文档视界 最新最全的文档下载
当前位置:文档视界 › 知识笔记-2.2 随机误差的分析1-随机误差的统计处理

知识笔记-2.2 随机误差的分析1-随机误差的统计处理

知识笔记-2.2 随机误差的分析1-随机误差的统计处理
知识笔记-2.2 随机误差的分析1-随机误差的统计处理

§ 2.2随机误差的分析

§ 2.2.1随机误差的统计处理

1、测量值的数学期望:对某一被测量进行n 次等精度测量,得到x 1,x 2...x n ,其算数平均值为:1

1n

i i x x n ==∑,也称为样本平均值。当测量次数n →∞时,样本平均值x 的极限称为测量值的数学期望。

2、方差:当n →∞时,测量值与期望值之差的平方的统计平均值,可写为:

2

221111lim ()lim n n i x i n n i i x E n n σδ→∞→∞===-=∑∑ 3、标准差:

21

1lim n i n i n σδ→∞==∑ 标准差反映了测量的精密度。

4、正态分布

根据概率论中的中心极限定理和随机误差的性质可知,在多数情况下,随机误差服从正态分布。其分布密度可以写为如下公式:

22-(x -E )1(x )=exp[]2σ2πσ

i x i ? 测量值x i 的分布曲线如图所示:可以看出,测量值对称的分

布在数学期望的两侧。

根据随机误差的正态分布曲线,可以得出以下结论:

☆ δ愈小、Φ(δ)愈大,说明绝对值小的随机误差出现的概

率大;

☆随着δ的加大, Φ(δ)很快趋于0,即超过一定界限的随机

误差实际上几乎不出现(有界性;

☆ σ愈小,正态分布愈尖,表明测得值愈集中,精密度高;

☆ 大小相等符号相反的误差出现的概率相等 (对称性、补

偿性)。

5、残差:

i i u x x =-

注意两点:☆ 残差的代数和等于0.

☆当测量次数趋于无穷时,残差等于随机误差.

6、有限次测量的标准差:

贝塞尔公式:∑-==∧

σn u i i n 1112 用极差法求标准差:=σC

R x ? 其中R 为测量结果中的最大值和最小值之差。C 为极差系数,可以通过查表得到。

7、算术平均值的标准差:当n 为有限次测量时,平均值的标准差课表示为:=σ

σn x /?? 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

处方点评抽样与统计分析报告方法

处方点评抽样与统计分析方法 一、统计学概述 统计学是把科学和艺术结合在一起进行收集和分析数据资料的一门学科。 因为科学研究常研究的是事物的一般规律,研究的是其共性;艺术扬的是其个性,两者相差很远。而统计学是通过扬有差别的个性来寻求事物背后的一般规律,所以它是连接科学和艺术的一个桥梁。 早在16世纪,意大利人把统计学称为国情学。这种说法后来传播到法、德、荷等欧陆国家。在17,18世纪,这些国家的大学里讲授的“统计学”课程,实际上就是讲“国情学”,包括有关人口,经济,地理,乃至政治方面的容。到十九世纪初,逐步演变为现代西方统计学——Statistics。 统计学可与各领域、各专业相结合,已在社会、人口、教育、环境等各领域的应用研究中被广泛应用,因为它是一门方法学,是破解各领域难题的科学工具。如工业统计,卫生统计,生物统计,医药统计,金融统计,法学统计,心理统计,交通统计、教育统计等等。 卫生统计学属应用统计学,运用数理统计学的原理和方法,研究医学科研及卫生工作中有关数据的收集、整理、分析的科学。其容包括三部分: 1、统计设计: 抽样方法、研究设计方案 样本含量(大小)的确定 2、整理资料:数据录入、核查和汇总 3、分析资料:统计描述、统计推断。 二、目的意义

处方点评是加强合理用药的管理手段,目的是要解决临床不合理用药问题,不断提高临床医疗水平。在处方点评中应用卫生统计学的意义: 1、控制影响处方点评的因素 2、保证处方点评的质量 3、提高处方点评的水平 4、促进临床合理用药 在处方点评工作应用卫生统计,其容包括处方抽取的数量(样本含量)和抽样方法、处方数据资料的整理、分析、解释和描述。将获得可靠的结果,作出科学的推断或预测,为政府或卫生管理部门在医疗工作中进行管理决策和行动提供依据和建议。因此在处方点评中应用卫生统计,必须做到以下原则: 1、要有足够的样本含量; 2、被抽查的处方要有代表性; 3、抽样方法要科学; 4、点评结果要有可比性。 三、样本含量 样本含量是指样本中包含的观察单位数。从总体中抽取样本时,应保证样本有足够的数量满足统计学要求,样本中观察个体之间变异度小的样本含量可少些,变度大的应多些。 影响样本含量大小的相关因素 1、检验水平一般用95%的把握 2、检验效能一般取90%的信度 3、容许误差抽样率与总体率差别<10% 4、总体率的大小

