液管取溶液时,未用移取液洗移液管。() (6)将称好的基准物倒入湿烧杯。()

偶然误差的处理(精)

§1.2偶然误差的处理 在这一节里,我们假定在没有系统误差存在的情况下,来讨论偶然误差问题。 一、测量结果的最佳值——多次测量的平均值 对某一物理量进行测量时,最好进行多次重复测量。根据多次重复测量的结果,可能获得一个最接近真值的最佳值。 在相同条件下,对某物理量x进行了n次重复测量,其测量值分别 当测量次数无限增多时,根据偶然误差的性质可以证明:该平均值 作为测量的结果。 二、算术平均绝对误差 真值无法得到,误差也就无法估算。由于平均值是最佳值,可以把它作为近真值来估算误差。一般定义测量值与平均值之差为“偏差”或“离差”,它们与误差是有区别的。然而当测量次数很多时,“偏差”会接近误差。在以下讨论中,不去严格区分“偏差”和误差,把它们统称为误差。

取 量结果表达式可写为 三、标准误差——方均根误差a 在现代实验测量中,通常用标准误差来衡量一组测量值的精密度,标准误差就是均方根误差。物理量x的标准误差用σx表示,它的定义是:当测量次数无限多时,有 测量次数不可能无限多,根据误差理论,当测量次数有限时,(1-4)式应改写成: (1-5)式是n次重复测量中单次测量的标准误差,n次测量结果平均

当偶然误差用标准误差来表示时,测量结果应写为 四、相对误差 我们把测量结果及其偶然误差写为x±Δx的形式,其中x是测量值,它可以是一次测量值,也可以是多次测量的平均值;Δx是绝对误差,它可以是一次测量中绝对误差的绝对值,也可以是平均绝对误差或标准误差。在对同一对象采用不同精度的仪器或测量方法来测量时,Δx能够表示出测量的不同精确度。但对不同对象进行测量时,却反映不出不同的精确度。例如,用米尺测量两物体的长度,测量结果为: x1=100.00±0.05cm,x2=10.00±0.05cm,两者的绝对误差相同,均为0.05cm,但误差点测量值的比例不同,前者的精确度高于后者。因此,引入相对误差,它可以评价上述两测量结果精确度的差别。相对误差通常用百分比表示,所以又称为百分比误差。相对误差E定义为 (1-8)式中的x通常取平均值,也可以用公认值或理论值代替。 例对某电压测量的数据处理(见表1-1)。 表1-1电压的测量

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)± 625 (cm ) 改:±(cm ) (2) ± 5(mm ) 改: ± 5(mm ) (3)± 6 (mA ) 改: ± (mA ) (4)96 500±500 (g ) 改: ± (kg ) (5)±(℃) 改: ±(℃) 4.用级别为,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : 10 1 19.548 ()10i i I I mA ===∑ ②计算测量列的标准差I σ: 0.0623 (cm)I σ= = ③根据格拉布斯准则判断异常数据: 取显著水平a =,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 6 60.158 2.536 2.410.0623 I I g σ?= = => 由此得6I =为异常数据,应剔除。 ④用余下的数据重新计算测量结果

重列数据如表1-3-3。 计算得 9 1 19.564 ()9i i I I mA ===∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =±(cm ),高h =±(cm ),质量m =±(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: 322 4436.488 2.7003g /m 3.1416 2.042 4.126 m c d h ρπ?= =??=() (2)计算g 标准差相对误差: 对函数两边取自然对数得 ln ln 4ln ln 2ln ln m d h ρπ=-+-- 求微分,得

粗大误差处理

. 莱以特准则 load a.txt while(1) i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); d=3*bzc; [maxv,I]=max(abs(v(i))); if maxv>d fprintf('cdw is %f\n',a(I)); a(I)=[]; else break; end end cdw is 29.520000 cdw is 28.400000 罗曼诺夫斯基准则 load a.txt n=input('please input n:\n'); xzd=input('please input xzd:\n'); switch xzd case xzd==0.05 x=1; otherwise x=2; end b=a(n); a(n)=[]; while(1) c=mean(a); i=1:length(a); n=length(a); v(i)=a(i)-mean(a); bzc=sqrt(sum(v(i).^2)/(length(a)-1)); k=[4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08;11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81]; g=k(x,n-2); f=g*bzc; e=abs(b-c); if e>f fprintf('cdw is %f\n',b); else fprintf('wcdw\n'); end break; end please input n: 4 please input xzd: 0.05 cdw is 29.520000

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

粗大-系统-随机误差处理

课程设计用仪器设备名称 此次课程设计用到的仪器设备和软件包括: (1) 个人计算机; (2) Matlab 软件。 课程设计过程 1、课程设计处理原理: 此次课程开展的数据处理包:(1)粗大误差处理;(2)系统误差处理;(3)随机误差处理。他们的原理分别分析如下: (1)粗大误差处理 对于粗大误差,采用莱以特准则和罗曼诺夫斯基准则。 莱以特准则:求出数据的算数平均值x 和标准差σ,将残差的绝对值i x v 和 3σ进行比较,大于3σ的值都认为是粗大误差。 罗曼诺夫斯基准则:首先剔除该数据中的最大值,然后再按照t 分布检验, 求出该项与剔除后平均值的差,即d x x ?,再与()2,K n a σ?进行比较,如果前者大于等于后者,那么该数据有系统误差。 (2)系统误差处理 对于系统误差,我们采用了残差总和判断法,阿贝-赫梅判别法,标准差比较法,他们的原理如下: 残差总和判断法:对于等精度的系统测量数据12,,...n x x x ,设相对的残差 分别是12,,...n v v v ,若有12n i i v =>∑,则怀疑测量数据有系统误差 阿贝-赫梅判别法:对于等精度的系统测量数据12,,...n x x x ,设相对的残, 分别是12,,...n v v v ,122311 1 ...n n n i i i u v v v v v v v v ?+==+++= ∑,如果2u >, 则判定该组数据含有系统误差。 标准差比较法:对于等精度的系统测量数据12,,...n x x x ,设相对的残差分

别是12, ,...n v v v ,用不同的公式计算标准差,通过比较可以发现存在的系 统误差。用贝塞尔公式计算,1s = ,用别捷尔斯公式计算, 1s =211s s ≥,则怀疑测量中存在系统误差。 (3)随机误差处理 我们考虑了正态分布和t 分布两种情况,通过置信概率和自由度分别在正态分布积分表和t 分布表中找到对应的t 值,再求出极限误差lim x t ?σ=+。 2 课程设计的整体流程图如图(一)所示。在图(一)中,粗大误差分析,系统误差分析,随机误差分析都作为子程序存在。首先我们是将存储在txt 文件中的测量数据导入到matlab 中,然后进行在子程序中用两种方式进行粗大误差分析,并返回剔除异常值以及剔除异常值后的测量数据。接着进行系统误差分析,用了三种方法检测是否具有系统误差,并返回测量结果。之后进行随机误差分析,返回两种分布的极限误差。最后将本次测量结果都写入到txt 文件中。

相关文档
相关文档 最新文档