加工误差统计分析实验指导

加工误差统计分析实验 一、实验目的 1、巩固已学过的统计分析法的基本理论; 2、掌握运用统计分析法的步骤; 3、学习使用统计分析法判断和解决问题的能力。 二、实验设备与仪器 电感测量仪、块规、千分尺、试件(滚动轴承滚柱)、计算机。 三、实验原理和方法 在机械加工中,应用数理统计方法对加工误差(或其他质量指标)进行分析,是进行过程控制的一种有效方法,也是实施全面质量管理的一个重要方面。其基本原理是利用加工误差的统计特性,对测量数据进行处理,作出分布图和点图,据此对加工误差的性质、工序能力及工艺稳定性等进行识别和判断,进而对加工误差作出综合分析。 1、直方图和分布曲线绘制 1)初选分组数k 2 找出样本数据的最大值X imax和最小值X imin,并按下式计算组距: 式中:k——分组数,按表选取; X max和X min——本组样本数据的最大值和最小值。 选取与计算的d值相近的且为测量值尾数整倍数的数值为组距。 3)确定组界 各组组界为: min (i1)d 2 d X+-± (i=1,2,…,k),为避免样本数据落在组 界上,组界最好选在样本数据最后一位尾数的1/2处。 4)统计各组频数 频数,即落在各组组界范围内的样本个数。 频率=频数/样本容量 5)画直方图 以样本数据值(被测工件尺寸)为横坐标,标出各组组界;以各组频数为纵坐标,画出直方图。 6)计算总体平均值与标准差

平均值的计算公式为 1 1n i i X X n ==∑ 式中:X i ——第i 个样本的测量值; n ——样本容量。 标准差的计算公式为 s =7)画分布曲线 若研究的质量指标是尺寸误差,且工艺过程稳定,则误差分布曲线接近正态分布曲线;若研究的资料指标是形位误差或其他误差,则应根据实际情况确定其分布曲线。画出分布曲线,注意使分布曲线与直方图协调一致。 8)画公差带 按照与以上分布曲线相同的坐标原点,在横轴下方画出被测零件的公差带,以便与分布曲线相比较。 公差根据试件类型、规格查国标手册可得到。 2、X -R 图绘制 1)确定样组容量,对样本进行分组 样组容量一般取m=2~10件,通常取4或5,即对试件尺寸依次按每4~5个一组进行分组,将样本划分成若干个样组。 2)计算各样组的平均值和极差 对于第i 个样组,其平均值和极差计算公式为 1 1m i ij j X X m ==∑, max min i i i R X X =- 式中:i X ——第i 个样组的平均值; i R ——第i 个样组的标准差; ij X ——第i 个样组第j 个试样的测量值; max i X ——第i 个样组数据的最大值; min i X ——第i 个样组数据的最小值。 3)计算X -R 图的控制线 X -R 图的控制线为 样组平均值X 图的中线 1 1m k i i m X X k ==∑ 样组平均值R 图的中线

工艺过程的统计分析一

工艺过程的统计分析 一:概述 在生产实际中,影响加工精度的原始误差很多,这些原始误差往往使综合地交错在一起对加工精度产生综合影响的,且其中不少原始误差的影响往往带有随机性。对于一个受多个随机性质原始误差影响的工艺系统,只有用概率统计的方法来进行分析,才能得出正确的、符合实际的结果。 (一)系统性误差与随机性误差 系统性误差可分为常值系统性误差和变值系统性误差两种。在顺序加工一批工件中,其大小和方向皆不变的误差,称为常值系统性误差。例如,铰刀直径大小的误差,测量仪器的一次对零误差等。在顺序加工一批工件中,其大小和方向遵循某一规律变化的误差,称为变值系统性误差。例如,由于刀具的磨损引起的加工误差,机床和刀具或工件的受热变形引起的加工误差等。显然,常值系统性误差与加工顺序无关,而变值系统性误差则与加工顺序有关。 在顺序加工一批工件中,有些误差的大小和方向使无规则变化着的,这些误差称为随机误差。例如加工余量不均匀、材料硬度不均匀、夹紧力时大时小等原因引起的 加工误差。 对于常值系统性误差,若能掌握其大小和方向,就可以通过调整消除;对于变值系统性误差,若能掌握其大小和方向随时间变化的规律,则可通过自动补偿消除;唯队随机性误差,只能缩小它们的变动范围,而不可能完全消除。由概率论与数理统计血可知,随机性误差的统计规律可用它的概率分布表示。 (二)机械制造中常见的误差分布规律

偏态 分布 在用试切法车削轴径或孔径时,由于操作者为了尽量避免产生不 可修复的废品,主观地(而不是随机地)使轴颈加工得宁大勿小, 则它们得尺寸误差就呈偏态分布。 机械加工误差 分布规律 (三)正态分布 1.正态分布的数学模型、特征参数和特殊点机械加工 中,工件的尺寸误差是由很多相互独立的随机误差综合作 用的结果,如果其中没有一个随机误差是起决定作用的, 则加工后工件的尺寸将呈正态分布,其密度方程中,有两 个特征参数:一个算术平均值只影响曲线的位置,而不影 响曲线的形状;另一个均方根偏差(标准差)σ 只影响曲 线的形状,而不影响曲线的位置,均方根偏差愈大,曲线 愈平坦,尺寸就愈分散,精度就愈差。因此,均方根偏差 反映了机床加工精度的高低,算术平均值反映了机床调整 位置的不同。 2.标准正态分布 算术平均值为 0,均方根偏差为 1 的正态分布为标准正态分布。 3.工件尺寸再某区间内的概率 生产上感兴趣的往往不是工件为某一尺寸的概率是多大,而是加工工件尺寸落在某一 区间(x1≤x≤x2)内的概率是多大,如右图示。通过分析可知,非标准正态分布概率 密度函数的积分,经标准化变换后,可用标准正态分布概率密度函数的积分表示,为 了计算的需要,可制作一个标准化正态分布概率密度函数的积分表。通过计算可知, 正态分布的分散范围为 这就是工程上经常用到的“±3σ 原则”,或称“6σ 原 则”。

浅谈统计调查及统计调查误差的种类

摘要:随着社会的发展,统计调查作为各信息的来源势必会越来越受到人们更多地关注,也势必会有越来越多的人参与到统计调查活动中来。本文从统计调查的概念出发,通过对统计调查和其它调查的区别解释统计调查,并正确区分统计调查与非统计调查、理解统计调查的种类、统计调查误差的种类及其特征和产生的原因,这些问题是参与和搞好统计调查、提高统计调查质量的基本前提。 关键词:统计调查;误差;统计调查质量 一、统计调查的概念 统计调查不仅要有明确的调查对象,而且调查对象是由具有某一或某些共同特征的许多个体构成的总体,同时构成总体的个体数要足够地多,除此之外,还要求调查的个体单位数也要足够地多。统计调查对构成总体的许多独立个体的调查不是目的,综合与提炼许多独立个体信息资料才是统计调查的真正目的。因此,统计调查所获资料的真实、准确与否,直接取决于个体提供的信息资料是否真实、准确。而统计个体之所以有可能提供不真实、不准确的个体信息资料,是因为统计个体担心一旦提供了个体真实、准确的信息资料可能会为自己、他人或相关部门带来不必要的麻烦。不过,从统计调查的真实目的来看,统计个体的信息资料根本不是统计调查所关注的信息资料,个人信息资料只作为一种信息载体出现,仅起到显现总体一般属性或数量特征的作用———从对个体信息资料进行深入的加工、综合中提炼出总体的一般属性或数量特征。 二、统计调查的种类 众所周知,信息化时代信息的主体是统计信息,统计信息的获取建立在统计调查的基础之上。统计调查搜集到的个体信息资料的真实、准确与否将直接影响信息化时代信息的质量。统计调查获取个体信息资料的方式方法的不同决定了不同种类的统计调查获取个体信息资料质量的差异。 统计调查按是否对构成总体的全部个体进行调查,可以划分为全面统计调查与非全面统计调查两类。 全面统计调查指的是对构成总体的所有个体进行的调查,即要搜集总体中所有个体的个体信息资料的一种调查。再按对总体中个体信息资料收集方式的不同,全面统计调查又可以划分为普查和全面统计报表两种。普查通常通过调查员借助普查表直接向个体搜集其信息资料的一种调查方式。 非全面统计调查指仅从构成总体的全部个体中选取部分个体进行的调查。非全面调查又因从全部个体中所选部分个体的方式不同,分为抽样调查和非抽样调查。所谓抽样调查指从构成总体的所有个体中按照随机性原则选取部分个体的调查。同时,抽样调查又根据随机性原则在具体使用上的差异可以将抽样调查划分为简单随机抽样、系统随机抽样、分层随机抽样、整群随机抽样以及多阶段随机抽样等。另一方面,若从构成总体的所有个体单位中没有遵循随机性原则而选取部分个体单位进行调查,则这样的统计调查称之为非抽样调查。生活中常用的非抽样调查主要有重点调查、典型调查和滚雪球调查等。 因此,无论在抽样调查的理论研究方面,还是在抽样调查的实际应用中,抽样调查正越来越受到人们的重视。

统计工作中的“数据误差”的原因及对策分析.

统计工作中的“数据误差”的原因及对策分析 【摘要】统计工作的精准对我国国民经济发展的影响至关重要。准确、全面、及时、系统的统计数据,是各级党委政府在进行科学决策和管理,制定宏观调控措施的必要依据。本文就统计工作中的数据误差的原因进行了分析,并提出了具体的整改措施,以保证统计工作数据的准确性。 【关键词】统计;数据;管理 一、统计工作中的数据误差的原因分析 (一)统计方法制度不够完善,统计指标体系与指标设置不够科学。统计调查方法相对滞后。全面调查和抽样调查在实际工作中存在一定的局限性。全面调查在基层工作中有时难免存在调查者与被调查者之间,在搜集资料单位的上下左右之间,往往容易引起矛盾,在层层上报过程中,容易受人的主观因素影响,所以全面统计的结果有时并不全面。对基层的统计抽样工作来说:如规模以下工业企业、限额以下批发零售贸易企业、私营、个体经济等抽样工作,基层统计人员由于对抽样调查认识不到位,往往凭自己的主观臆断来确定抽样的样本点,抽样调查缺乏科学性导致调查样本的随机性、代表性难以保证,影响了调查样本数据的准确性,扩大了抽样误差。现有统计指标体系存在第一、二产业品种繁多,而满足国民经济核算需要的第三产业报表资料相对较少,影响统计数据质量;在指标设置上存在专业之间个别指标重复上报的现象,同时个别指标的设置没有充分考虑基层的实际,存在指标理解上的偏差。统计数据评审制度还不够健全。虽然一些主要经济指标如GDP已经建立数据联审评估制度,但统计数据评审制度还存在与GDP相关主要数据评估不够配套、同时数据评估制度还存在操作性不强等问题。 (二)基层统计人员工作积极性不高,对统计数据来源把关不严。首先,由于统计体制不科学、统计工作地位和待遇不高,基层统计人员积极性不高,责任心不强加之身兼数职,任务重,对日常的统计工作基本上是疲于应付,统计数据质量难以得到保证;其次,县级统计人员存在对统计数据的来源把关不严。由于统计部门长期受一无权二无钱、求人的事情多、自己说了算的时候少的认识的影响,对基层上报数据缺乏严格要求,加上评估论证不完全到位,有的专业存在下面报多少是多少、怎么报怎么算的问题,同时基层统计工作存在统计执法不严的问题,使少数企业多存侥幸心理,这在一定程度上影响统计数据质量;第三,基层统计人员的工作能力和水平影响统计数据的质量。 (三)统计基层基础工作薄弱。主要表现在:一是部分基层统计单位统计岗位落实不到位,统计人员多数为兼职,而且变动频繁,稳定性差。调查表明,大中型的企事业单位统计工作相对比较规范,有专门的统计机构与专职的统计人员,而一些小型单位,特别是私营、个体企业对统计工作重视不够,多数统计人员身兼数职,统计工作只是附带性的工作,而且经常变动,稳定性差,统计数据质量得不到保障;二是部分基层统计单位原始记录不全,未建立规范的统计台帐和统计制度,一些私营、个体企业,对统计工作不完全配合,填报的统计数据不能真实反映企业的实际情况,统计数据的质量存在较大偏差;三是基层开展统计工作所必须的经费和保障条件不能得到保障;四是部分基层单位分管统计的领导对统计工作不重视,对统计数据审核不严把不好关。

机械加工定位误差分析及菱形销设计

机械加工定位误差分析及菱形销设计 如前所述,为保证工件的加工精度,工件加工前必须正确的定位。所谓正确的定位,除应限制必要 的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误 差范围以内。本节即是定量地分析计算定位方式所产生的定位误差,以确定所选择的定位方式是否合理。 使用夹具时造成工件加工误差的因素包括如下四个方面: ( 1 )与工件在夹具上定位有关的误差,称为定位误差Δ D ; ( 2 )与夹具在机床上安装有关的误差,称为安装误差Δ A ; ( 3 )与刀具同夹具定位元件有关的误差,称为调整误差Δ T ; ( 4 )与加工过程有关的误差,称为过程误差Δ G 。其中包括机床和刀具误差、变形误差和测量 误差等。 为了保证工件的加工要求,上述误差合成后不应超出工件的加工公差δ K ,即 Δ D + Δ A + Δ T + Δ G ≤δ K 本节先分析与工件在夹具中定位有关的误差,即定位误差有关的内容。 由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。当定位误差,一般认为选定的定位方式可行。 Δ D ≤ 1/3 δ K 一、定位误差产生的原因及计算 造成定位误差的原因有两个:一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准 不符误差);二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。

(一)基准不重合误差及计算 由于定位基准与设计基准不重合而造成的定位误差称为基准不重合误差,以Δ B 来表示。 图 3 -61a 所示为零件简图,在工件上铣缺口,加工尺寸为 A 、 B 。图3-61b 为加工示意图,工件以底面和 E 面定位, C 为确定刀具与夹具相互位置的对刀尺寸,在一批工件 的加工过程中 C 的位置是不变的。 加工尺寸 A 的设计基准是 F ,定位基准是 E ,两者不重合。当一批工件逐个在夹具上 定位时,受尺寸S ±δ S /2 的影响,工序基准 F 的位置是变动的, F 的变动影响 A 的大小,给 A 造成误差,这个误差就是基准不重合误差。 显然基准不重合误差的大小应等于定位基准与设计基准不重合而造成的加工尺寸的变动 范围,由图3-61b 可知: Δ B =A max-A min =S max-S min= δ S S 是定位基准 E 与设计基准 F 间的距离尺寸。当设计基准的变动方向与加工尺寸的方向相同时, 基准不重合误差就等于定位基准与设计基准间尺寸的公差,如图3-61 ,当S 的公差为δ S ,即 Δ B = δ S (3-2 ) 当设计基准的变动方向与加工尺寸方向有一夹角(其夹角为β)时,基准不重合误差等于定位基准

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

机械制造工艺中的定位误差计算

机械加工定位误差分析(上) 如前所述,为保证工件的加工精度,工件加工前必须正确的定位。所谓正确的定位,除应限制必要的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误差范围以内。本节即是定量地分析计算定位方式所产生的定位误差,以确定所选择的定位方式是否合理。 使用夹具时造成工件加工误差的因素包括如下四个方面: ( 1 )与工件在夹具上定位有关的误差,称为定位误差Δ D ; ( 2 )与夹具在机床上安装有关的误差,称为安装误差Δ A ; ( 3 )与刀具同夹具定位元件有关的误差,称为调整误差Δ T ; ( 4 )与加工过程有关的误差,称为过程误差ΔG 。其中包括机床和刀具误差、变形误差和测量误差等。 为了保证工件的加工要求,上述误差合成后不应超出工件的加工公差δ K ,即 Δ D + Δ A + Δ T + Δ G ≤δ K 本节先分析与工件在夹具中定位有关的误差,即定位误差有关的内容。 由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。当定位误差Δ D ≤ 1/3 δ K ,一般认为选定的定位方式可行。 一、定位误差产生的原因及计算 造成定位误差的原因有两个:一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准不符误差);二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。 (一)基准不 重合误差及计算 由于定位基准 与设计基准不重合 而造成的定位误差 称为基准不重合误 差,以Δ B 来表示。 图 3 -61a 所 示为零件简图,在 工件上铣缺口,加 工尺寸为 A 、 B 。

图 3-61b 为加工 示意图,工件以底 面和 E 面定位, C 为确定刀具与夹具 相互位置的对刀尺 寸,在一批工件的 加工过程中 C 的 位置是不变的。 加工尺寸 A 的设计基准是 F , 定位基准是 E ,两 者不重合。当一批 工件逐个在夹具上 定位时,受尺寸 S ±δ S /2 的影响, 工序基准 F 的位 置是变动的, F 的 变动影响 A 的大 小,给 A 造成误 差,这个误差就是 基准不重合误差。 显然基准不重 合误差的大小应等 于定位基准与设计 基准不重合而造成 的加工尺寸的变动 范围,由图 3-61b 可知: Δ B =A max-A min =S max-S min= δ S S 是定位基准 E 与设计基准 F 间的距离尺寸。当设计基准的变动方向与加工尺寸的方向相同时,基准不重合误差就等于定位基准与设计基准间尺寸的公差,如图 3-61 ,当 S 的公差为δ S ,即 Δ B = δ S ( 3-2 ) 当设计基准的变动方向与加工尺寸方向有一夹角(其夹角为β)时,基准不重合误差等于定位基准与设计基准间距离尺寸公差在加工尺寸方向上的投影,即 Δ B = δ S × cos β (3-3)

定位误差分析

(3)定位误差的计算 由于定位误差ΔD是由基准不重合误差和基准位移误差组合而成的,因此在计算定位误差时,先分别算出Δ B和ΔY ,然后将两者组合而得ΔD。组合时可有如下情况。 1)Δ Y ≠ 0,Δ B=O时Δ D= Δ B (4.8) 2)ΔY =O,Δ B ≠ O时Δ D= Δ Y (4.9) 3)Δ Y ≠ 0, Δ B ≠ O时 如果工序基准不在定位基面上Δ D=Δ y + Δ B (4.10) 如果工序基准在定位基面上Δ D=Δ y ±Δ B (4.11) “ + ” ,“—” 的判别方法为: ①设定位基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大)时, 判断工序基准相对于定位基准的变动方向。 ②② 设工序基准是理想状态,当定位基面上尺寸由最大实体尺寸变为最小实体尺寸 (或由小变大) 时,判断定位基准相对其规定位置的变动方向。 ③③ 若两者变动方向相同即取“ + ” ,两者变动方向相反即取“—”。 -、定位误差及其组成 图9-21a 图9-21 工件在V 形块上的定位误差分析 工序基准和定位基准不重合而引起的基准不重合误差,以表示由于定位基准和定位元件本身的 制造不准确而引起的定位基准位移误差,以表示。定位误差是这两部分的矢量和。 二、定位误差分析计算 (一)工件以外圆在v形块上定位时定位误差计算 如图9-16a所示的铣键槽工序,工件在v 形块上定位,定位基准为圆柱轴心线。如果忽略v形块的制造误差,则定位基准在垂直方向上的基准位移误差

(9-3) 对于9-16中的三种尺寸标注,下面分别计算其定位误差。当尺寸标注为B1时,工序基准和定位基准重合,故基准不重合误差ΔB=0。所以B1尺寸的定位误差为 (9-4) 当尺寸标注为B2时,工序基准为上母线。此时存在基准不重合误差 所以△D应为△B与Δy的矢量和。由于当工件轴径由最大变到最小时,和Δy都是向下变化的,所以,它们的矢量和应是相加。故 (9-5) 当尺寸标注为B3时,工序基准为下母线。此时基准不重合误差仍然是,但当Δy向下变化时,ΔB 是方向朝上的,所以,它们的矢量和应是相减。故 (9-6) 通过以上分析可以看出:工件以外圆在V形块上定位时,加工尺寸的标注方法不同,所产生的定位误差也不同。所以定位误差一定是针对具体尺寸而言的。在这三种标注中,从下母线标注的定位误差最小,从上母线标注的定位误差最大。 四.计算题:(共 10 分) 如图所示套类工件铣键槽,要求保证尺寸94-0.20,分别采用图(b)所示的定位销定位方案和图(c)所示的V形槽定位方案,分别计算定位误差。

机械制造工程学定位误差作业及答案

定位误差作业答案 1、如下图1所示,工件以底面定位加工孔键槽,求尺寸h的定位误差? 解:(1)求基准不重合误差jb?,设计基准为孔的下母线,定位基准为底平面,故jb?由两部分组成: ΦD半径的变化产生T D 2 ,尺寸A变化产生2T A, 所以基准不重合误差:jb?=T D 2 + 2T A (2)基准位置误差jw ?定位基准为工件底平面,对刀基准为与定位基准接触的支承板的工作表面,不记形状误差,则有 = ? jw 所以槽底尺寸h的定位误差为:?dw=T D 2 + 2T A 图1 内键槽槽底尺寸定位误差计算

2、如下图所示某套类零件以外圆在V 型块上定位,在孔上加工键槽保证 尺寸2 .005.38+=H ,已知:01.080-=d ;02 .00 35+=D ;外圆与孔的同 轴度误差为¢0.02;V 型块的夹角为90°。 试求H 尺寸的定位误差△D (H ) 。并判断定位合理性(定位误差<1/2 尺寸公差为合理)。 解: 1)基准不重合误差:03.002.02 02 .02 =+= += ?e D jb φδ 2)基准位移误差: 07.045sin 21 .02 sin 2== = ? α δd jw 3)设计基准不在与V 型块接触的外圆定位面上,为“+” 所以该定位方案定位误差为:1.007.003.0)(=+=?H D 得:△D (H)=0.1,因为定位误差≤1/2尺寸公差(0.2),所以定位方案合理 3、试计算下图中某阶梯轴在V 型块定位加工小孔¢d 时影响加工尺寸0 11.030-φ的定位误差。已知阶梯轴的大园直径为003.040-φ;小园直径为002.034-φ;大园与小园的同轴度误差为02.0φ。V 型块两定位面的夹角为90°。求工序尺寸011 .030-φ的定位误差。并判断定位合理性(定位误差<1/2尺寸公差为合理)。

误差统计分析题库

1. 在机床上磨一批mm 0035.018-Φ的光轴,工件尺寸呈正态分布,现测得平均尺寸- x =17.975mm ,均方根差σ=0.01mm ,试: (1)画出工件尺寸误差的分布曲线,并标出公差带; (2)计算该工序的工艺能力系数; (3)估计该工序的废品率; (4)分析产生废品的原因,并提出解决办法。(12分) 解 (1)分布曲线及公差带如图: (2)工艺能力系数: C P =T/6σ, C P =0.035/(6×0.01)=0.5833 (3)按题意x =17.975mm ,σ=0.01mm ,实际加工尺寸: 加工尺寸最大值Amax =x +3σ=17.975+0.03=18.005mm ,最小值Amin =x -3σ=17.975-0.03=17.945mm ,即加工尺寸介于17.945~18.005mm 之间,而T =0.035mm ,肯定有废品。所以分布在17.965mm 和18mm 之间的工件为合格产品,其余为废品。 因为= σ x -x z = 01 .0975 .1718-=2.5,所以F (z )=F (2.5)= 0.4938,即平均值右 侧废品率为0.5-F (2.5)=0.62%,即18mm 与18.005mm 间为废品;又因为 = σ x -x z = 01 .0965 .17975.17-=1,所以F (z )=F (1)=0.3413,即平均值左侧废 品率为0.5-F (1)=15.87%,即17.945mm 与17.965mm 间为废品,则总废品率

为0.62%+15.87%=16.49%。18mm 与18.005mm 间的废品为可修复废品。17.945mm 与17.965mm 间的废品为不可修复废品,因其尺寸已小于要求。 (3)产生废品的主要原因是加工精度不够,尺寸分布较散,另外对刀不准,存在系统误差。 2. 磨一批工件的外圆,工件尺寸呈正态分布,尺寸公差T =0.02mm ,均方根偏差σ=0.005mm ,公差带对称分布于尺寸分布中心,试: (1)画出销轴外径尺寸误差的分布曲线,并标出公差带; (2)计算该工序的工艺能力系数; (3)估计该工序的废品率。 (4)分析产生废品的原因,并提出解决办法。(8分) 解 (1) 分布曲线(1分)及公差带(1分): (2)工艺能力系数: C P =T/6σ,C P =0.02/(6×0.005)=0.667(2分) (3)要求的极限尺寸上偏差为0.01mm ,下偏差为-0.01mm ;工件可能出现的极限尺寸上偏差为0.015mm ,下偏差为-0.015mm ;所以分布在-0.01mm 和0.01mm 之间的工件为合格产品,其余为废品。 因为= σ x -x z = 005 .00 01.0-=2,所以F (z )=F (2)=0.4772,即平均值一侧废品率为50%-47.72%=2.28%,则总废品率为2×2.28%=4.56%(2分)。 (4)产生废品的主要原因是加工精度较差,改进办法是提高加工技术水平并改善工艺条件,使σ数值减少至6σ

加工过程误差的统计分析实验

加工过程误差的统计分析 一、实验目的和要求 通过本实验掌握加工过程误差统计分析的基本原理和方法。 1.运用计算机辅助误差测控仪进行误差数据的采集,运算,结果显示和打印。 2.熟悉直方图的作法,能根据样本数据确定分组数,组距,由直方图作出实际分布曲线,进而将实际曲线与正态分布曲线相比较,判断加工误差性质。 3.熟悉X-R质量控制图的作法,能根据X-R图判断工序加工稳定性。 二、基本原理和方法 加工误差可以分为系统误差和随机误差两大类。系统误差指在顺序加工一批工件中,其加工误差的大小和方向都保持不变或按一定的规律变化,前者称常值系统误差,是由大小和方向都一定的工艺因素造成,后者为变值系统误差,由大小和方向有规律变化的工艺因素造成。随机误差指在顺序加工一批工件中,其加工误差的大小和方向都是随机的,是许多相互独立的工艺因素微量的随机变化和综合作用的结果。 实际加工误差往往是系统误差和随机误差的综合表现,因此,在一定的加工条件下,要判断是某一因素起主导作用,必须先掌握一定的数据资料,再对这些数据资料进行分析研究,判断误差的大小,性质,及其变化规律等等,然后再正对具体情况采取相应的工艺措施。 统计分析方法可用来研究,掌握误差的分布规律和统计特征参数,将系统误差和随机误差区分开来。 1.误差的分布图分析法; 根据概率论理论,相互独立的大量微小随机变量,其总和的分布接近正态分布。这就是说,对于随机误差,应满足正态分布。 根据数理统计的原理,随机变量是全体(总体)的算术平均值和标准差可用部分随机变量的算术平均值x和标准差S来估算,其值是很接近的。这样,就可用抽检样本来估算整体。 在机械加工中,用调整法加工一批零件,当不存在明显的变值系统误差因素时,其尺寸分布近似于正态分布。 根据上述原理,在本实验中,通过检测丝杠螺距误差的数据样本,来模拟一批零件的加工误差的数据样本,不同截面的丝杠螺距误差,可以看成是该丝杠车削加工工艺系统中众多随机误差因素综合的结果。根据该误差数据样本绘制实验分布图(即直方图)和正态分布曲线。若该分布图呈正态分布,表明加工过程中是影响不突出的随机性误差起主导作用,而变值系统误差作用不明显,若分布图的平均偏差与公差带中点坐标不重合,表明存在常值系统误差,若所分析的误差量呈非正态分布,则说明变值系统误差作用突出。 实验分布图(即直方图)和正态分布曲线的绘制方法如下; 假设有一个误差数据样本,其样本容量为N,样本数据的最大值为Xmax,最小值为Xmin,并记极差,R=Xmax-Xmin。 将数据分为K组,K的选取与样本容量N的大小有一定的关系,可参见表1-1 确定K值以后即可按D=R/K确定组距。样本值落在同一误差组的个数即为频Mi, 频数与样本容量之比,称为频率Fi。以组距为横坐标,以频数为纵坐标按一定比例作出各个数据组的长方形,就构成了直方图。 正态分布概率分布密度函数为;

机械加工误差产生的原因及措施

机械加工误差产生的原因及措施 1加工误差的原因分析 由机床、刀具、夹具和工件组成了机械加工的工艺系统,整个系统的误差也就影响着加工误差。工艺系统的误差是“因”,是根源;加工误差是“果”,是表现。因此把工艺系统的误差称为原始误差。系统条件改变了,误差则随之改变,在机械加工工艺系统中,加工误差的产生主要是由原始误差引起的。这些原始误差主要可归纳为以下几个方面: 1.1加工原理误差 采用近似的加工运动或者近似的刀具轮廓,都会产生原理误差。在较多的情况下,为了使工件表面符合规定要求,就需要工件和刀具两者之间有一定的运动联系。例如,车螺纹就需要刀具与工件之间有螺旋运动的联系;滚切齿轮就需要滚刀与工件之间有准确的展成运动联系等,这种联系就叫做加工原理。这种运动联系是用机床或夹具来保证的,或是用成型刀具来保证的。但是在理论上采用的加工原理比较准确时,就需要机床或夹具制造得比较复杂,或者中间环节过多,反而增加了机床的运动误差,进而影响了加工精度的提高。另外,在用成型刀具加工复杂的曲线表面时,刀具刃口只能近似符合理论曲线,因此就会产生原理误差。 1.2定位安装误差 定位和安装是使用夹具固定工件的两个必要动作过程,定位元件决定工件的位置,而制造得非常准确的定位元件是不存在的,都允许有一定的公差范围,这样误差也就随之产生了。另外,在安装工件时一般都是由人来操作完成的,即使全部由控制系统自动完成的定位安装,误差也会产生,工件形状和尺寸受工件定位夹装精度的影响很大,进而影响工件的装配精度。因此,操作者不能完全消除定位安装误差,但应当尽量使误差降到最低限度。 1.3机床误差 机床误差表现在自身的制造、磨损和安装三个方面。一般来说,机床在制造、安装以及使用过程中都会出现一定的偏差,虽然机床出厂之前都要经过检验,但主要检验机床的重要零部件的形状和位置误差,而且这些检验是在没有切削载荷

定位误差的分析与计算

华北航天工业学院教案 教研室:机制工艺授课教师:陈明

第十章机床夹具的设计原理 第三节定位误差的分析与计算一批工件逐个在夹具上定位时,各个工件在夹具上所占据的位置不可能完全一致,以致使加工后各工件的加工尺寸存在误差,这种因工件定位而产生的工序基准在工序尺寸上的最大变动量,称为定位误差,用?D表示。 一、定位误差的组成 1.基准不重合误差 如前所述,当定位基准与设计基准不重合时便产生基准不重合误差。因此选择定位基准时应尽量与设计基准相重合。当被加工工件的工艺过程确定以后,各工序的工序尺寸也就随之而定,此时在工艺文件上,设计基准便转化为工序基准。 设计夹具时,应当使定位基准与工序基准重合。当定位基准与工序基准不重合时,也将产生基准不重合误差,其大小对于定位基准与工序基准之间尺寸的公差,用?B表示。工序基准与定位基准之间的尺寸就称为定位尺寸。 2.基准位移误差 工件在夹具中定位时,由于工件定位基面与夹具上定位元件限位基面的制造公差和最小配合间隙的影响,从而使各个工件的位置不一致,给加工尺寸造成误差,这个误差称为基准位移误差,用?Y表示。 基准位移误差的大小对应于因工件内孔轴线与心轴轴线不重合所造成的工序尺寸最大变动量。 当定位基准的变动方向与工序尺寸的方向相同时,基准位移误差等于定位基准的变动范围,即 ?Y = ?i 当定位基准的变动方向与工序尺寸的方向不同时,基准位移误差等于定位基准的变动范围在加工尺寸方向上的投影,即 ?Y = ?i cos a 二、各种定位方式下定位误差的计算 1.定位误差的计算方法 如上所述,定位误差由基准不重合误差与基准位移误差两项组合而成。计算时,先分别算出?B和?Y,然后将两者组合而成?D。组合方法为:如果工序基准不在定位基面上:?D =?Y + ?B 如果工序基准在定位基面上:?D = ?Y±?B 式中“+”、“-”号的确定方法如下: 1)1)分析定位基面直径由小变大(或由大变小)时,定位基准的变动方向。 2)2)当定位基面直径作同样变化时,设定位基准的位置不变动,分析工序基准的变动方向。 3)3)两者的变动方向相同时,取“+”号,两者的变动方向相反时,取“-”号。 2.工件以圆孔在心轴(或定位销)上定位 (1)(1)定位副固定单边接触 当心轴水平放置时,工件在重力作用下与心轴固定单边接触,此时

机加工质量分析

第6章机械加工质量技术分析 重点:影响机械加工精度的因素 难点:加工误差的统计分析 机械加工精度 随着机器速度、负载的增高以及自动化生产的需要,对机器性能的要求也不断提高,因此保证机器零件具有更高的加工精度也越显得重要。我们在实际生产中经常遇到和需要解决的工艺问题,多数也是加工精度问题。 研究机械加工精度的目的是研究加工系统中各种误差的物理实质,掌握其变化的基本规律,分析工艺系统中各种误差与加工精度之间的关系,寻求提高加工精度的途径,以保征零件的机械加工质量,机械加工精度是本课程的核心内容之一。 一、机械加工精度概述 (一)、加工精度与加工误差 1、加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度越高。一般机械加工精度是在零件工作图上给定的,其包括:1)零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 3)零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、获得加工精度的方法: 1)试切法:即试切--测量--再试切--直至测量结果达到图纸给定要求的方法。 2)定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 3)调整法:按零件规定的尺寸预先调整好刀具与工件的相对位置来保证加工表面尺寸的方法。 3、加工误差:实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。加工误差的大小表示了加工精度的高低。生产实际中用控制加工误差的方法来保证加工精度。 4、误差的敏感方向:加工误差对加工精度影响最大的方向,为误差的敏感方向。例如:车削外圆柱面,加工误差敏感方向为外圆的直径方向。

机械加工工序误差分析与计算

机械加工工序误差分析与计算 机械加工是加工业的主要形式,对现代社会经济有极为广泛而深远的影响。在当代社会机械加工最重要的质量标准就是加工误差,只有将加工误差控制在合理的范围内,才能保证加工产生的质量。本文立足机械加工的实际,从工序误差分析与计算的角度出发,结合机械加工的实例,对机械加工工序误差进行简要分析。 标签:机械加工;工序误差;分析与计算 前言:在机械加工领域如何控制机械加工的误差,一直是行业面临的主要问题。基于加工工序的误差理念在这种情况下诞生,其核心理念是按照加工的流程将机械加工过程分为多个工序,并对每一个工序中的误差进行精确控制,并最终达到控制机械加工整个过程误差的目的。 1.工序误差分析的基本理论 从机械加工误差分析的整体来看,机械加工各个工序的误差应该满足以下公式的要求 A+8 p+β+T≤α。(1) 其中α是机械加工活动原始尺寸的公差;A是指在机械加工中定位基准与技术资料基准不重合导致的误差,上述两个基准在原始尺寸上的投影构成了这一数值;β为计算定位误差,主要是因为在加工过程中工件与加工机械之间的相对位置误差,其具体数值为误差在原始尺寸上的投影;β夹具安装误差;T加工误差,通常情况下是有机床误差β,刀具调整误差β,刀具误差βD和工件变形误差β。组成的。 在机械加工过程中为了满足上述不等式要求,现将其中各项组成误差的影响因素和处理方法介绍如下: A这一数值在机械加工的工艺规程中已经固定,加工过程对其影响较小。 β。计算定位误差主要取决于定位基准和定位件之间的结构,当其中任意一点确定以后计算误差取决于另一点。合适的定位件选择、提高定位件的定位精度能够减少计算定位误差。 β.夹具安装误差与夹具有的关系。将夹具的有关技术公差调到最小;机床加工以后,直接应用在本机床的方法;以及对夹具的安装位置仔细明确的方法能够有效的降低夹具安装的误差[1]。 2.工序误差的计算方法

定位误差计算解析

3.2.3 定位误差的分析与计算 在成批大量生产中,广泛使用专用夹具对工件进行装夹加工。加工工艺规程设计的工序图则是设计专用夹具的主要依据。由于在夹具设计、制造、使用中都不可能做到完美精确,故当使用夹具装夹加工一批工件时,不可避免地会使工序的加工精度参数产生误差,定位误差就是这项误差中的一部分。判断夹具的定位方案是否合理可行,夹具设计质量是否满足工序的加工要求,是计算定位误差的目的所在。 1.用夹具装夹加工时的工艺基准 用夹具装夹加工时涉及的基准可分为设计基准和工艺基准两大类。设计基准是指在设计图上确定几何要素的位置所依据的基准;工艺基准是指在工艺过程中所采用的基准。与夹具定位误差计算有关的工艺基准有以下三种: (1)工序基准 在工序图上用来确定加工表面的位置所依据的基准。工序基准可简单地理解为工序图上的设计基准。分析计算定位误差时所提到的设计基准,是指零件图上的设计基准或工序图上的工序基准。 (2)定位基准 在加工过程中使工件占据正确加工位置所依据的基准,即为工件与夹具定位元件定位工作面接触或配合的表面。为提高工件的加工精度,应尽量选设计基准作定位基准。 (3)对刀基准(即调刀基准) 由夹具定位元件的定位工作面体现的,用于调整加工刀具位置所依据的基准。必须指出,对刀基准与上述两工艺基准的本质是不同,它不是工件上的要素,它是夹具定位元件的定位工作面体现出来的要素(平面、轴线、对称平面等)。如果夹具定位元件是支承板,对刀基准就是该支承板的支承工作面。在图3.3中,刀具的高度尺寸由对导块2的工作面来调整,而对刀块2工作面的位置尺寸7.85±0.02是相对夹具体 4的上工作面(相当支承板支承工作面)来确定 的。夹具体4的上工作面是对刀基准,它确定了 刀具在高度方向的位置,使刀具加工出来的槽底 位置符合设计的要求。图3.3中,槽子两侧面对 称度的设计基准是工件上大孔的轴线,对刀基准 则为夹具上定位圆柱销的轴线。再如图3.21所 示,轴套件以内孔定位,在其上加工一直径为φ d 的孔,要求保证φd 轴线到左端面的尺寸L 1及孔中心线对内孔轴线的对称度要求。尺寸L 1的 设计基准是工件左端面A ′,对刀基准是定位心 轴的台阶面A ;φd 轴线对内孔轴线的对称度的 设计基准是内孔轴线,对刀基准是夹具定位心轴 2的轴线OO 。 2.定位误差的概念 用夹具装夹加工一批工件时,由于定位不准 确引起该批工件某加工精度参数(尺寸、位置) 的加工误差,称为该加工精度参数的定位误差 (简称定位误差)。定位误差以其最大误差范围 来计算,其值为设计基准在加工精度参数方向上 的最大变动量,用dw 表示。 a) b 图3.21 钻模加工时的基准分析

相关文档
相关文档 最新文档